
ICIT 2013 The 6th International Conference on Information Technology 
 

 

PREDICTING THE COST ESTIMATION OF SOFTWARE 
PROJECTS USING CASE-BASED REASONING 

 

Hassan Y. A. Abu Tair 
 

Department of Computer Science 
College of Computer and Information Sciences 

King Saud University 
 

habutair@gmail.com 
 

 

Abstract 

 

Many models to estimate the cost of software projects were devised during the last three 
decades [1], [3]. Although until now there is no perfect model that can estimate the cost 
precisely, the estimations varies to be over-estimated that may lead to using the resources 
inefficiently and losing a lot of business opportunities or under-estimated that may lead to 
delaying the final software product delivery, project management problems arises, 
unexpected increase in budget, and low quality of software projects [2]. As a result no 
accurate decision can be made due to the lack of consistency, this makes the senior project 
managers depend on their experience to reach the final decision to proceed or cancel the 
project [4]. In this paper, we apply the artificial intelligence methodology Case-Based 
Reasoning (CBR) upon an open source software projects dataset in order to assist the project 
managers to grasp the appropriate cost estimation of a software project. 

 
Keywords -Estimation by analogy, case-based reasoning, and software cost estimation. 
 

1 INTRODUCTION 
An expert project manager, depending on his expertise can make a decision of a current 
project regarding cost estimation to some extent with uncertainty, and as a human he cannot 
do an intensive computations without a tool that can support his decision, and there is no 
standard method for expert project manager opinion-based prediction nor accurately he can 
identify an appropriate estimation for a new project [14]. In 2009, Magne and Stein built up a 
new model called BEST to assist the project manager in his judgment regarding effort 
estimation of software projects [2]. A formal and a systematic approach to the project 
manager judgment is a software estimation by analogy in which a direct comparison of a 
current project with more historical projects, furthermore expert opinion-based estimation is a 
human-intensive approach depends on the personal experience of the project manager while 
the analogy-based system is a data-intensive approach depends on analogous historical 
projects [14]. CBR systems is acting as project managers experts when they applying 
analogical reasoning for making an estimation or prediction [4]. 

 

In contrast, algorithmic based approaches like COCOMO [3] that depends on regression does 
not outperform the non-algorithmic analogy based approach [15]. In [14], an empirical 
evaluation to the analogy based approaches and regression based approaches were 
conducted using 9 different datasets, the results demonstrate the prediction power of the 
analogy based system over the regression approaches in all sets, that's does not mean the 
estimation by algorithmic approaches is rejected, but searching for additional and more 
accurate methods of software project effort prediction still running in spite of the estimation by 
analogy appears to be more accurate until now [18]. In analogy based systems, the similarity 
between two cases depends on the Euclidean distance between the correspondence 
features, the smaller the distance the more similar it is. In algorithmic models the cost 
estimation depends on mathematical models as a function of a number of variables, and can 
be calculated from the formula Effort = f(x1 , x2 , … , xn), where x is the cost factor (attribute). 
Each model may have different factors and different function [12]. 
 
 

mailto:habutair@gmail.com


ICIT 2013 The 6th International Conference on Information Technology 
 

 

2 METHODOLGY 
In [5], the author described the CBR (Artificial Intelligence methodology) in detail, CBR is uses 
precedence (previous case or occurrence taken as guidance [6]) to inform current decision. In 
[14], four stages of a general CBR cycle were described: 
1. RETRIEVE the most similar cases to the current problem. 
2. RESUSE the historical cases (previous solutions) to solve the current problem. 
3. REVISE the proposed solution in order to adapt the current problem. 
4. RETAIN the approved solution of the current problem in the cases data base for further 

uses as a historical solution for 
future problem solving. 

In (Fig. 1), A given problem (new 
project) formulated as a new case 
(several features describing a 
problem), CBR system retrieve the 
most similar cases to a current case 
then revise the most similar case in 
order to adapt the needs of the 
current problem, the revised solution 
needs testing and approval from the 
project managers, if it is approved it 
will be considered as a historical 
case to be used for later reasoning 
for new cases. 
 

2.1 Why Using CBR? 
In [4], the author mentioned several 
advantages to CBR in which: 
1. CBR shows better prediction 

accuracy than other models 
according to many studies. 

2. CBR is acting as human experts, when they applying analogical reasoning for making 
estimations.  

3. CBR can deal with qualitative and quantitative data. 
4. CBR is capable of using an existing solution and revise it to adapt the current problem. 
5. It is easy to implement a CBR system. 
6. Compared to algorithmic models, CBR shows flexibility and simplicity in use.  
7. It is easy to update the CBR data base with a new case; it is a cumulative way of 

historical cases. 
8. CBR is a comprehensive system that encompasses all the software cost estimation 

steps, retrieve, reuse, revise, and adapt the retrieved case to current case. 
9. CBR depends on expert prior knowledge for solving a current problem, which is an 

advantage.  
10. CBR systems have the ability to deal with failed cases. 

 

2.2 Similarity Measures: 
Similarity between a current case with different features and other cases (historical cases) in 
the CBR database depends on a matching function such as k-NN (K-Nearest Neighbor) [4], 
and already implemented in WEKA tool [11].k-NN uses the most common similarity measure 
in CBR system which is the Euclidean distance metric [14] among cases [15]. Features are a 
mixture of categorical, discrete, and continuous [7], therefore the Euclidean distance measure 
is more suitable for features that have a continuous nature; Furthermore k-NN shows the best 
results in addressing the missing values [14].Suppose that we have two cases with n 
features, P = (p1 , p2 , . . .  , pn)  and  Q = (q1 , q2 , . . .  , qn), then the Euclidean distance without 
features weights equals: 

   pi −  qi 
2

i=n

i=1
 1  , and with features weights equals     wi  pi −  qi 

2
i=n

i=1
       (2) 

 



ICIT 2013 The 6th International Conference on Information Technology 
 

 

In which the smaller the distance the more similar the two cases are [15]. In [18] the authors 
state a comprehensive formula (3) and (4) to measure the similarity between two cases for 
different categories. 

SIM C1 , C2 , P =  
1

  Feature_dissimilarity  C1j , C2j 
1 ∈P

 3  

Where P is the set of n features, C1  and C2 are cases,C1j is the feature j of the case C1, and 

Feature_dissimilarity  C1j , C2j 

 
 
 

 
  C1j − C2j 

2
 , If the features are numeric.                                          

0, If the features are categorical and C1j = C2j .                  (4)

  1,   If the features are categorical and C1j ≠ C2j .                         

  

The main disadvantage of similarity measures is computationally extensive measures, and 
this can degrade the efficiency of CBR system, but if you deal with less than 100 cases, the 
efficiency will be not an issue [18].  

 

2.3 Estimation by Analogy: 
Estimation by analogy is a type of CBR [18] and analogy in basis is a human basic reasoning 
process, used by individuals to solve current problems depending on the past similar cases 
[14] furthermore analogy based estimation is widely used and more accurate than other 
algorithmic approach. Estimation by analogy fall into three different categories regarding effort 
estimations in addition to algorithmic models and expert judgment [17], thereby analogy 
based cost estimation can produce sound estimates in which to be useful and accepted by 
the practitioner [15]. The performance of analogy depends mainly on the availability of data 
sets [14], and as mentioned in [15] analogy-based estimation outperforms regression 
approaches for a number of real-world data sets [14], and the analogy based estimations 
shows a remarkable performance although many experts have encouraged the practitioners 
to use more than one method thereby increasing or reducing their confidence in the 
estimation of software projects [18]. 
 
Analogy based estimations is a systematic approach, it follows a number of steps for 
estimating a software project cost.  In [16] the authors summarize these steps which are: 
1. Measuring or estimating the values of the software projects (cases) metrics for a current 

case. 
2. Searching the repository for similar case(s) to the current project and select them as 

analogues. 
3. The cases retrieved are considered as initial estimates to the current problem. 
4. Comparing the metric values of the current project and retrieved projects (expected 

solutions). 
5. Adjusting and revising the differences between the current project and the most similar 

one in order to adapt the current case to 
fulfill its needs. 

The adapted case will be saved in CBR 
database for further reuse in the future as a 
new historical case, the adaptation process in 
most cases is a must because each project 
has its own metrics and scope which is 
different to some extent of another project. 
 

2.4 ANGEL Tool: 
ANGEL is a software tool for estimation by 
analogy (case-based reasoning) approach for 
software project cost prediction; it provides a 
lot of functionalities [8]. ANGEL is the most 
popular tool in the literature for software 
estimation by analogy using CBR. In the late 
90s, Professor Martin Shepperd led a team of 
researchers and students to develop the 



ICIT 2013 The 6th International Conference on Information Technology 
 

 

ANGEL tool at the Empirical Software Engineering Research Group (ESERG) at 
Bournemouth University, UK [9], [14]. Furthermore ANGEL estimation proved to be the most 
accurate of all methods in different cases [16], and considered the dominant automated 
software effort estimation [14]; also it is very successful in providing accurate estimates [4]. 
(Fig. 2) shows the process of ANGEL tool phases through the pre-processing of cases and 
then features selection to bring up a final features set to be used in the prediction process, the 
reduced case base is used then for prediction the effort of a new problem, adaptation may be 
required before final effort estimation. 
 

3 EXPEREMNTAL  DATASET 
3.1 Dataset: 
The dataset used in this paper contains of 126 open software projects cases.  It was first 
extracted by a software metrics tool [13] and built by the authors of [10]. They classified these 
projects into three different domains of C# projects. Table 1 shows the number of these 
projects and their percentage according to each domain.  

Domain Number of applications Percentage 

Communication 33 26.2% 

Finance 45 35.7% 

Game 48 38.1% 
Table 1: Dataset domains and percentage (Source [10]). 

3.2 Features Selection: 
Features selection is very important for improving the accuracy of estimations and minimizing 
the complexity and time needed to come up with certain estimation [18], thus most of 
estimation methods depend on the project characteristics and features for deriving cost 
estimation from the cost drivers [15]. Among of these features the ones used by COCOMO II 
model (table 2) is a snapshot. 

 
 
 

 

 

 

 

 

 

 

              Table 3: Software Metrics. 
 

 
Table 2: The cost factors in COCOMO II model (Source [12]). 

 
Regarding the CBR system for estimation by analogy, In [4] the author mentioned the most 
important software cost factors (features) to be considered in CBR method are: (Project size, 
Organization type, Target platform, Quality of system requirements, Development type, 
Business area , Application type, Project security, Complexity of the software, Staff 
experience, Development environment). 
 
In contrast in our study we used the software metrics (measurements of the source code of 
software projects), we used the same open source projects metrics in [10], and these metrics 
are presented in (table 3). In [10] they used the information gain for subset selection of 
metrics, in which the metric (feature) that has the highest information gain was considered as 
the best metric for labeling a tuple in the dataset. In our study we depend on that information 
gain presented in (table 4) to assign weights to features (metrics). we associated the metrics 
in the CBR system with a priority level varying (High, Mid, Fair, Low), and respectively 

Cost Factor Description 

 Product 

RELY required software reliability 

DATA database size 

CPLX product complexity 

 Computer 

TIME execution time constraint 

STOR main storage constraint 

VIRT virtual machine volatility 

TURN computer turnaround time 

 Personnel 

ACAP analyst capability 

AEXP application experience 

PCAP programmer capability 

VEXP virtual machine experience 

LEXP language experience 

 Project 

MODP 
modern programming 
practice 

TOOL software tools 

SCED development schedule 

Software Metric Description 

Lines Total lines of Code  

LOC 
Lines of Codes without 
comments or empty lines 

SLOC Statements Line of Codes 

SLOCmath Counting all math operators 

MCDC 
Modified Condition/Decision 

Coverage 

MaxNest Maximum Nesting 

CComplexity Cyclomatic complexity 

AvgMethod Average Methods per class 

MethodCComplexity 
Methods  Cyclomatic 

complexity 

MaxInheritanceDepth Maximum inheritance depth 

AvgDependency Average dependency  

ChildNumber 
average or max number of 
children per class 



ICIT 2013 The 6th International Conference on Information Technology 
 

 

associated with numbers varying from 4 down to 1, only for the metrics appeared in (table 4),  
the rest of metrics in (table 3) will be assigned the lowest priority by default which is 1. For 
example LOC has been assigned a priority of 3 depending on its information gain value in 
(table 4) which is 0.336.  

Table 4: Metrics information gain (source [10]). 
 

3.3 Accuracy and Prediction: 
The accuracy of an estimation method is needed, and for each estimation there is a 
fundamental question pops up "How accurate are the predictions?",therefore the accuracy is 
defined as the mean magnitude of relative error (MMRE), it is the mean of percentage errors 
as in equation (5) [18]. 

MMRE =   
 𝐸 − 𝐸  

𝐸
 

i

𝑖=𝑛

𝑖=1

100

n
                                            (5) 

Where n is the number of projects (i.e. cases), E is the actual effort, and  E  is the predicted 
effort. In [18], the authors mentioned that the MMRE is not always appropriate indicator of the 
prediction, where the outlier and extreme values can affect the final prediction, so they 
additionally used the Pred25 (6) which is "The percentage of predictions that fall within 25 
percent of the actual value". In this paper we use both, MMRE and Pred25 as a performance 
measures. Those prediction measures are widely used in the literature [18].  

  𝑃𝑟𝑒𝑑25 =   𝑃 −1  {𝑝 ∈ 𝑃   𝑟𝑝   ≤ 0.25}                              (6)  

Where P is the number of projects (cases) and 𝑟𝑝 = (𝑒 𝑝 −  𝑒𝑝) 𝑒𝑝 , where 𝑒 𝑝  is the predicted 

effort while 𝑒𝑝 is the actual effort [15].  

 

4 RESULTS 
As mentioned in (table 1), we have three different domains of projects in the dataset used, in 
our experiments we used each domain as a different data set for two reasons: 1) The Authors 
in [10] shows a variety of aspects regarding the three domains in term of software metrics, for 
example finance applications require larger number of codes, and game applications have a 
higher value of object oriented metrics while the communications projects complexity is higher 
than the fanatical projects. Although these aspects are experimental based point of view, it 
also depends on the experience of the programmer to some extent. 2) The efficiency will be 
not an issue if the number of dataset cases is less than 100 cases [18]. 
 
Also we used the information gain values in (table 4) to assign weights to the features in the 
case template of CBR system to better retrieve the most similar cases to the current project 
(case). The results of MMRE and Pred25 shown in (table 5) and (table 6) respectively are 
tested using the ANGEL analogy based tool, in which the higher Pred25 score means better 
predictive accuracy, and the  smaller MMRE means a better predictive accuracy [18]. 
Our target feature is MCDC because it has the highest information gain value which is 0.479 
as shown in (table 4). The Jack knifing validation technique was used in which each case 
removed from the dataset and the rest used to predict the removed one, after that the 
removed returned back to the dataset and another one is picked to be predicted until all cases 
finished [18].  
 
Computing the MMRE and Pred25 needs a remarkable time, so both of them are considered 
as computation extensive measures, in our tests, it takes about 4 hours to give the results, it 
depends on the number of cases being tested.  
 
 
 
1. CBO: the Coupling Between Object Classes. 

Software Metric 
Information Gain 

Value 
Software Metric Information Gain Value 

MCDC 0.479 SLOCmath 0.322 

CComplexity 0.45 MaxNest 0.299 

CBO1
 0.363 avgMethod per class 0.151 

LOC 0.336 Childern 0.147 



ICIT 2013 The 6th International Conference on Information Technology 
 

 

The more cases you have the more Computations time you need.  Also the symbol K shown 
in the tables below denotes the number of analogues. 
 

Dataset 
Dataset 

size 
K=1 K=2 K=3 K=4 K=5 

Communication 33 0.346 0.332 0.397 0.386 0.408 

Finance 45 0.212 0.22 0.25 0.256 0.247 

Game 48 0.2 0.196 0.215 0.234 0.263 
      Table 5: MMRE measure regarding Dataset Size and Number of Analogies. 

 

Dataset 
Dataset 

size 
K=1 K=2 K=3 K=4 K=5 

Communication 33 48.485 54.545 60.606 60.606 57.576 

Finance 45 73.333 75.556 73.333 77.778 71.111 

Game 48 77.083 79.167 72.917 66.667 68.75 
Table 6: Pred25 measure regarding Dataset Size and Number of Analogies. 

 
The presented data in (table 5) and (table 6) have been plotted in (fig. 3) and (fig. 4) 
respectively. In (fig. 3) and (fig. 4), we can note the game and finance datasets is more 
related to each other by looking to the convergence of the performance measures plotting. 
  

 
Figure 3: MMRE performance indicator. 

 

 
Figure 4: Pred25 Performance indicator. 

 

0

10

20

30

40

50

12345

M
M

R
E 

P
er

ce
n

ta
ge

K (Number of Analogies)

MMRE measure regarding Dataset Size and Number of Analogies

Game

Finance

Communication

0

10

20

30

40

50

60

70

80

90

12345

P
re

d
2

5
P

er
ce

n
ta

ge

K (Number of Analogies)

Pred25 measure regarding Dataset Size and Number of Analogies

Game

Finance

Communication



ICIT 2013 The 6th International Conference on Information Technology 
 

 

Also for MMRE and Pred25 measures, the more cases we have the more accurate measures 

we can get, although we can note that Pred25 is more accurate than MMRE, but both of them 

give an interesting results for the different datasets, the average of MMRE measure for 

communication, finance, and game datasets are 37.38, 23.7, and 22.16 percent respectively 

while the average of Pred25 measure for communication, finance, and game datasets are 

56.3636, 74.222, and 72.9168 percent respectively. 

5 DISCUSSION  
In our approach, we introduced the cost estimation of software projects by extracting the code 

metrics, then comparing the metrics of a current project to the historical ones in the database. 

Specifically, the main purpose of our work is to let the project manager estimates the cost per 

releases or stages, i.e. by using our approach the practitioners can extract the metrics of code 

implemented for a certain stage, to predict the cost of the next stage of the same project. This 

can give the project manager extra knowledge to help taking a proper decision in the stage 

agreements of a certain projects.  Also this can be considered as a support step to the project 

manager to further estimate the process of development after finishing each release. Even 

more the project managers can take aware of the risks that may pops up depending on the 

analysis or comparing the code metrics of different stages. This could be one of the main files 

that the project manager can pay attention before establishing a new stage. This task can be 

assigned to the IT project manager to extract features from the implemented code and try to 

estimate the effort and predict what can be done in the next stage or even according to the 

information he has got, the Project manager can decide if he can proceed or not, or even 

escalades any issue appeared to the project sponsor. Also predicting the effort for a project 

releases or stages is more accurate to the project Manager, because he is dealing with the 

same team and he knows more about the code in the previous releases. This gives him a 

good view to decide what can be done later. Furthermore our work is the first study that 

applies the CBR on open software projects metrics, to predict the cost per releases or stages 

of a certain project.     

6 CONCLUSION  
Predicting the cost of software projects is a remarkable challenge to the project managers. 

The expert managers can depend on their expertise to grasp an appropriate estimation to 

some extent, and others depend on the algorithmic based models like COCOMO to predict 

the effort of a certain problem. Most research papers that tackle the non-algorithmic approach 

like estimation by analogy show the power of analogy based reasoning in predicting the cost 

of software projects, in which picking the most similar solutions from the case base of 

historical cases. In our paper we used the software metrics of an open software projects to 

predict the most similar solution to the current problem, our result shows an interesting 

achievements of the performance indicators for different number of analogues. Our work can 

support the project manager decision in order to choose the most appropriate case to his 

current problem depending on the code metrics. 

7 ACKNOWLEGMENT 

This work was supported by the Research Center of College of Computer and Information 

Sciences, King Saud University, and we are grateful for this support. 

 

 

 

 



ICIT 2013 The 6th International Conference on Information Technology 
 

 

8 REFERENCES 
  

[1] LH Putnam, A general empirical solution to the macro software sizing and estimating 

problem. IEEE Trans. on Softw. Eng., Volume 4, No 4, pp 345-61, April 1978. 

[2] M. Jørgensen and S. Grimstad. Software Development Effort Estimation: 

Demystifying and Improving Expert Estimation, In: Simula Research Laboratory - by 

thinking constantly about it, ed. by AslakTveito, Are Magnus Bruaset, OlavLysne. 

Springer, Heidelberg, chap. 26, pp. 381-404, 2009. 

[3] B. Boehm, B. Clark, E. Horowitz, R. Madachy, R. Shelby, and C. Westland, Cost 

models for future software life cycle process: COCOMO 2.0 in Annals of Software 

Engineering Special Volume on Software Process and Product Measurement. J. D. 

Arther and S. M. Henry, Eds., vol. 1, pp. 45–60, J.C. Baltzer AG, Science Publishers, 

Amsterdam, The Netherlands, 1995. 

[4] Hasan Al-Sakran, Software Cost Estimation Model Based on Integration of Multi-

agent in Journal of Computer Science 2 (3): 276-282, 2006. 

[5] A. Aamodt, E. Plaza (1994); Case-Based Reasoning: Foundational Issues, 

Methodological Variations, and System 

Approaches.AI Communications. IOS Press, Vol. 7: 1, pp. 39-59. 

[6] Collin Dictionary.  

[7] Colin Kirsopp, Martin Shepperd, John Hart, Search Heuristics, Case-Based 

Reasoning and Software Project Effort Prediction, Empirical Software Engineering 

Research Group School of Design, Engineering and Computing Bournemouth 

University. 

[8] ArchANGEL software tool for project prediction http://dec.bmth.ac.uk/ESERG/ANGEL, 

last visit October 2012. 

[9] Shepperd, Martin, Chris Schofield, and Barbara Kitchenham. "Effort estimation using 

analogy." Proceedings of the 18th international conference on Software engineering. 

IEEE Computer Society, 1996. 

[10] Hassan Najadat, Izzat Alsmadi, and Yazan Shboul, Predicting Software Projects Cost 

Estimation Based on Mining Historical Data, International Scholarly Research 

Network, ISRN Software Engineering, Volume 2012, Article ID 823437, 8 pages. 

[11] Weka: A Data Mining Software, http://www.cs.waikato.ac.nz/ml/weka, last visited 

October 2012. 

[12] H. Leung, Z. Fan, Software Cost Estimation, H Leung, Z Fan - Handbook 

of Software Engineering, Hong Kon, 2002. 

[13] I. Alsmadi and K. Magel, “Open source evolution analysis,” in Proceedings of the 

22nd IEEE International Conference on Software Maintenance (ICSM ’06), 

Philadelphia, Pa, USA, 2006. 

[14] Keung, Jacky. "Software Development Cost Estimation Using Analogy: A 

Review." Software Engineering Conference, 2009. ASWEC'09. Australian. IEEE, 

2009. 

[15] Auer, Martin, et al. "Optimal project feature weights in analogy-based cost estimation: 

Improvement and limitations." Software Engineering, IEEE Transactions on 32.2 

(2006): 83-92 

[16] Walkerden, Fiona, and Ross Jeffery. "An empirical study of analogy-based software 

effort estimation." Empirical Software Engineering 4.2 (1999): 135-158. 

[17] Papatheocharous, Efi, Harris Papadopoulos, and Andreas S. Andreou. "Feature 

Subset Selection for Software Cost Modeling and Estimation." arXiv preprint 

arXiv:1210.1161 (2012).  

[18] Martin Shepperd and Chris Schofield, Estimating Software Project Effort Using 

Analogies, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  

12,  NOVEMBER  1997. 

http://www.cs.waikato.ac.nz/ml/weka

