
ICIT 2013 The 6th International Conference on Information Technology

LOGICS OF QUASIARY PREDICATES IN FORMAL SOFTWARE
DEVELOPMENT

Mykola S. Nikitchenko and Valentyn G. Tymofieiev

Department of Theory and Technology of Programming
Taras Shevchenko National University of Kyiv
64, Volodymyrska Street, 01601 Kyiv, Ukraine

nikitchenko@unicyb.kiev.ua tvalentyn@univ.kiev.ua

Abstract

Logics of quasiary predicates are algebra-based logics constructed in a semantic-syntactic style on
the methodological basis, which is common with programming. Such way of construction gives a
possibility to use these logics in formal methods of software development. We demonstrate the main
ideas of program logic construction and give formal definitions for an important fragment of program
logics called many-sorted first-order composition-nominative logics. These logics are generalizations
of classical logics for a case of partial predicates that do not have fixed arity; reasoning rules for such
logics differ from classical ones. We study semantic properties of these logics used for investigation of
satisfiability and validity problems.

Keywords - Software development, formal methods, partial predicate, partial logic, composition-
nominative logic, first-order logic, satisfiability, validity.

1 INTRODUCTION

Formal methods of software (program) development aim to increase software reliability by using a
number of mathematically based approaches that permit to prove correctness of software (and
hardware) system components with respect to a formal specification. Application of such methods
should be based on formal program models and on a logic for reasoning about programs. This
explains the necessity of construction and investigation of such logics called program logics. Many

such logics are used in computer science for the specification of software and hardware systems; for
example: Hoare logic, Hennessy-Milner logic, dynamic logic, modal and temporal logics, separation
logic, spatial logic, nominal logic, linear logic, etc. [1]. It is not possible to invent one universal program
logic that would have all necessary properties. Therefore a hierarchy of logics has to be developed.
Here we continue our work on construction of such a hierarchy. Constructed logics are based directly
on special program models called composition-nominative program models (CNPM) [2].
Corresponding logics are called composition-nominative program logics (CNPL).

Program models and logics are constructed according to the principles of development from abstract to
concrete, priority of semantics, compositionality, and nominativity.

These principles specify a hierarchy of new logics that are semantically based on algebras of
predicates, functions, and programs, which are considered as partial mappings. Operations over such
mappings are called compositions. Data classes are considered on various abstraction levels, but the
main attention is paid to the class of nominative data. Such data consist of pairs name–value.
Nominative data can represent various data structures such as records, arrays, lists, relations, etc. [2];
this explains the importance of the notion of nominative data. In the simplest case nominative data can
be treated as partial mappings from a certain set V of (possibly typed) names (or variables) into a set
of basic (atomic) values. Such data are called nominative sets. Nominative sets represent program
states for simple programming languages (see, for example, [3]). From this follows that semantic
models of programs and logics are mathematically based on the notion of nominative set (nominative
data in general case). Partial mappings over nominative sets are called quasiary. This fact permits to
integrate models of programs and logics, and represent them as a hierarchy of composition-
nominative models [4]. Logics developed within such approach are called composition-nominative
program logics because such logics are determined 1) by operations (compositions) in algebras of
partial predicates, functions, and programs, and 2) by nominative structures of data on which these
predicates, functions and programs are defined. Let us admit that such properties as partiality and
compositionality are recognized as important for computer science [5, 6].

mailto:nikitchenko@unicyb.kiev.ua
mailto:tvalentyn@univ.kiev.ua

ICIT 2013 The 6th International Conference on Information Technology

In this paper we introduce the notion of many-sorted CNPL and give formal definitions for its fragment
called many-sorted first-order composition-nominative logic. This logic is an extension of a many-
sorted composition-nominative pure predicate logic (a logic without functions) studied in [7]. We
formulate semantic properties of such logics used for investigation of satisfiability and validity
problems.

The paper is structured in the following way. In section 2 we give a motivating example; then in
section 3 we give formal definitions of the many-sorted logics under investigation, and define the
satisfiability and validity problems. In section 4 we study semantic properties of such logics. In
section 5 we summarize our results and indicate directions for future investigations.

2 CONSTRUCTING PROGRAM LOGICS: A MOTIVATING EXAMPLE

Let us consider a simple programming language ELT (Example Language with Types) which is used
here to demonstrate how many-sorted program logics can be constructed. The ELT version presented
here is an extension of ELT from [7].

2.1 A simple programming language ELT

The grammar of the language is defined as follows:

prg ::= begin var dcl ; stm end

dcl ::= i: integer | x: real | dcl ; dcl

stm ::= i:=ie | x:=re | stm1 ; stm2 | if b then stm1 else stm2 |

 while b do stm | begin stm end

ie ::= k | i | ie1 + ie2 | ie1 – ie2 | ie1 * ie2 | ie1 div ie2 | ie1 mod ie2 | (ie)

re ::= c | x | re1 + re2 | re1 – re2 | re1 * re2 | re1 / re2 | (re)

b ::= ie1= ie2 | ie1>ie2 | re1= re2 | re1>re2 | b1b2 | b | (b)

where:

─ k ranges over integer numbers Int={..., –2, –1, 0, 1, 2, …};
─ c ranges over real numbers Real={ …, –0.1, …, 0.0, …, 0.1, …};
─ i ranges over variables (names) of integer type VI={I, M, N, …};
─ x ranges over variables (names) of real type VR={R, X, Y, …};
─ ie ranges over integer expressions Iexpr;
─ re ranges over real expressions Rexpr;
─ b ranges over Boolean expressions Bexpr;
─ stm ranges over statements Stm;
─ dcl ranges over variable declarations Dcl;
─ prg ranges over programs Prg.

As an example consider an ELT program ES for calculating a function r = x
n
 using Exponentiation by

Squaring Algorithm (n0). In this program variables N, X, and R denote values n, x, and r respectively:

begin

var N: integer; X: real; R: real;

R:=1.0;

while N>0 do

if (N mod 2)=1

then begin R:=R*X; N:=N–1 end

else begin X:=X*X; N:=N div 2 end

end

Starting from this example we construct program algebras of three forms:

ICIT 2013 The 6th International Conference on Information Technology

─ first, we define semantics of ES in the style of denotational semantics; as a result we obtain a

many-sorted program algebra with n-ary mappings oriented on the program ES;

─ then we represent n-ary mappings by quasiary mappings obtaining a simpler program algebra;

─ at last, we define a general class of quasiary program algebras. This class of algebras is a semantic

base for quasiary program logics. It captures main program properties that are invariant of such

programs’ specifics as variable typing, interpreted functions, etc.

Analyzing the structure of the program we see that it is constructed from 1) symbols of n-ary
operations (+, –, *, div, >, mod), 2) Boolean (N>0, (N mod 2)=1) and arithmetic (N–1, N div 2, N mod 2,
1.0, R*X , X*X) expressions, and 3) statements obtained with the help of structuring constructs such
as assignment, conditional, and loop. Note that div is partial on Int. To emphasize mapping’s

partiality/totality we write the sign 
p

 for partial mappings and the sign 
t

 for total mappings.

We use denotational semantics (see, e.g. [3]) to formalize the meaning of program components.

Semantic mapping is represented as 〚.〛. Three program components identified above determine
three types of mappings called respectively n-ary, quasiary, and biquasiary mappings.

2.2 Classes of n-ary mappings

Symbols of arithmetic operations, relations, and Boolean connectives represent n-ary mappings
defined on Int, Real or on the set Bool={T, F} of Boolean values.

For our language ELT we define the following types of n-ary mappings:

Fn
n,Int

=Int
n
 

p
Int, Pr

n,Int
=Int

n
 

p
Bool, Pr

n,Bool
= Bool

n

p

Bool,

Fn
n,Real

=Real
n
 

p
 Real, Pr

n,Real
= Real

n

p

Bool, n0.

Using the same notation for language symbols of various types and mappings they represent, we can

write that +, –, * , div, mod: Fn
2,Int

; +, –, * , /: Fn
2,Real

; =, >: Pr
2,Int

; =, >: Pr
2,Real

; : Pr
2,Bool

,  : Pr
1,Bool

.

2.3 Classes of quasiary mappings

Quasiary mappings are defined over classes of states considered as sets of named values. For
example, the expression R*X specifies a function which given a state d of the form [R  r, X x],

where r and x are real numbers, evaluates a value r*x. Examples of states are [X 8.3, N  4],

[X 8.3, N  4, R  8.2], [X 8.3]. In a state d a variable v can have a value (this is denoted d(v))

or be undefined (denoted d(v)); thus, [X 8.3, N  4](X) and [X 8.3, N  4](R).

Formally, states are defined in the following way. Let V={N, X, R} be the set of variables,  ={Int, Real}

be the set of types, A=IntReal be the set of all values. Type valuation (type assignment) mapping

ES : V 
t

 is ES =[N Int, X Real, R Real]. Now, having ES we can define the set of

states StateES as the set of all partial mappings d:V 
p

A such that the value of N in d belongs to

Int if it is defined and the values of X and R belong to Real if they are defined.

Having described states we are able to represent formal semantics of Boolean and arithmetic
expressions. Boolean expressions denote predicates (called many-sorted quasiary predicates) of the

set Pr(ES)=StateES 
p

Bool; thus for bBexpr we have 〚b〛Pr(ES). Integer expressions

denote functions (called many-sorted quasiary functions of integer type) of the set

Fn
Int

(ES)=StateES 
p

Int; thus, for ieIexpr we have〚ie〛Fn
Int

(ES). Real expressions denote

functions (called many-sorted quasiary functions of real type) of the set

Fn
Real

(ES)=StateES 
p

Real; thus, for reRexpr we have〚re〛Fn
Real

(ES). As states are

constructed with the help of naming (nominative) relation, they are also called typed nominative sets

and their class is denoted by NST(ES). Functions from Fn
Int

(ES) and Fn
Real

(ES) are called

ordinary functions since their ranges are sets of atomic (non-structured) values.

To represent semantics of variables in arithmetic expressions we will use a parametric

denomination

(denaming) functions x: Fn
Real

(ES) for variables of real type and i: Fn
Int

(ES) for variables of integer

type. For a given program state, the function x (or i) returns the value of the variable x (or i) in that

ICIT 2013 The 6th International Conference on Information Technology

state. For instance, denomination function that yields the value of name N is denoted by N. Such
values may or may not be defined, so denomination functions are partial.

Semantics of numbers is treated as quasiary constant functions of corresponding types. Such

functions are represented by constants c and k written in bold font; thus, 〚1.0〛= 1.0, 〚1〛= 1. It is

clear that 1.0Fn
Real

(ES) and 1Fn
Int

(ES).

For specifying semantics of complex expressions special compositions called superpositions are used.

A superposition n
RealS : Fn

n,Real
(Fn

Real
(ES))

n


t
 Fn

Real
(ES) of quasiary functions g1,…, gn into

an n-ary function n
Realf  Fn

n,Real
 is an operator such that

n
RealS (n

Realf , g1,…, gn)(d) = n
Realf (g1(d),…,gn(d))

where d is a state. The same formulas can be used for superpositions of other types, for which we

adopt the following notations: n
IntS is a superposition into an n-ary function of integer type, n

IntPS ,

(n
RealPS ,) is a superposition into n-ary predicate over Int (over Real), n

BoolPS , is a superposition into

n-ary Boolean function. Thus,

〚N–1〛= 2
IntS (–, N, 1), 〚N>0〛= 2

,IntPS (>, N, 0), 〚(N mod 2)=1〛= 2
,IntPS (=, 2

IntS (mod, N, 2), 1).

So, semantics of ELT expressions can be presented via introduced mappings and superposition
compositions.

2.4 Classes of biquasiary (program) functions

The semantics of statements (programs) is represented by biquasiary functions (also called program

functions). Their class is denoted FPrg(ES)= StateES 
p

StateES = NST(ES) 
p

 NST(ES).

Program functions are constructed with the help of special compositions. The following compositions
with conventional meaning are used for formalizing semantics of ELT:

1. integer assignment composition i
IAS : Fn

Int
(ES) 

t
FPrg(ES) and real assignment

composition x
RAS : Fn

Real
(ES) 

t
FPrg(ES)

(parameter i denotes a variable of integer type

and parameter x denotes a variable of real type);

2. composition of sequential execution : FPrg(ES)FPrg(ES) 
t

FPrg(ES);

3. conditional composition IF: Pr(ES)FPrg(ES)FPrg(ES) 
t

FPrg(ES);

4. loop composition WH: Pr(ES)FPrg(ES) 
t

FPrg(ES).

Note, that we define  by commuting arguments of conventional functional composition: f  g = g f.

Thus, 〚R:=R*X; N:=N-1〛=
 R

RAS (2
RealS (*, R, X))  N

IAS (2
IntS (–, N, 1)).

2.5 Program algebra with n-ary mappings

The definitions introduced permit to conclude that the following many-sorted program algebra with n-
ary mappings oriented on ES type assignment mapping has been constructed (we omit types of
compositions):

A
n
(ES) = < Fn

2,Int
, Pr

2,Int
, Pr

2,Bool
, Pr

1,Bool
, Fn

2,Real
, Pr

2,Real
, Pr(ES) , Fn

Int
(ES), Fn

Real
(ES),

FPrg(ES); +, –, * , div, mod: Fn
2,Int

; +, –, * , /: Fn
2,Real

; =, >: Pr
2,Int

; =, >: Pr
2,Real

; : Pr
2,Bool

,  : Pr
1,Bool

,

c, k, x, i, 2
IntS , 2

RealS , 2
,IntPS , 2

,RealPS , 2
,BoolPS , 1

,BoolPS , i
IAS , x

RAS , , IF, WH> .

Note that notation for parametric compositions (like denominations, assignments etc.) represents here

classes of compositions. Thus, x represents the class of compositions for various x.

We would like to emphasize the fact that semantics of ES programs (or its sub-expressions) can be
represented as terms of this algebra. This simplifies investigations of the program because the
constructed algebra completely specifies its semantics.

ICIT 2013 The 6th International Conference on Information Technology

The term for ES is as follows:

WH(2
,IntPS (>, N, 0), IF(2

,IntPS (=, 2
IntS (mod, N, 2), 1),

 R

RAS (2
RealS (*, R, X)) N

IAS (2
IntS (–, N, 1)),

X
RAS (2

RealS (*, X, X))  N
IAS (2

IntS (div, N, 2)))).

Note that this term and its sub-terms can denote partial mappings as the denomination functions can
be undefined; also WH composition can be a source of undefinedness.

Having specified this algebra we can study properties of programs; this can be used in program
reasoning. For example, it is possible to prove commutativity of the assignment statements R:=R*X

and N:=N–1 by proving in the algebra A
n
(ES) the corresponding property of composition of

sequential execution:

R
RAS (2

RealS (*, R, X))  N
IAS (2

IntS (–, N, 1)) = N
IAS (2

IntS (–, N, 1)) 
 R

RAS (2
RealS (*, R, X)) .

Still, the constructed program algebra with n-ary mappings looks overcomplicated; therefore we
construct a simpler algebra without n-ary mappings. It is possible because n-ary mappings can be
mimicked by quasiary mappings.

2.6 Program algebra of quasiary mappings

We explain the idea of representation of n-ary mappings on the example of binary multiplication
function. First, we represent a pair (x1, x2) as a state [1 x1, 2  x2], where 1 and 2 should be treated

as standard variables that represent the arguments of the binary function symbol. This permits to treat
multiplication as a quasiary function. Then, in order to avoid usage of standard names 1 and 2 and to
obtain homogeneity of names we can introduce a parametric quasiary function x*y (printed in bold

font) such that x*y = 2
RealS (*, x, y); here x and y are parameters from V.

Therefore instead of binary functions we introduce parametric quasiary functions x+y, x–y, x*y, and
x/y over Real and n+m, n–m, n*m, n div m, and n mod m over Int; also instead of relations we
introduce new parametric quasiary predicates x=y, x>y, n=m, and n>m (with x, y, n, and m as
parameters).

This step permits to represent every n-ary function defined over Real or Int as a parametric quasiary
function. But now, to represent the semantics of complex expressions we should introduce special

superpositions nvv
Real

S
,...,1 , nvv

Int
S

,...,1 (or v
RealS , v

IntS) and nvv
S

,...,1 (or vS), which are called

superpositions into real quasiary function, integer quasiary function, and quasiary predicate

respectively. Superposition composition is represented by a formula nvv
Real

S
,...,1 (f

q
, g1,..., gn)(d) =

f
q
(d[v1g1(d),...,vngn(d)]) where f

q
Fn

Real
(ES) and  denotes state updating operation [4].

Intuitive meaning of this formula is that we change in d the values of names v1,…, vn to g1(d),...,gn(d)
respectively (partiality should be taken into account). Thus, semantics, say of the expression R+(R*X),

can be represented as Y
RealS (R+Y , R*X).

Now let us consider logical symbols  and  treated earlier as Boolean functions of the types

Bool
2


t

Bool and Bool 
t

Bool. We cannot directly represent them as quasiary predicates

defined on program states, therefore we advocate another approach. We will treat them as the
following binary compositions over quasiary predicates (denoted by the same signs):

: Pr(ES)Pr(ES) 
t

 Pr(ES) and : Pr(ES) 
t

 Pr(ES).

Such representations also provide better possibilities to work with partial predicates. For example,

consider a Boolean expression (M>N)  (M>L). Its semantics in A
n
(ES) is represented by the term

2
,BoolPS (, 2

,IntPS (> , M, N), 2
,IntPS (>, M, L)). But superposition into an n-ary mapping is strict: when

one argument is not defined then the result is also undefined. This restricts usage of such
superpositions. For example, for Kleene’s strong disjunction it is allowed that one argument may be

ICIT 2013 The 6th International Conference on Information Technology

undefined if the other one is evaluated to true. Therefore superpositions cannot help in formalizing
strong connectives, but when representing connectives as compositions, we avoid this difficulty.

Thus, we can now consider a simpler algebra – the program algebra of quasiary predicates with
algebra constants:

A
q
(ES) = < Pr(ES) , Fn

Int
(ES), Fn

Real
(ES), FPrg(ES); n+m, n–m, n*m, n div m, n mod m, x+y,

x–y, x*y, x/y, n=m, n>m, x=y, x>y, c, k, , , x, i, v
IntS , v

RealS , vS , i
IAS , x

RAS , , IF, WH> .

This algebra is simpler than A
n
(ES), but it is still associated with specifics of ES program and ELT

language. To make the algebra more general we should distinguish between descriptive and logical
symbols of our language.

Trivial inspection of definitions shows that algebra constants n+m, n–m, n*m, n div m, n mod m, x+y,
x–y, x*y, x/y, n=m, n>m, x=y, x>y, c, k are descriptive symbols because they represent specifics of
real and integer numbers. Other symbols may be considered logical.

Thus, we can make the next step of constructing more “logical” algebras by eliminating descriptive
symbols having predefined interpretations. We obtain a new program algebra:

A(ES) = < Pr(ES) , Fn
Int

(ES), Fn
Real

(ES), FPrg(ES);

, , x, i, v
IntS , v

RealS , vS , i
IAS , x

RAS , , IF, WH> .

As to descriptive symbols, we can instead consider sets Fs and Ps of function and predicate symbols
that do not have predefined interpretations, and consequently, can denote any quasiary function or
predicate.

Being interested in general laws of reasoning about programs, we should make the next step and

define compositions for any type valuation mapping  : V 
t

 where V is a set of names and 

is a class of types. In this case we obtain the following program algebra of quasiary predicates:

A() = < Pr() , {Fn
A
() | A }, FPrg(); , , x, v

AS , vS , i
AAS , , IF, WH> .

Formal definitions will be given in the next section; parameter A belongs to  . Symbols from Fs and
Ps are used to construct terms of this algebra. Properties of such terms are general properties
because they should be valid under any interpretations of function and predicate symbols.

It means that we have constructed a class of program algebras (for various ), representing program
semantics for languages with different domains. Such algebras may be called general program
models; they form the semantic base for program logics.

For example, we can consider equational program logics by defining formulas of these logics as

formal equalities of the form t1=t2, where t1 and t2 are terms of the type FPrg(). Such logics define
equivalent transformations of programs.

Another conventional program logic is Floyd–Hoare logic, which is based on assertions of the form
{b1}stm{b2}. Semantics of such assertions can be presented by Floyd–Hoare composition

FH:Pr()  FPrg()  Pr() 
t

Pr().

We define this composition under assumption that predicates and functions can be partial. Then

FH(p, fprg, q)(d)=












 cases. other inundefined

,))((and)(if,

,)(or))((if,

FdfprgqTdpF

FdpTdfprgqT

Here we write )(dp if a predicate p is defined on data d, rdp )(if a predicate p is defined on data

d with a value r, )(dp if a predicate p is undefined on d.

Extending the algebra A() with FH composition, a parametric composition of existential quantification

x: Pr() 
t

 Pr(), and a compositions of equality =A we obtain the algebra

ICIT 2013 The 6th International Conference on Information Technology

AFH() = < Pr() , {Fn
A
() | A }, FPrg(); , , x, v

AS , vS , x , =A, i
AAS , , IF, WH, FH> .

The class of such algebras forms the semantic base for quite powerful Floyd–Hoare-like logics of
quasiary mappings. Investigation of such logics is a special challenge, here we restrict ourselves by

studying a fragment of these logics called many-sorted first-order composition-nominative logic (FOL).

Semantic base for such logics are algebras AFO() obtained by restricting of AFH() on the predicate and
function carriers:

AFO() = < Pr() , {Fn
A
() | A }; , , x, v

AS , vS , x , =A > .

Such algebras play an important role in studying Floyd–Hoare-like logics because many correctness
conditions are usually verified for these algebras.

Summing up, we would like to say that semantics of programs can be represented by terms of
program algebras with compositions as operations of this algebra; program, functions, and predicates
are defined on nominative sets (nominative data); we define program logics directly on program
algebras by extending their signatures with special “logical” compositions.

3 FORMAL DEFINITIONS OF MANY-SORTED FIRST-ORDER COMPOSITION-
NOMINATIVE LOGIC

To define the logic we have to specify its semantic, syntactic, and interpretational components.
Semantic component is formed by predicate algebras formally defined below.

3.1 Semantic component of FOL

Let V be a set of names. According to tradition, names from V are also called variables. Let  be a

class of types and 
t

V: be a total mapping called type valuation.

Given V, , and , a class),,(VNST (shortly:)(NST) of typed nominative sets is defined by the

following formula:

)(NST = .))()()((:
















vvdvdVvAVd
A

p


Informally speaking, typed nominative sets represent states of typed variables.

Let BoolNSTVPr
p
)(),,( be the set of all partial predicates (this set is shortly denoted by

)(Pr). Predicates from)(Pr are called many-sorted partial quasiary predicates. Let A . The

class of many-sorted partial quasiary functions into A is denoted by ANSTVFn
pA )(),,(

(shortly)(AFn).

Compositions of the algebra under investigation

AFO() = < Pr() , {Fn
A
() | A }; , , x, v

AS , vS , x , =A >

are defined in the following way (p, q )(Pr , d)(NST).

Disjunction and negation compositions are defined as follows:















 cases. other inundefined

,)(and)(if ,

,)(or)(if ,

))((FdqFdpF

TdqTdpT

dqp
















 .)(if undefined

,)(if ,

,)(if ,

))((

dp

TdpF

FdpT

dp

Existential quantifications are defined as follows (xV is a parameter).

ICIT 2013 The 6th International Conference on Information Technology















 cases. other in undefined

,])[(:)(each for if ,

,])[(:)(exists there if ,

))((FaxdpxaF

TaxdpxaT

dpx 







Superpositions nvv
A

S
,...,1 , nvv

S
,...,1 with 0,)(,...,)(11  nAvAv nn are compositions of types

)()(...)()(1  AtAAA FnFnFnFn n  ,)()(...)()(1  PrFnFnPr
tAA n 

and are evaluated as follows (f )(AFn , p )(Pr ,)(1
1 

A
Fng  , …,)(nA

n Fng ):

)])(),...,([}],...,{|([))(,...,,(1111
,...,1 dgvdgvvvvdavfdggfS nnnnn

vv
A

n   ,

)])(),...,([}],...,{|([))(,...,,(1111
,...,1 dgvdgvvvvdavpdggpS nnnnn

vv n   .

Here by dav n we denote that the value of v in d is defined and is equal to a.

The denomination composition x  (xV) has a type)(AFn such that).(xA  Given a nominative

set d we have that)()(xddx  .

The equality composition A (A) has a type)()()( PrFnFn AA  and is defined as follows

()(, AFngf ):















otherw ise.

 ,)(and)(if ,

),()(and ,)(,)(if ,

))(,(

F

dgdfT

dgdfdgdfT

dgfA

Now we are able to specify precisely the class of compositions for the algebra AFO() as a set

},{)(FOC  { ASv
A | ,),...,(1 nvvv  is a list of distinct names, n  0} 

{ vS |),...,(1 nvvv  is a list of distinct names, n  0}  { x  | xV}  {x | xV}  }|{  AA .

Thus, we have defined algebras of the form AFO )(; }|)({),(),,( FO
A CAFnPrV called

many-sorted first-order algebras of quasiary predicates and functions (semantic algebras). For such

algebras we use simpler notations AFO() or AFO if parameters ,,V are clear from the context.

3.2 Syntactic component of FOL

Syntactic component of a logic specifies its language.

Let V be a set of names. Let S be a set of sorts, SV
t

V : be a sort valuation mapping,

),,(V
S SV  be a signature of sort valuation such that for all Ss the set })(|{ svVv V   is

infinite.

Let us define a set of composition symbols

},{)(S
FOCs { SsSv

s | ,),...,(1 nvvv  is a list of distinct names, n  0} 

{ vS |),...,(1 nvvv  is a list of distinct names, n  0}  { x  | xV}  {x | xV}  }|{ Sss  .

Languages of many-sorted first-order composition-nominative logics (FOL -languages) are defined by

their signatures FO of the form),,),(,(F
S

FO
S

FO FsPsCs  , where Ps is a set of predicate

ICIT 2013 The 6th International Conference on Information Technology

symbols, Fs is a set of function symbols, and SFs
t

F : is a mapping that for every function

symbol yields its sort. Given a signature FO we can inductively define the set of terms)(FOTr  and

the set of formulas)(FOFr  . With every term t from the set)(FOTr  we associate some sort from the

set S , which we denote)(tT .

The set)(FOTr  is defined as follows:

1. If FsF , then F)(FOTr  ,)()(FF FT   . Such terms are called atomic.

2. If Vx , then x )(FOTr  ,)(xT  =)(xV .

3. If),...,(1 nvvv  is a list of distinct variables, t ,)(,...,1 FOn Trtt  ,)()(,)(11 vtst VTT   ,

…,)()(nVnT vt   , 0n , then),...,,(1 n
v
s tttS)(FOTr  , stttS n

v
sT )),...,,((1 .

The set)(FOFr  is defined as follows:

1. If PsP then P)(FOFr  . Such formulas are called atomic.

2. If , )(FOFr  then ())(FOFr  and )(FOFr  .

3. If),...,(1 nvvv  is a list of distinct variables,)(FOFr  ,)(,...,1 FOn Trtt  ,)()(11 vt VT   ,

…,)()(nVnT vt   , 0n , then ),...,,(1 n
v ttS)(FOFr  .

4. If  )(FOFr  , Vx , then x  )(FOFr  .

5. If)(, 21 FOTrtt  , stt TT )()(21  , then),(21 tts)(FOFr  . Taking into account that a

sort for a term can be identified unambiguously, we will write),(21 tts in a shorter form

21 tt  .

An FOL -language of a signature),,),(,(F
S

FO
S

FO FsPsCs  is defined by a set of formulas

)(FOFr  . Such formulas are also called FOL -formulas.

3.3 Interpretational component of FOL

Let),,),(,(F
S

FO
S

FO FsPsCs  be a signature of an FOL -language,),,(V
S SV  ,

AFO )(; }|)({),(),,( FO
A CAFnPrV be an arbitrary semantic algebra, 

tS SI : be a

sort interpretation mapping such that V
SI   . Let)(: PrPsI

tPs  be a predicate symbols

interpretation mapping,)(: A

A

tFs FnFsI 


 be a mapping called function symbols interpretation

mapping such that for every Fsf )())(AFs FnfI  if AfI F
S ))(( . A tuple

J=(AFO, FO , SI , PsI , FsI) is called an interpretation of the FOL -language of the signature FO .

There is a correspondence between composition symbols from)(S
FOCs  and compositions from

)(FOC of the algebra AFO. For simplicity’s sake we use the same notations for composition symbols

and for compositions that correspond to them. Therefore, we will consider composition symbols as
interpreted.

Given an FOL -formula)(FOFr  , a term)(FOTrt  , and a FO -interpretation J, an interpretation

mechanism maps t to some quasiary function)(FntJ  and  to some quasiary predicate

)(PrJ  . Values of atomic terms and formulas are defined by interpretational mappings FsI , PsI .

Meanings of more complicated constructions are defined inductively according to definitions of
composition operations. Compositions symbols that have a sort s as a parameter correspond to the

composition with a parameter)(sIS . For example, with every symbol of equality composition

)(S
FOs Cs  we associate an equality composition)(FOA C , where)(sIA S .

ICIT 2013 The 6th International Conference on Information Technology

Interpretational component of the logic FOL is defined by the class of all possible interpretations of

FOL -language.

An FOL -formula)(FOFr  is said to be satisfiable on a FO -interpretation J if there is an element

d from the domain of J such that TdJ )(. This is denoted as |J .

An FOL -formula)(FOFr  is said to be satisfiable in FOL if there is a FO -interpretation J such

that |J . This is denoted FO| .

An FOL -formula)(FOFr  is said to be valid on a FO -interpretation J if there is no element d from

the domain of J such that FdJ )(. This is denoted |J .

An FOL -formula)(FOFr  is said to be valid in FOL if |J for every FO -interpretation J. This is

denoted FO| .

Satisfiability problem for FOL consists in checking whether FO| holds for arbitrary FOL -formula  .

Validity problem for FOL consists in checking whether FO| holds for arbitrary FOL -formula  .

Two formulas)(, FOFr  are equivalent (denoted ) if JJ  for every FO -

interpretation J. Two terms)(, 21 FOTrtt  are equivalent (denoted 21 tt ) if JJ tt)()(21  for every

FO -interpretation J.

4 SEMANTIC PROPERTIES OF FOL

Formal definitions of FOL give a possibility to study properties of FOL -formulas and their equivalent

transformations. Such properties can be used to develop a sequent calculus for FOL in style of [4] and

prove its soundness and completeness or to transform FOL -formulas to equisatisfiable formulas of

classical many-sorted first-order logic in style of [7]. Therefore, existent state-of-the-art methods and
techniques for checking satisfiability and validity in classical logics can also be applied to composition-
nominative logics.

It should be noted that FOL may be treated as a generalization of classical logic on a case of partial

predicates that do not have fixed arity. But for this logic some reasoning rules of classical logic fail, for

example modus ponens is not valid because of partiality of predicates, the law )(x is not

valid because not all variables have values (partiality of data), etc. It means that such logics require
special investigations.

Here we only formulate some semantic properties of FOL : interrelation of validity and satisfiability,

monotonicity of compositions, logic extension with unessential variables, equivalent formula
transformations.

Due to possible presence of a nowhere defined predicate (which is a valid predicate) we do not have

in FOL the property that a formula  is satisfiable if  is valid (which holds for classical first-order

logic). But reduction of satisfiability to validity still holds in FOL : for any FO -interpretation J formula

 is satisfiable in J iff  is not valid in J.

Monotonicity of compositions means that being applied to extended predicates (or functions)
compositions yield extended results. This property is useful for such transformation of partial
predicates to total predicates that preserve validity or satisfiability of corresponding formulas [7].
Monotonicity is also important for studying recursion in first-order predicate algebras.

Unessential variables that do not affect the meanings of predicates or functions are important for
equivalent transformations of formulas. Such variables play a role of “additional memory”; their class

for FOL is denoted by U [8].

The main equivalent transformations for FOL are formulated as follows (uxv ,, are lists of distinct

variables, wqrt ,,, are lists of terms, other symbols are understood in a usual way, also we assume

that formulas are built correctly with respect to sorts of their components and parameters):

ICIT 2013 The 6th International Conference on Information Technology

E1. vS (, t)  vS (, t)  vS (, t) .

E2. vS (, t)   vS (, t).

E3. vS (x, t)  u vS (xS (,'u), t), u is unessential variable that does not occur in

vS (x, t),).()(, xuUu VV  

E4. S xu , (S vx, (, qr ,), wt ,)  vxuS ,, (, t , xu
s

S ,

1
(r1, t , w), ... , xu

sk
S , (rk , t , w), xu

s
S ,

'1
(q1, t , w), ...,

 xu
s m

S ,
'

(qm , t , w)), here and in E5 u = u1, ..., un; t = t1, ..., tn; x = х1, ..., xk; r =r1, ..., rk; w =

 w1, ..., wk; v = v1, ..., vm; q = q1, ..., qm, mjnivu ji ,...,1,,...,1,  ; the sorts in superpositions are

 defined by the sorts of substituted terms.

E5. xu
sS , (vx

sS , (t, qr ,), wt ,)  vxu
sS ,, (t, t , xu

s
S ,

1
 (r1, t , w), ...,

xu
sk

S , (rk , t , w), xu
s

S ,
'1

(q1, t , w), ...,

xu
s m

S ,
'

(qm , t , w)).

E6. vS (r = q, t)  v
sS (r, t) = v

sS (q, t).

E7. vS (, t)  vxS , (,'x, t), x does not occur in v . In particular,   xS (, 'x).

E8. v
sS (t, t)  vx

sS , (t, 'x, t), x does not occur in v . In particular, t  x
sS (t, 'x).

E9. vxuS ,, (, wrq ,,)  vuxS ,, (, r, wq,).

E10. vxu
sS ,, (t, wrq ,,)  vux

sS ,, (t, r, wq,).

E11. (,vx
sS 'x trt ),, .

E12. (v
sS 'x ),r 'x, x does not occur in v .

The equivalences E1-E12 describe transformations of formulas which permit to obtain equivalent
formulas in pseudoclassical form; generalizing techniques developed in [7, 8] further transformations
of such formulas can be proposed that permit to obtain formulas of first-order classical logic which
preserve the main properties of initial formulas. Thus, many standard methods developed for classical
logics can be applied for investigation of composition-nominative logics. The authors plan to present
such techniques in forthcoming papers.

5 CONCLUSIONS

Formal approaches for software systems development can be based on different logics. In this paper
we have discussed the composition-nominative approach, its motivation, and program logics evolved
in this approach. Such logics are constructed in a semantic-syntactic style on the methodological
basis, which is common with programming. They are algebra-based logics of partial predicates,
ordinary and program functions that do not have fixed arity. We have given formal definitions for an
important fragment of program logics called many-sorted first-order composition-nominative logics.
These logics are generalizations of classical logics but their reasoning rules differ from classical ones.
We have formulated semantic properties of these logics, which are useful for investigation of
satisfiability and validity problems.

Future work on the topic will include construction of sequent calculus for many-sorted first-order
composition-nominative logic and investigation of properties of this calculus. Another direction of
investigation concerns special composition-nominative program logics, in particular, logics of Floyd-
Hoare style with simple and structured data types.

ICIT 2013 The 6th International Conference on Information Technology

References

[1] Handbook of Logic in Computer Science, S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum
(eds.), in 5 volumes, Oxford Univ. Press, Oxford (1993–2001)

[2] Nikitchenko, N.S.: A Composition Nominative Approach to Program Semantics. Technical Report

ITTR 1998-020, Technical University of Denmark (1998)

[3] Winskel G.: The Formal Semantics of Programming Languages. MIT Press (1993)

[4] Nikitchenko M.S., Shkilniak S.S.: Mathematical logic and theory of algorithms. Publishing house of
Taras Shevchenko National University of Kyiv, Kyiv (in Ukrainian) (2008)

[5] Blamey, S.: Partial Logic. In Gabbay D., Guenthner F. (eds.), Handbook of Philosophical Logic,
Volume III, D. Reidel Publishing Company (1986)

[6] Janssen T.M.V.: Compositionality. In van Benthem J., ter Meulen A. (eds.), Handbook of Logic
and Language, pp. 417-473. Elsevier and MIT Press (1997)

[7] Nikitchenko

M.,

Tymofieiev V.: Satisfiability and Validity Problems in Many-Sorted Composition-

Nominative Pure Predicate Logics. In: V. Ermolayev et al. (eds.): ICTERI 2012, CCIS 347, pp. 89-
110. Springer, Heidelberg (2012)

[8] Nikitchenko M.S., Tymofieiev V.G.: Satisfiability in Composition-Nominative Logics. Central
European Journal of Computer Science, vol. 2, issue 3, pp. 194-213 (2012)

