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Abstract 

The all-pairs shortest paths (APSP) problem finds the shortest path distances between all pairs of 
vertices,and is one of the most fundamental graph problems. In this paper, a parallel recursive 
partitioning approach to APSP problem using Open Computing Language (OpenCL) for directed and 
dense graphs with no negative cyclesbased on R-Kleene algorithm, is presented, which recursively 
partitions dense adjacency matrix into sub-matrices and computes the shortest path. Graphics 
Processing Units (GPUs) are massively parallel in nature and provide high computational speedup at 
very low cost in comparison to other very costly High Performance Computing (HPC) systems. Most 
common technique for Graph representation is to store it in the form of adjacency matrix and GPUs 
are highly suitable for performing matrix computations in parallel. OpenCL is a framework which 
provides unified development environment for executing programs in heterogeneous platforms. Using 
OpenCL, we can execute program on GPUs and/or CPUs. Our implementation is mainly targeted 
towards executing OpenCL kernels on GPU. In designing effective OpenCL programs, data transfers 
between host and device memory should be minimized. Our approach is in-place in nature, so it does 
not require additional memory space while performing computation and entire data movement takes 
place in a bulk between host and device memory. 
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1 INTRODUCTION 

The all-pairs shortest path (APSP) problem is to find the minimum path distances for all source-
destination pairs in a graph.  The cost is the sum of the weights of edges composing the path. This 
problem is widely applicable in various areas like geographical information systems, intelligent 
transportation systems, IP routing [4]. 

There are many approaches to solve APSP problem like Floyd-Warshall (FW) algorithm or running 
single source shortest path (SSSP) algorithms for all vertices in the graph etc. FW algorithm requires 
O (N

3
) time complexity where N is the number of vertices in a graph [7]. 

These sequential algorithms have very high time complexity and for very large graph involving 
millions of vertices, such algorithms become impractical. Parallel algorithms can achieve practical time 
for APSP problem for very large graph but hardware used in these is very expensive. Bader et al. [6] 
have used supercomputer CRAY MTA-2 to perform breadth-first search on very large graph. 

Initially Graphics Processing Unit (GPU) was hardware designed to perform some graphics 
acceleration tasks like rendering, gaming, image processing etc. In recent years, GPU is evolved to 
perform general purpose computation and there exist GPU implementations [5] in various fields like 
linear algebra, image processing, computer vision, signal processing etc. GPU has become a cost-
effective platform in comparison to other very expensive High Performance Computing(HPC) systems. 
GPU’s massive parallel hardware is well suited for performing matrix operations [3]. 

Open computing Language (OpenCL) is framework for writing programs that execute in parallel on 
different compute devices such as CPUs and GPUs from different vendors AMD, Intel, ATI, Nvidia etc. 

In this paper, we present OpenCL parallel implementation for recursive partitioning approach to 
APSP problem based on R-Kleene algorithm [1] which works by recursively partitioning the adjacency 
matrix of graph into sub-matrices and performing computation on that. 

This paper is organized as follows: Section 2 describes related work. Section 3 shows description 
of OpenCL framework. Section 4 describes the APSP problem and OpenCL parallel implementation 
for recursive approach. In section 5 experimental results are presented. Section 6 presents 
Conclusion and future work. 
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2 RELATED WORK 

Paolo et al. [1] have presented a recursive divide-and-conquer algorithm for the solution of the all-pair 
shortest-path problem for directed and dense graphs with no negative cycles. They have formulated a 
recursive algorithm where the result is computed in-place for dense adjacency matrices. They have 
presented a quantitative measure for performance of R-Kleene in terms of millions of integer 
instructions per second(MIPS) determined as N

3
/ (execution of algorithm in seconds).  

This R-Kleene algorithm employs a different schedule of path computation rather than classical 
iterative FW algorithm.R-Kleene inherits the property of matrix-multiply (MM), and it is cache 
obliviousachieving optimal data cache utilization [2]. It shows efficient register utilization because of its 
recursive nature and a large number of operations can be run independently in parallel [1].  

Our approach for APSP problem is OpenCL parallel implementation of R-Kleene based algorithm 
as OpenCL kernels, which are executed in parallel on massively parallel GPU threads. In OpenCL, 
these threads are referred as Work-items. Due to execution as parallel threads, it shows speedup over 
R-Kleene algorithm. Using MM property, our implementation targets mainly GPU as OpenCL device 
because GPUs are highly suitable for MM operations and it also increases data locality. 

3 OPENCL FRAMEWORK 

OpenCL is an open royalty-free standard for general purpose parallel programming across CPUs, 
GPUs and other processors, giving software developers portable and efficient access to the power of 
these heterogeneous processing platforms [10]. OpenCL framework is divided in following four 
models: Platform model, Execution model, Memory model and Programming model. 

3.1 OpenCL Platform model 

“Fig. 1” shows the OpenCL platform model. It consists of a hostconnected to one or more OpenCL 
devices. An OpenCL device is divided into one or morecompute units (CUs) which are further divided 
into one or more processing elements (PEs).Computations on a device occur within the processing 
elements. 

 

Fig.1. OpenCL Platform Model 

TheOpenCL application submits commands from the host to execute computations on 
theprocessing elements within a device. The processing elements within a compute unit execute 
asingle stream of instructions as SIMD units. 

The definition of compute unit is different for different vendors. In AMD, each compute unit contains 
manyStream Cores (or SIMD Engines), and stream cores contain individual processing elements. In 
NVIDIA, Stream Multiprocessors (SMs) are called compute units. 

“Fig. 2” shows a simplified diagram of an AMD GPU compute device. Different GPU compute 
devices have different characteristics (such as the number of compute units), but follow a similar design 
pattern [8]. 
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Fig.2. AMD GPU compute device [8] 

3.2 OpenCL Execution Model 

The OpenCL execution model comprises two components: kernels and host programs. Kernels are 
the basic unit of executable code that runs on one or more OpenCL devices. The host program 
executes on the host system, defines devices context, and queues kernel execution instances using 
command queues. Kernels are queued in-order, but can be executed in-order or out-of-order [13].  

OpenCL also allows grouping of work-items together into work-groups. The size of each work-
group is defined by its own local index space. OpenCL only assures that the work-items within a work-
group execute concurrently. Synchronization is only possible between work-items within a work-group. 
The index space spans an N-dimensioned range of values and thus is called an NDRange. N in this 
N-dimensional index space can be 1, 2, or 3 only. 

A work-item can be identified by its global ID (gx, gy) or by the combination of its local ID (lx, ly) and 
work-group ID (wx, wy). A relation between global ID and local ID can be defined as following: 

 
gx= wx* Lx+ lx 

 
gy= wy* Ly+ ly 

 
Where Lx and Lyare work-group size in x-direction and y-direction respectively. 

 
“Fig. 3” shows how the global IDs, local IDs, and work-group indices are related for a two-

dimensional NDRange. NDRange index space of size Gx by Gy (12x12) is divided into 9 work-groups, 
each having size 3x3. The shaded block has a global ID of (gx, gy) = (6, 5) and a work-group plus local 
ID of (wx, wy) = (1, 1) and (lx, ly) = (2, 1). 
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Fig.3. Relation between global ID and local ID, work-group ID in 2-D index space [9] 

3.3 OpenCL Memory Model 

OpenCL memory model defines four regions of memory accessible to work-items when executing a 
kernel.“Fig. 4” shows how memory regions are related with platform model.OpenCL Memory model is 
divided in following memories: 

 

Fig.4. OpenCL Memory model 

Global memory is a memory region in which all work-items and work-groups have read and write 
access on both the compute device and the host. This region of memory can be allocated only by the 
host during runtime. 

Constant memory is a region of global memory that stays constant throughout the execution of the 
kernel. Work-items have only read access to this region.  

Local memory is a region of memory used for data-sharing by work-items in a work-group. All work-
items in the same work-group have both read and write access. 

Private memory is a region that is accessible to only one work-item. 

3.4 OpenCL Programming Model 

The OpenCL execution model supports data parallel and task parallel programming models, as well as 
supporting hybrids of these two models. The primary model driving the design of OpenCL is data 
parallel [10]. 
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4 OPENCL IMPLEMENTATION FOR SOLVING APSP PROBLEM USING IN-
PLACE RECURSIVE APPROACH 

4.1 APSP Problem 

The APSP is a fundamental graph problem. Given a weighted directed graph G = (V, E) with a 
weight function w : E → R, the problem is to find shortest path length from a vertex u ∈ V to vertex v ∈ 
V for every pair of vertices (u, v), where the path length is the sum of the weights of its constituent 
edges. 

For the adjacency-matrix representation of a graph G = (V, E), we assume that the vertices are 
numbered 1, 2, . . . , |V| in some arbitrary manner. Then the adjacency-matrix representation of a 
graph G consists of an n × n weight matrix W = (𝑤𝑖𝑗 ), where  𝑤𝑖𝑗  is the weight of directed edge (i, j). If i 

= j, then 𝑤𝑖𝑗  = 0 and if there is no edge between vertices i and j, then 𝑤𝑖𝑗  = ∞.  

The standard algorithm for APSP problem is Floyd-Warshall (FW) algorithm [7]. The pseudocode for 

FW algorithm is given in “Fig. 5”. The solution of APSP problem is given by matrixD(𝑛) = (𝑑𝑖𝑗
(𝑛)

), where 

𝑑𝑖𝑗
(𝑘)

be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in 

the set {1, 2, . . . , k}. Initially D(0) = W. 

 

ALGORITH FLOYD-WARSHALL(W) 

 
1      n←  rows(W) 

2      𝐷(0)← W 
3      fork from 1 to ndo 
4         for i from 1 to ndo 
5            for j from 1 to ndo 

6    𝑑𝑖𝑗
(𝑘)

 ← min(𝑑𝑖𝑗
 𝑘−1 

, 𝑑𝑖𝑘
 𝑘−1 

+ 𝑑𝑘𝑗
(𝑘−1)

) 

7             end for 
8         end for 
9      end for 
 

 

Fig.5. FW Algorithm pseudo code 

 

In FW algorithm, every element (i, j) of adjacency matrix ink
th
 iteration is updated by adding 

elements (i, k) & (k, j) and comparing with (i, j), where 1 ≤ k, i, j ≤ n. Since k, i, j can take any value 
between 1 and n, so it makes impossible to partition data (adjacency matrix).  

4.2 In-place Recursiveapproach 

Our approach for solving APSP problem using OpenCL is based on R-Kleene algorithm [1].  It works 
by recursively partitioning adjacency matrix into sub-matrices. “Fig. 6” shows the pseudocode for R-
Kleene algorithm. Here original matrix is divided into 4 equal sub-matrices A, B, C, D and this 
algorithm is recursively called for sub-matrix. Then several MMs are performed on sub-matrices. 
Matrix multiplication X += YZ (or X = X + YZ) is formally defined as 𝑥𝑖 ,𝑗  + =  Σ𝑘=0

𝑛−1𝑦𝑖,𝑘 ∗  𝑧𝑘 ,𝑗 , where 

scalar addition is minimum of two numbers, i.e. a + b = min(a, b) and scalar multiplication of two 
numbers is addition, i.e., a * b = a+ b. These MMs are defined in a closed semi-ring. 

Tropical semiring (R
+
∪ {∞}, min, +, ∞, 0) is a closed semiring defined over the set of non-negative 

numbers R
+
. For APSP problem, elements (weight values) in adjacency matrix can have any value in 

the set R
+ 

and min & + are two binary operations. MMs in our approach are defined on this closed 
semiring. 

MM operation in R-Kleene algorithm resembles with the matrix-multiply operation in multiplication 
of two matrices, where product (*) & sum (+) are replaced by sum (+) & min operation respectively in 
MM routine of  R-Kleene. 
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ALGORITH R-KLEENE(J) 

 
/*       | A B | */ 
/* J = | C D | */ 

 
1      A ← R−Kleene(A) 
2      B ← B + A*B 
3      C ← C + C*A 
4      D ← D + C*B 
5      D ← R−Kleene(D) 
6   B ← B + B*D 
7      C ← C + D*C 
8      A ← A + B*C 
 

 
Fig.6. Pseudocode for R-Kleene sequential algorithm 

4.3 OpenCL Parallel Implementation 

“Fig. 7” shows OpenCL parallel algorithm for our approach based on R-Kleene. In this algorithm, an n-
by-n adjacency matrix J of dense graph is recursively partitioned into equal-sized n/2-by-n/2 sub-
matrices A, B, C and D. Recursive calls are made to sub-matrices A & D denoted by step 6, 16 
respectively in Fig.7. OpenCL kernel for MM module OCL_KERNEL_RKMM(X, Y, Z, n) shown in “Fig. 
10” is called on these sub-matrices. This kernel is executed by n

2
 processing elements (PEs) or 

threads in parallel, where each thread is computing a value for an n-by-n matrix element. In our 
implementation, we have designed 2D kernels. 

 

ALGORITH OPENCL-PARALLEL-RK(J, n) 

 
/* J is n-by-n matrix */ 
1      if (base case) 
2         call OPENCL-PARALLEL-FW(J, n) 
3      else 
4         divide matrix J in matrices A, B, C & D 
5         n ← n/2 
6         call OPENCL-PARALLEL-RK(A, n) 
7         for all n

2
 matrix elements in parallel do 

8            call OCL_KERNEL_RKMM(B, A, B, n) 
9         end for 
10       for all n

2
 matrix elements in parallel do 

11          call OCL_KERNEL_RKMM(C, C, A, n) 
12       end for 
13       for all n

2
 matrix elements in parallel do 

14          call OCL_KERNEL_RKMM(D, C, B, n) 
15       end for 
16       call OPENCL-PARALLEL-RK(D, n) 

17       for all n
2
 matrix elements in parallel do 

18          call OCL_KERNEL_RKMM(B, B, D, n) 

19       end for 

20       for all n
2
 matrix elements in parallel do 

21          call OCL_KERNEL_RKMM(C, D, C, n) 

22       end for 

20       for all n
2
 matrix elements in parallel do 

21          call OCL_KERNEL_RKMM(A, B, C, n) 

22       end for 

 

Fig.7. Pseudocode for OpenCL parallel implementation of in-place recursive approach  
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Recursion in this algorithm is stopped when matrix size (i.e. n) becomes equal to (or smaller than) 

a threshold value. This is the base case for this algorithm. We have considered base case when 

matrix can be fitted in a single workgroup (or block) of size 16x16 (or lesser i.e. like 8x8). When this 

base case condition is true, then OpenCL parallel FW iterative algorithm is called, which calls a kernel 

OCL_KERNEL_FW(A, k) shown in “Fig. 8” for all matrix elements in each k
th
 iteration. This parallel FW 

iterative algorithm can also be called for large matrices in similar fashion. 

 

ALGORITH OPENCL-PARALLEL-FW(A, n) 

 
1      fork from 1 to ndo 
2         for all elements in matrix A, where 1≤ i, j ≤ n inparalleldo 
3call OCL_KERNEL_FW(A, k) 
4         end for 
5      end for 

 

 
Fig.8. Pseudocode for OpenCL parallel FW algorithm 

 

KERNEL OCL_KERNEL_FW(A, k) 

 
1      (i, j) ← getThreadID 
2      A[i, j] ← min(A[i,  j], A[i,  k] + A[k,  j]) 

 

 
Fig.9. Pseudocode for FW kernel in OpenCL 

 

KERNEL OCL_KERNEL_RKMM(X, Y, Z, n) 

 
1      (i, j) ← getThreadID 
2      fork from 1 to ndo 
3         X[i, j] ← min(X[i,  j], Y[i,  k] + Z[k,  j]) 
4      end for 

 

 
Fig.10. Pseudocode for OpenCL MM kernel used in algorithm in “Fig. 8” 

OpenCL does not support recursion, so we have written a recursive function in the host program 
that calls OpenCL kernels in each of its recursive calls. It also increases data reuse ratio because of 
its natural cache locality exploitation as it is recursive in nature. 

Memory access to local memory is faster than global memory access in compute device (GPU or 
CPU). So by exploiting memory hierarchy we can obtain significant performance gain, but it requires a 
very important attention from programmer that maximum memory size for local or private memory 
should not exceed. We have utilized local memory in OpenCL kernel for MM module. 

Our OpenCL parallel implementation for APSP is completely in-place in nature. It means that 
additional memory space is not required in GPU global memory during computation. While dividing 
matrix J into A, B, C & D, we perform logical partitioning. It means sub-matrices are not stored 
separately in global memory, only start and end positions of sub-matrices are stored. 

5 EXPERIMENTAL RESULTS 

We have tested OpenCL parallel implementation for our approach in various GPUs and Intel CPU. 
Details of devices on which tests are performed, are given as follows: 

 AMD Radeon HD 6450(GPU):  2 Compute units, 625 MHz clock, 2048MB Global Mem., 
32KB Local Mem., 256 work group size on a system having Intel Core i5 CPU 650 @ 3.2 GHz 
and 2048MB RAM with AMD APP SDK v2.8. 
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 NVIDIA GeForce GT 630M (GPU): 2 Compute units, 950 MHz clock, 1023MB Global Mem., 
48 KB Local Mem., 1024 work group size on a system having Intel Core i5 CPU-3210M @ 
2.5GHz and 4096MB RAM with NVIDIA GPU computing SDK 4.2. 

 AMD Radeon HD 6850(GPU): 12 Compute units, 860 MHz clock, 1024MB Global Mem., 
32KB Local Mem., 256 work group size on a system having Intel Core i3 CPU 530 @ 2.93 
GHz and 4096MB RAM with AMD APP SDK v 2.8. 

 Intel Core i3-2310M (CPU): 4 Compute units, 2095 MHz clock, 2048MB Global Mem., 32KB 
Local Mem., 1024 work group size with AMD APP SDK v2.8. 

Applications are written in C++ using Visual Studio 2010 with OpenCL SDK (already specified). 
We have also implemented serial code for FW iterative & R-K algorithm in C++ running on a single 
core using Visual Studio 2010 on a system having Intel Core i3-2310M@ 2095MHz clock CPU & 3072 
MB RAM for comparison with parallel implementations. We have tested our results on various 
randomly generated dense graphs having edges of the order of O(n

2
). Random weight values between 

1 to 10 is assigned to edges of graph. 
In “Fig. 11”, log-log plot of execution time in milliseconds and no. of  nodes in a graph is 

presented. OpenCL parallel implementation for RK based approach is tested on various GPU devices 
and also on CPU device. Timings for RK & FW iterative sequential implementation are also shown. 
Speedup for RK based OpenCL implementation is shown in “Fig. 12”&“Fig. 13” w.r.t. RK sequential & 
FW iterative sequential implementation respectively. OpenCL parallel implementation shows a 
significant speedup up to 475x over RK & FW iterative serial CPU implementation running on a single 
core. 

 

Fig.11. Timings for R-Kleene(RK) based OpenCL parallel implementation in various devices and 
for RK & FW iterative sequential implementation 

 

Fig.12. Speedup for RK based OpenCL parallel implementation w.r.t. RK sequential implementation 
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Fig.13. Speedup for RK based OpenCL implementation w.r.t. FW iterative Sequential implementation 

In “Table 1”, speedup comparison for RK based OpenCL parallel implementation on various 
devices over RK serial CPU implementation is shown. 

Table 1. Speedup comparison for various devices 

No. of nodes AMD 6450 GPU NVIDIA GT 630M GPU AMD 6850 GPU Intel CPU 

64 7.5 10 8.33 3.26 

128 9.4 18.8 7.23 3.24 

256 45.81 66.64 34.9 3.56 

512 104.42 202.31 154.14 4.36 

1024 188.64 319.47 331.96 5.13 

2048 206.6 441.71 461.27 8.91 

4096 356.56 474.91 458.96 10.19 

 

In “Fig. 14”, log-log plot for FW OpenCL parallel implementation on various devices and for RK & 
FW iterative serial implementation is shown. In this timings in milliseconds and no. of nodes in graph 
are represented. 

 

Fig.14. Timings for FW OpenCL parallel implementation on various devices and for RK & FW iterative 
sequential implementation 
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“Fig. 15” shows comparison between RK based OpenCL parallel and FW OpenCL parallel 
implementation on various GPUs. Our RK based OpenCL implementation takes lesser time in 
comparison to FW OpenCL implementation on same GPU device. 

 

 

 

 

Fig.15. Comparison between RK based OpenCL parallel and FW OpenCL parallel implementation on 
same GPU device 
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6 CONCLUSION AND FUTURE WORK 

In our paper, we have presented OpenCL parallel implementation for APSP problem based on R-
Kleene algorithm. This algorithm is completely in-place and recursive in natures that makes it to better 
exploit the capabilities of GPU and it also utilizes data locality. We have utilized local memory in 
OpenCL implementation. Our implementation shows a significant speedup up to 475x over sequential 
FW and R-Kleene implementation running on a single core CPU. 

Our future work includes designing Hybrid CPU-GPU implementation for APSP problem for very 
large graphs and also performing optimization like memory coalescing, vectorization for OpenCL 
implementation. 
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