
ICIT 2013 The 6th International Conference on Information Technology

SLOT SELECTION AND CO-ALLOCATION ALGORITHMS FOR
ECONOMIC SCHEDULING IN DISTRIBUTED COMPUTING

Victor Toporkov, Dmitry Yemelyanov

National Research University “MPEI”
Moscow / Russia

E-mail: ToporkovVV@mpei.ru, yemelyanov.dmitry@gmail.com

Anna Toporkova

National Research University Higher School of Economics
Moscow / Russia

E-mail: atoporkova@hse.ru

Alexey Tselishchev

CERN (European Organization for Nuclear Research)
Genève / Switzerland

E-mail: Alexey.Tselishchev@cern.ch

Abstract

In this work, we introduce slot selection and co-allocation algorithms for parallel jobs in distributed
computing with non-dedicated resources. A single slot is a time span that can be assigned to a task,
which is a part of a job. The job launch requires a co-allocation of a specified number of slots starting
synchronously. The challenge is that slots associated with different CPU nodes of distributed
computational environments may have arbitrary start and finish points that do not match. Some
existing algorithms assign a job to the first set of slots matching the resource request without any
optimization (the first fit type), while other algorithms are based on an exhaustive search. In this paper,
algorithms for effective slot selection of linear complexity on an available slots number are studied and
compared with known approaches. The novelty of the proposed approach consists of allocating
alternative sets of slots. It provides possibilities to optimize job scheduling.

Keywords - Distributed computing; economic scheduling; resource management; slot; job; batch.

1 INTRODUCTION

Economic mechanisms are used to solve tasks like resource management and scheduling of jobs in a
transparent and efficient way in distributed environments such as utility Grid and cloud computing [1,
2]. A resource broker model is decentralized, well-scalable and application-specific [1-4]. It has two
parties: node owners and brokers representing users. The simultaneous satisfaction of various
application optimization criteria submitted by independent users is unreachable in essence and also
can deteriorate such quality of service rates as total execution time of a sequence of jobs or overall
resource utilization. Another model is related to virtual organizations (VO) [5-7] with central schedulers
providing job-flow level scheduling and optimization. VOs naturally restrict the scalability, but uniform
rules for allocation and consumption of resources make it possible to improve the efficiency of
resource usage and find a trade-off between contradictory interests of different participants.

In [6], we have proposed a hierarchical model of resource management system which is functioning
within a VO. Resource management is implemented with a structure consisting of a metascheduler
and subordinate job schedulers that interact with batch job processing systems. The significant
difference between the approach proposed in [6] and well-known scheduling solutions for distributed
environments such as Grids [1-5, 8, 9], e.g., gLite Workload Management System [8], where Condor
[10] is used as a scheduling module, is the fact that the scheduling strategy is formed on a basis of
efficiency criteria. They allows to reflect economic principles of resource allocation by using relevant

mailto:@mpei.ru
mailto:yemelyanov.dmitry@gmail.com
mailto:atoporkova@hse.ru

ICIT 2013 The 6th International Conference on Information Technology

cost functions and solving a load balance problem for heterogeneous processor nodes. At the same
time the inner structure of the job is taken into account when the resulting schedule is formed. The
metascheduler [5-7, 10] implements the economic policy of a VO based on local CPU schedules. The
schedules are defined as sets of slots coming from local resource managers or schedulers in the node
domains. During each scheduling cycle the sets of available slots are updated based on the
information from local resource managers. Thus, during every cycle of the job batch scheduling [6] two
problems have to be solved: 1) selecting alternative set of slots (alternatives) that meet the
requirements (resource, time, and cost); 2) choosing a slot combination that would be the efficient or
optimal in terms of the whole job batch execution in the current cycle of scheduling. To implement this
scheduling scheme, first of all, one needs to propose the algorithm for finding sets of alternative
executions. An optimization technique for the second phase of this scheduling scheme was proposed
in [6, 7]. First fit slot selection algorithms assign any job to the first set of slots matching the resource
request conditions, while other algorithms use an exhaustive search. Moab scheduler [11, 12]
implements backfilling algorithm and during a slot window search does not take into account any
additive constraints such as the minimum required storage volume or the maximum allowed total
allocation cost. Moreover, backfilling does not support environments with non-dedicated resources
and its execution time grows substantially with increase of the slot number. Assuming that every CPU
node has at least one local job scheduled, the backfilling algorithm has quadratic complexity in the slot
number. In [4] heuristic algorithms for slot selection, based on user-defined utility functions, are
introduced. NWIRE system [4] performs a slot window allocation based on the user defined efficiency
criterion under the maximum total execution cost constraint. However, the optimization occurs only on
the stage of the best found offer selection. In our previous works [13-15], two algorithms for slot

selection AMP and ALP that feature linear complexity O(m), where m is the number of available time-
slots, were proposed. Both algorithms perform the search of a first fitting window without any
optimization. AMP (Algorithm based on Maximal job Price), performing slot selection based on the
maximum slot window cost, proved the advantage over ALP (Algorithm based on Local Price of slots)
when applied to the above mentioned scheduling scheme. However, in order to accommodate an end
user’s job execution requirements, there is a need for a more precise slot selection algorithm of linear
complexity to exploit during the first stage of the proposed scheduling scheme and to consider various
user demands along with the VO resource management policy.

In this paper, we propose algorithms for effective slot selection based on user defined criteria that
feature linear complexity on the number of the available slots during the job batch scheduling cycle.
The novelty of the proposed approached consists in allocating a number of alternative sets of slots
(alternatives). The proposed algorithms can be used for both homogeneous and heterogeneous
resources. The paper is organized as follows. Section 2 introduces a general scheme for searching
alternative slot sets that are effective by the specified criteria. Then four implementations are proposed
and considered. Section 3 contains simulation results for comparison of proposed and known
algorithms. Section 4 summarizes the paper and describes further research topics.

2 GENERAL SCHEME AND SLOT SELECTION ALGORITHMS

In this section we introduce a problem statement, consider a general scheme of an Algorithm
searching for Extreme Performance (AEP) and its implementation examples.

2.1 Problem statement and AEP scheme

The launch of any job requires co-allocation of a specified number of slots, as well as in the backfilling
conservative variation [11, 12]. A single slot is a time span that can be assigned to a task, which is a

part of a job. According to the resource request, it is required to find a window W with the following

description: n concurrent time-slots providing the resource performance rate and the maximal

resource price per time unit F should be reserved for a time span iT .The task is to scan a list of m

available slots and to select a window W of n parallel slots with a length of the required resource

reservation time. The total window cost is calculated as a sum of an individual usage cost of the
selected slots. In addition, one can define a criterion on which the best matching window alternative is

chosen. This can be a criterion crW for a minimum cost, a minimum execution runtime or, for

example, a minimum energy consumption.

ICIT 2013 The 6th International Conference on Information Technology

Consider as an example the problem of selecting a window of size n with a total cost no more than S

from the list of nm  slots (in the case, when nm  the selection is trivial). The maximal job budget is

counted as nFTS i . The current extended window consists of m slots ms,...,s,s 21 . The cost of

using each of the slots according to their required time length is: mc,...,c,c 21 . Each slot has a numeric

characteristic iz in accordance to crW . The total value of these characteristics should be minimized

in the resulting window. Then the problem could be formulated as follows:

min2211  mmza...zaza , Sca...caca mm  2211 , na...aa m  21 ,

  m,...,r,ar 1 1 ,0  . Additional restrictions can be added, for example, considering the specified

value of deadline. Finding the coefficients ma,...,a,a 21 each of which takes integer values 0 or 1 (and

the total number of “1” values is equal to n), determine the window with the specified criteria crW

extreme value. The algorithm parses a ranged list of all available slots subsequently for all the batch
jobs. Existing slot selection algorithms assign a job to the first set of slots matching the resource
request conditions or use an exhaustive search. AEP is free of the obvious disadvantages of the
exhaustive search and has linear complexity on the number of the slots available in the current
scheduling cycle. AEP can be compared to the algorithm of min/max value search in an array of flat
values. The effective on the specified criterion window of size n is selected from this m slots and

compared with the results in the previous steps. By the end of the slot list the only solution with the

best criterion crW value will be selected. The algorithm proposed is processing a list of all slots

available during the scheduling interval ordered by a non-decreasing start time. This condition is
required for a single sequential slot list scan and algorithm linear complexity on the number m of

slots.

The scheme for an effective window search by the specified criteria can be represented as follows:

/* Job – Batch job for which the search is performed ;

** windowSlots – a set (list) of slots representing the window;*/

slotList = orderSystemSlotsByStartTime();

for(i=0; i< slotList.size; i++){

 nextSlot = slotList[i];

 if(!properHardwareAndSoftware(nextSlot))

 continue; // The slot does not meet the requirements

 windowSlotList.add(nextSlot);

 windowStart = nextSlot.startTime;

 for(j=0; j<windowSlots.size; j++){

 wSlot = windowSlots[j];

 minLength = wSlot.Resource.getTime(Job);

 if((wSlot.EndTime – windowStart) < minLength)

 windowSlots.remove(wSlot);

 }

 if(windowSlots.size >= Job.m){

 curWindow = getBestWindow(windowSlots);

 crW = getCriterion(curWindow);

 if(crW > maxCriterion){

 maxCriterion = crW;

 bestWindow = curWindow;

ICIT 2013 The 6th International Conference on Information Technology

 }

 }

}

Finally, a variable bestWindow will contain an effective window by the given criterion.

2.2 AEP implementation examples

The need to choose alternative sets of slots for every batch job increases the complexity of the whole
scheduling scheme. With a large number of the available slots the algorithm execution time may
become inadequate. Though it is possible to mention some typical optimization tasks, based on the
AEP scheme that can be solved with a relatively decreased complexity. These include problems of
total job cost minimizing, total runtime minimizing, the window formation with the minimal start/finish
time.
Consider the procedure for minimizing a window start time. The difference with the general AEP
scheme is that the first suitable window will have the earliest possible start time. Indeed, if at some
step i of the algorithm (after the i-th slot is added) the suitable window can be formed, then the
windows, formed at the further steps will be guaranteed to have the start time that is not earlier
(according to the ordered list of available slots, only slots with non-decreasing start time will be taken
into consideration). Thus this procedure can be reduced to finding a set of the first n parallel slots the

total cost of which does not exceed the budget limit S . This description coincides the AMP scheme

considered in previous works [13-15]. Thus AEP is naturally an extension of AMP, and AMP is the
particular case of the whole AEP scheme performing only the start time optimization. Further we will
use AMP abbreviation as a reference to the window start time minimization procedure.
It is easy to provide the implementation of the algorithm of finding a window with the minimum total
execution cost. For this purpose in the AEP search scheme n slots with the minimum sum cost should

be chosen. If at each step of the algorithm a window with the minimum sum cost is selected, at the

end the window with the best value of the criterion crW will be guaranteed to have overall minimum

total allocation cost at the given scheduling interval.

The task to find a window with the minimum runtime is more complicated. Given the nature of
determining a window runtime, which is equal to the length of the longest slot (allocated on the node
with the least performance level), the following algorithm may be proposed:

orderSlotsByCost(windowSlotList);

resultWindow = getSubList(0,n, windowSlotList);

extendWindow = getSubList(n+1,m, windowSlotList);

while(extendWindow.size > 0){

 longSlot = getLongestSlot(resultWindow);

 shortSlot = getCheapestSlot(extendWindow);

 extendWindow.remove(shortSlot);

 if((shortSlot.size < longSlot.size)&&

 (resultWindow.cost + shortSlot.cost < S)){

 resultWindow.remove(longSlot);

 resultWindow.add(shortSlot);

 }

}

As the result, the suitable window of the minimum time length will be formed in a variable
resultWindow. The algorithm described consists of the consecutive attempts to substitute the

longest slot in the forming window (the resultWindow variable) to another shorter one that will not

ICIT 2013 The 6th International Conference on Information Technology

be too expensive. In case when it is impossible to substitute the slots without violating the constraint
on the maximum window allocation cost, the current resultWindow configuration is declared to

have the minimum runtime. Implementing this algorithm of window selection at each step of the AEP
scheme allows to find a suitable window with the minimum possible runtime at the given scheduling
interval.

An algorithm for finding a window with the earliest finish time has a similar structure and can be
described using the runtime minimizing procedure presented above. Indeed, the expanded window
has a start time tStart equal to the start time of the last added suitable slot. The minimum finish time

for a window on this set of slots is (tStart + minRuntime), where minRuntime is the minimum

window length. The value of minRuntime can be calculated similar to the runtime minimizing

procedure described above. Thus, by selecting at each step of the algorithm a window with the earliest
completion time, the required window will be allocated in the end of the slot list. It is worth mentioning

that the all proposed AEP implementations have a linear complexity  mO : algorithms “move” through

the list of the m available slots in the direction of non-decreasing start time without turning back or

reviewing previous steps.

3 EXPERIMENTAL STUDIES OF SLOT SELECTION ALGORITHMS

The goal of the experiment is to examine AEP implementations: to analyze alternatives search results
with different efficiency criteria, to compare the results with AMP and to estimate the possibility of
using in real systems considering the algorithms’ execution time.

3.1 Algorithms and simulation environment

For the proposed AEP efficiency analysis the following implementations were added to the simulation
model [6]:

1. AMP – the algorithm for searching alternatives with the earliest start time. This scheme was
introduced in works [13-15] and briefly described in section 2.

2. minFinish – the algorithm for searching alternatives with the earliest finish time.

3. minCost – the algorithm for searching a single alternative with the minimum total allocation cost on
the scheduling interval.

4. minRuntime – this algorithm performs a search of a single alternative with the minimum runtime.

5. minProcTime – this algorithm performs a search for a single alternative with the minimum total node
execution time. It is worth mentioning that this realization is simplified and does not guarantee an
optimal result and only partially matches the AEP scheme, because a random window is selected.

6. Common Stats, AMP (further referred to as CSA) – the scheme for searching multiple alternatives
using AMP. Similar to the general searching scheme [13-15], a set of suitable alternatives, disjointed
by the slots, is allocated for each job. To compare the search results with the algorithms 1-5,
presented above, only alternatives with the extreme value of the given criterion will be selected, so the
optimization will take place at the selection process. The criteria include the minimum start time, the
minimum finish time, the minimum total execution cost, the minimum runtime and the minimum
processor time used.

Since the purpose of the considered algorithms is to allocate suitable alternatives, it makes sense to
make the simulation apart from the whole general scheduling scheme, described in [6]. In this case,
the search will be performed for a single predefined job. Thus during every single experiment a
generation of a new distributed computing environment will take place while the algorithms described
will perform the alternatives search for a single base job with the resource request defined in advance.
A simulation framework [6, 7] was configured in order to study and analyze the presented algorithms.
In each experiment a generation of the distributed environment that consists of 100 CPU nodes was
performed. The performance rate for each node was generated as a random integer variable in the
interval [2; 10] with a uniform distribution. The resource usage cost was formed proportionally to their
performance with an element of normally distributed deviation in order to simulate a free market
pricing model [1-4]. The level of the resource initial load with the local and high priority tasks at the
scheduling interval [0; 600] was generated by the hyper-geometric distribution in the range from 10%

ICIT 2013 The 6th International Conference on Information Technology

to 50% for each CPU node. Based on the generated environment the algorithms performed the search
for a single initial job that required an allocation of 5 parallel slots for a 150 units of time. The
maximum total execution cost according to user requirements was set to 1500. This value generally
will not allow to use the most expensive (and usually the most efficient) CPU nodes. The relatively
high number of the generated nodes has been chosen to allow CSA to find more slot alternatives.
Therefore more effective alternatives could be selected for the searching results comparison based on
the given criteria. The characteristics of the alternatives found (in case of CSA – selected) are stored
for each considered algorithm during every experiment. These characteristics include alternatives’
start time, finish time, runtime, total cost and total used processor time.

3.2 Experimental results

The results of the 5000 simulated scheduling cycles are presented in Fig. 1-4.

Consider the average start time for the alternatives found (and selected) by the aforementioned
algorithms (Fig. 1, a).

а) b)

Fig. 1. Start time (a) and runtime (b)

AMP, minFinish and CSA were able to provide the earliest job start time at the beginning of the
scheduling interval (t = 0). The result was expected for AMP and CSA (which is essentially based on
the multiple runs of the AMP procedure) since 100 available resource nodes provide a high probability
that there will be at least 5 parallel slots starting at the beginning of the interval and can form a
suitable window. The fact that the minFinish algorithm was able to provide the same start time can be
explained by the local tasks minimum length value, that is equal to 10. Indeed, the window start time
at the moment t = 10 cannot provide the earliest finish time even with use of the most productive
resources (for example the same resources allocated for the window with the minimal runtime).
Average starting times of the alternatives found by minRuntime, minProcTime and minCost are 53,
514.9 and 193 respectively.

The average runtime of the alternatives found (selected) is presented in Fig. 1, b. The minimum
execution runtime 33 was obviously provided with the minRuntime algorithm. Though, schemes
minFinish, minProcTime and CSA provide quite comparable values: 34.4, 37.7 and 38 time units
respectively that only 4.8%, 12.5% and 13.2% longer. High result for the minFinish algorithm can be
explained by the “need” to complete the job as soon as possible with the minimum (and usually initial)
start time. MinFinish and minRuntime are based on the same criterion selection procedure described
in the section 2. However due to non-guaranteed availability of the most productive resources at the
beginning of the scheduling interval, minRuntime has the advantage. Relatively long runtime was
provided by AMP and minCost algorithms. For AMP this is explained by the selection of the first fitting
(and not always effective by the given criterion) alternative, while minCost tries to use relatively cheap
and (usually) less productive CPU nodes.

ICIT 2013 The 6th International Conference on Information Technology

The minimum average finish time (Fig. 2, a) was provided by the minFinish algorithm – 34.4. CSA has
the closest resulting finish time of 52.6 that is 34.6% later. The relative closeness of these values
comes from the fact that other related algorithms did not intend to minimize a finish time value and
were selecting windows without taking it into account. At the same time CSA is picking the most
effective alternative among 57 (on the average) allocated at the scheduling cycle: the optimization was
carried out at the selection phase. The late average finish time 307.7 is provided by the minCost
scheme. This value can be explained not only with a relatively late average start time (see Fig. 1, a),
but with a longer (compared to other approaches) execution runtime (see Fig. 1, b) due to the use of
less productive resource nodes. The finish time obtained by the simplified minProcTime algorithm was
relatively high due to the fact that a random window was selected (without any optimization) at the
each step of the algorithm, though the search was performed on the whole list of available slots. With
such a random selection the most effective window by the processor time criterion was near the end of
the scheduling interval.

a) b)

Fig. 2. Finish time (a) and CPU usage time (b)

The average used processor time (the sum time length of the used slots) for the algorithms considered
is presented by Fig. 2, b. The minimum value was provided by minRuntime: 158 time units. MinFinish,
CSA and minProctime were able to provide comparable results: 161.9, 168.6 and 171.6 respectively.
It worth mentioning that although the simplified minProcTime scheme does not provide the best value,
its only 2% less effective compared to a common CSA scheme, while its working time is orders of
magnitude less (Tables1, 2). The most processor time consuming alternatives were obtained by AMP
and minCost algorithms. Similarly to the execution runtime value, this can be explained by using a
random first fitting window (in case of AMP) or by using less expensive hence less productive
resource nodes (in case of the minCost algorithm), as nodes with a low performance level require
more time to execute the job.

Table 1. Actual algorithms’ execution time measured depending on the CPU nodes number

CPU nodes number:

50 100 200 300 400

CSA:Alternatives Num 25.9 57 128.4 187.3 252

CSA per Alt 0.33 0.99 3.16 6.79 11.83

CSA 8.5 56.5 405.2 1271 2980.9

AMP 0.3 0.5 1.1 1.6 2.2

MinRuntime 3.2 12 45.5 97.2 169.2

MinFinishTime 3.2 12 45.1 96.9 169

ICIT 2013 The 6th International Conference on Information Technology

MinProcTime 1.5 5.2 19.4 42.1 74.1

MinCost 1.7 6.3 23.6 52.3 91.5

Finally, consider the total job execution cost (Fig. 3). The minCost algorithm has a big advantage over
the other algorithms presented: it was able to provide the total cost of 1027.3 (note that the total cost
limit was set by the customer at 1500). Alternatives found with other considered algorithms have
approximately the same execution cost. Thus, the cheapest alternatives found by CSA have the
average total execution cost equal to 1352, that is 24% more expensive compared to the result of the
minCost scheme, while alternatives found by minRuntime (the most expensive ones) are 29.9% more
expensive.

The important factor is a complexity and an actual working time of the algorithms under consideration
especially with the assumption of the algorithms’ repeated use during the first stage of the scheduling
interval. In the description of the AEP general scheme it was mentioned that the algorithm has a linear
complexity on the number of the available slots and a quadratic complexity with a respect to the
number of CPU nodes. Table 1 shows the actual algorithms’ execution time in milliseconds measured
depending on the number of CPU nodes. The simulation was performed on a regular PC workstation
with Intel Core i3 (2 cores by 2.93 GHz), 3GB RAM on JRE 1.6, and 1000 separate experiments were
simulated for each value of the processor nodes numbers {50, 100, 200, 300, 400}.

Fig. 3. Job execution cost

The simulation parameters and assumptions were the same as described in section 3.1, apart from
the number of used CPU nodes. A row “CSA: Alternatives Num” represents an average number of
alternatives found by CSA during the single experiment simulation (note that CSA is based on multiple
runs of AMP algorithm). A row “CSA per Alt” represents an average the CSA algorithm working time in
recalculation for one alternative.

The CSA scheme has the longest working time that on the average almost reaches 3 seconds when
400 nodes are available. Besides this time has a near cubic increasing trend with a respect to the
nodes number.

This trend can be explained by the addition of two following factors:

1) a linear increase of the alternatives number found by CSA at each experiment (which makes sense:
the linear increase of the available nodes number leads to the proportional increase in the available
node processor time; this makes it possible to find (proportionally) more alternatives);

2) a near quadratic complexity of the AMP algorithm with a respect to the nodes number, which is
used to find single alternatives in CSA. Even more complication is added by the need of “cutting” a
suitable windows from the list of the available slots.

Other considered algorithms will be able to perform a much faster search. The average working time
of minRuntime, minProcTime and minCost proves their (at most) quadratic complexity on the number
of CPU nodes. The AMP’s execution time shows even near linear complexity because with a relatively
large number of free available resources it was usually able to find a window at the beginning of the
scheduling interval (see Fig. 1, a) without the full slot list scan. Fig. 4, a clearly presents the average

ICIT 2013 The 6th International Conference on Information Technology

working duration of considering algorithms depending on the number of available CPU nodes (the
values were taken from Table 1). (The CSA curve is not represented as its working time is
incomparably longer than AEP like algorithms.)

Table 2 contains the algorithms’ working time in milliseconds measured depending on the scheduling
interval length.

 Overall 1000 single experiments were conducted for each value of the interval length {600, 1200,
1800, 2400, 3000, 3600} and for each considered algorithm an average working time was obtained.
The experiment simulation parameters and assumptions were the same as described earlier in this
section, apart from the scheduling interval length. A number of CPU nodes was set to 100. Similarly to
the previous experiment,

CSA had the longest working time (about 2.5 seconds with scheduling interval length equal to 3600
model time units), which is mainly caused by the relatively large number of the formed execution
alternatives (on the average more than 400 alternatives on a 3600 interval length). When analyzing
the presented values it is easy to ensure that all proposed algorithms have a linear complexity with the
respect to the length of the scheduling interval and, hence, to the number of the available slots (Fig. 4,
b).

a) b)

Fig. 4. Working time depending on the available CPU nodes number (a) and on the scheduling interval
length (b)

Table 2. Algorithms’ working time measured depending on the scheduling interval length

Scheduling interval

length: 600 1200 1800 2400 3000 3600

Number of slots 472.6 779.4 1092 1405.1 1718.8 2030.6

CSA: Alternatives Num 57 125.4 196.2 269.8 339.7 412.5

CSA per Alt 0.95 1.91 2.88 3.88 4.87 5.88

CSA 54.2 239.8 565.7 1045.7 1650.5 2424.4

AMP 0.5 0.82 1.1 1.44 1.79 2.14

MinRuntime 11.7 26 40.9 55.5 69.4 84.6

MinFinishTime 11.6 25.7 40.6 55.3 69 84.1

MinProcTime 5 11.1 17.4 23.5 29.5 35.8

MinCost 6.1 13.4 20.9 28.5 35.7 43.5

ICIT 2013 The 6th International Conference on Information Technology

4 CONCLUSIONS AND FUTURE WORK

In this work, we address the problem of slot selection and co-allocation for parallel jobs in distributed
computing with non-dedicated resources. For this purpose AMP and AEP approaches were proposed
and considered. Specific AEP scheme implementations with a reduced over a general scheme
complexity were proposed and considered. Each of the algorithms possesses a linear complexity on a
total available slots number and a quadratic complexity on a CPU nodes number. The advantage of
AEP-based algorithms over the general CSA scheme was shown for each of considered criteria: start
time, finish time, runtime, CPU usage time and total cost. In our further work we will refine resource
co-allocation algorithms in order to integrate them with scalable co-scheduling strategies [6, 7]. Future
research will be focused on further AEP based algorithms research and its integration with the whole
batch scheduling approach, and mainly on its influence on job-flows execution efficiency.

ACKNOWLEDGEMENTS

This work was partially supported by the Council on Grants of the President of the Russian Federation
for State Support of Leading Scientific Schools (SS-316.2012.9), the Russian Foundation for Basic
Research (grant no. 12-07-00042), and by the Federal Target Program “Research and scientific-
pedagogical cadres of innovative Russia” (state contract no. 16.740.11.0516).

References

[1] S.K. Garg, R. Buyya, H.J. Siegel, Scheduling Parallel Applications on Utility Grids: Time and Cost
Trade-off Management. Proc of ACSC 2009, Wellington, New Zealand (2009) 151-159.

[2] S.K. Garg, C.S. Yeo, A. Anandasivam, R.Buyya, Environment-conscious Scheduling of HPC
Applications on Distributed Cloud-oriented Data Centers. J. of Parallel and Distributed Computing.
71 (6) (2011). 732-749.

[3] R. Buyya, D. Abramson, J. Giddy, Economic Models for Resource Management and Scheduling in
Grid computing. J. of Concurrency and Computation: Practice and Experience. 14(5) (2002)
1507–1542.

[4] C. Ernemann, V. Hamscher, R. Yahyapour, Economic Scheduling in Grid Computing. Proc. of the
8th Job Scheduling Strategies for Parallel Processing. Eds D.G. Feitelson, L. Rudolph, U.
Schwiegelshohn. Heidelberg: Springer, LNCS. 2537 (2002) 128-152.

[5] K. Kurowski, J. Nabrzyski, A. Oleksiak еt al., Multicriteria Aspects of Grid Resource Management.
Grid resource management. State of the art and future trends. Eds J. Nabrzyski, J.M. Schopf and
J. Weglarz. Kluwer Acad. Publ. (2003) 271–293.

[6] V. Toporkov, A. Tselishchev, D. Yemelyanov, A. Bobchenkov, Composite Scheduling Strategies in
Distributed Computing with Non-dedicated Resources. Procedia Computer Science. Elsevier. 9
(2012) 176-185.

[7] V. Toporkov, A. Tselishchev, D. Yemelyanov, A. Bobchenkov, Dependable Strategies for Job-
flows Dispatching and Scheduling in Virtual Organizations of Distributed Computing Environments.
Complex Systems and Dependability. Berlin, Heidelberg: Springer-Verlag, AICS. 170 (2012) 240-
255.

[8] M. Cecchi, F. Capannini, A. Dorigo et al., The gLite Workload Management System. J. Phys.:
Conf. Ser. 219 (6) (2010) 062039.

[9] J. Yu, R. Buyya, K. Ramamohanarao, Workflow Scheduling Algorithms for Grid Computing.
Metaheuristics for Scheduling in Distributed Computing Environments, Studies in Computational
Intelligence. 146. Springer-Verlag. Berlin Heidelberg (2008) 173–214.

ICIT 2013 The 6th International Conference on Information Technology

[10] D. Thain, T. Tannenbaum, M. Livny, Distributed Computing in Practice: the Condor Experience. J.
of Concurrency and Computation: Practice and Experience. 17 (2-4) (2004) 323 – 356.

[11] Moab Adaptive Computing Suite, http://www.adaptivecomputing.com/products/moab-adaptive-
computing-suite.php.

[12] D. Jackson, Q. Snell, M. Clement, Core Algorithms of the Maui Scheduler, Springer, Heidelberg,
LNCS 2221 (2001) 87-102.

[13] V. Toporkov, A. Toporkova, A. Bobchenkov, D. Yemelyanov, Resource Selection Algorithms for
Economic Scheduling in Distributed Systems. Procedia Computer Science. Elsevier. 4 (2011)
2267-2276.

[14] V. Toporkov, D. Yemelyanov, A. Toporkova, A. Bobchenkov, Resource Co-allocation Algorithms
for Job Batch Scheduling in Dependable Distributed Computing. Dependable Computer Systems.
Springer-Verlag, AICS. Berlin, Heidelberg. 97 (2011) 243-256.

[15] V.Toporkov, A. Bobchenkov, A. Toporkova, A. Tselishchev, D. Yemelyanov, Slot Selection and
Co-allocation for Economic Scheduling in Distributed Computing. Proc. of the 11th Intern. Conf. on
Parallel Computing Technologies. Springer-Verlag, LNCS. 6873 (2011) 368–383.

