
ICIT 2013 The 6th International Conference on Information Technology

HARDWARE MODELLING OF A 32-BIT, SINGLE CYCLE RISC
PROCESSOR USING VHDL

Safaa S. Omran, Hadeel S. Mahmood

College of Electrical and Electronic Techniques College of Electrical and Electronic Techniques

Baghdad/Iraq Baghdad/Iraq

 omran_safaa@ymail.com hadeel_shakir@yahoo.com

Abstract

In this research, the VHDL (Very high speed IC Hardware Description Language) hardware modelling
of the complete design of a 32-bit MIPS (Microprocessor without Interlocked Pipeline Stages), single
cycle RISC (Reduced Instruction Set Computer) processor is presented. First the work defines the
MIPS ISA (Instruction Set Architecture) and then describes how to divide the processor’s complete
design into two parts: the datapath unit, which includes a multiplication/division unit and the control
unit. Next, a top level is implemented by connecting data and instruction memories to the processor.
The MIPS and top level is designed using (Xilinx ISE Design Suite 13.4) program. Finally a
procedure that performs a multiplication of two numbers is executed and the results are discussed.

Keywords - VHDL, RISC, MIPS, ISA, datapath.

1 INTRODUCTION
VHDL (Very high speed IC Hardware Description Language) is a hardware description language. It
describes the behaviour of an electronic circuit or system, from which the physical circuit or system
can then be implemented. A fundamental motivation to use VHDL is that VHDL is a standard,
technology/vendor independent language, and is therefore portable and reusable [1].

RISC (Reduced Instruction Set Computer) architecture is a processor architecture in which all
operations on data apply to data in registers and typically change the entire register. The only
operations that affect memory are load and store operations that move data from memory to a register
or to memory from a register, respectively. Load and store operations that load or store less than a full
32_bit register (e.g., a byte, or 16 bits) are often available, so it is also called load-store architecture.
The instruction formats are few in number with all instructions typically being one size. This makes its
implementation easier [2].

Single cycle MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC processor that can
execute an entire instruction in one cycle. The cycle time is limited by the slowest instruction.

Many previous researches have implemented the simple design of a single cycle RISC processor in
VHDL. Some of them performed the simple design of MIPS processor which can execute basic
instructions (add, sub, lw, sw, branch)[3][4] and (jump)[5].while others made a VHDL model of the DLX
processor [6][7].

Since one of the major utilities of VHDL is that it allows the synthesis of a circuit or system in a
programmable device or in an ASIC (Application Specific Integrated Circuit), this paper studies the
designing and prototyping of a complete single cycle MPS RISC processor in VHDL.

2 INSTRUCTION SET ARCHITECTURE

To command a computer’s hardware, we must speak its language. The words of a machine’s
language are called instructions, and its vocabulary is called an instruction set [8].

For design simplicity of RISC (Reduced Instruction Set Computer) processor, all instructions must be
kept in the same length and had a single instruction format. MIPS (Microprocessor without Interlocked
Pipeline Stages) uses 32-bit instructions and defines three instruction formats as shown in table 1. :

mailto:omran_safaa@ymail.com

ICIT 2013 The 6th International Conference on Information Technology

1. R-type instructions: is short for register-type. They use three registers as operands: two as
sources, and one as destination.

2. I-type instructions: is short for immediate-type. They use two registers operand and one 16-bit
immediate operand.

3. J-type instructions: is short for jump-type. It is used only with jump instructions and uses a
single 26-bit address operand.

Table 1. Formats of MIPS instructions
Field size 6-Bits 5-Bits 5-Bits 5-Bits 5-Bits 6-Bits

R-Type op rs rt rd shamt funct

I-Type op rs rt imm

J-Type op addr

Where op: basic operation of the instruction, traditionally called the opcode.

 rs: the first register source operand.

 rt: the second register source operand

 rd: the register destination operand, it gets the result of the operation.

 shamt: shift amount, it is used in shift instruction to hold shift amount.

 funct: function, it selects the specific variant of the operation in the op field.

 imm: the 16-bit address which is used in data transfer instructions.

 addr: the 26-bit address which is used in jump instructions.

3 PROCESSOR’S DESIGN

The complete design of a 32-bit, single cycle MIPS (Microprocessor without Interlocked Pipeline
Stages) processor consists of two interacting parts:

1. 32-bit datapath

2. Control unit.

The design has the ability to execute each instruction in a single clock cycle; therefore the clock cycle
period is limited by the slowest instruction’s execution time. Fig. 1 shows the complete design of the
single cycle MIPS with its datapath includes mul/div unit which used to perform signed/unsigned
multiplication and signed/unsigned division operations and the control unit. The design can perform
the integer arithmetic-logical instructions, the memory reference instructions and the branch
instructions.

3.1 32-BIT DATAPATH

A 32-bit MIPS (Microprocessor without Interlocked Pipeline Stages) requires a 32-bit datapath. In
Fig.1 the datapath elements are black in colour. The datapath operates on 32_bit words of data,
16_bit half_words of data or 8_bit bytes of data. It contains elements such as memories, registers,
ALUs (arithmetic logic unit), multiplexers, sign and zero extenders. A description of each datapath
element is given below:

1. Program counter (PC): is 32-bit register. Its output (pc) represents the address of the current
instruction (instr) to be executed while its input (pcnext) represents the address of the next
instruction.

2. Instruction memory takes a 32-bit address from PC register and read a 32-bit data at the output
port.

3. Register file consists of 32 registers each of 32-bit in size. It has two read ports (RD1, RD2) and
one write port (WD3). Read ports (RD1, RD2) take 5-bit address inputs(A1, A2) which in turn select
one of the 32 registers to be read on the read output ports (RD1, RD2). Write port (WD3) takes 5-bit

ICIT 2013 The 6th International Conference on Information Technology

address input (A3) which in turn select one of the 32 registers to which the 32-bit at (WD3) input port
will be written if the WE signal is 1 on the raising edge of the clock signal.

ICIT 2013 The 6th International Conference on Information Technology

F
ig

.1
.T

h
e
 c

o
m

p
le

te
 d

a
ta

p
a
th

 c
o
n
tr

o
l
s
c
h
e
m

e
 o

f
M

IP
S

ICIT 2013 The 6th International Conference on Information Technology

Table 2.functions of ALU

4. Data memory has one output read port (RD) and one input write port (WR). 32-bit data at input
(WR) port is written to memory location specified by the address (A) if (WE) signal is 1 at the raising
edge of the clock signal. Signal (size_in) limits the size of data to be writing either to byte (8-bit) or
half word (16-bit). The content of memory location selected by (A) input is always available at (RD)
output port.

5. Multiplexers are used to select one input from several inputs and pass it to the output. Mux
(multiplexer) select line is controlled by a signal provided by the control unit.

6. Sign extender simply copies the sign bit (most significant bit) of a short input to all of the upper bits
of the longer output.

7. Zero extender takes a short input and simply puts zeros in all of the upper bits of the longer output.

8. ALU (arithmetic logic unit) has been optimised in order to execute all the arithmetic-logical
instructions. Fig. 2 shows the new architecture of the extended ALU. ALU takes alucontrol (5:0) as
inputs and generates the ALU functions according to it. Table 2 illustrates functions that can be
executed by the ALU.

function Alucontrol (5:0)

A and B 000000
A or B 000001
A + B 000010

Not used 000011
Sll 000100

A xor B 000101
A nor B 000110

Srl 000111
Sra 001000

A & B’ 010000
A or B’ 010001
A – B 010010

Slt 010011
Not used 010100
A xor B’ 010101
A nor B’ 010110

Sllv 100100
Srlv 100111
Srav 101000

Fig. 2. The extended ALU

ICIT 2013 The 6th International Conference on Information Technology

Fig.3. mul/div unit

Table 3. main control truth table

9. mul/div unit performs signed/unsigned multiplication and signed/unsigned division. It takes two
inputs of 32 bits (A and B) and produce y output of 64 bits, if sign is 1 then signed operation will be
performed, otherwise it will perform unsigned operation. When mult input is 1 and div is 0,
Y(63:0)=A*B and when mult is 0 and div is 1, Y(31:0)=a/b and Y(63:32)= remainder. Then Y(63:32)
is stored at hi register while Y (31:0) is stored at lo register. Fig. 3 represents the mul/div unit with its
inputs, outputs and control signals.

3.2 CONTROL UNIT

The Control unit receives opcode (instr 31:26) and funct (instr5:0) fields of the current instruction
from the datapath then tell it what to do in order to execute that instruction. The control unit provides
multiplexer select, memory write, and control signals of ALU and mul/div unit. It consists of two parts:
main control and R-type control.

Main control takes opcode (instr 31:26) field as inputs and produce multiplexer select, memory

A
lu

o
p

J
a
l

J
u

m
p

M
e
m

to
re

g

M
e
m

w
rite

B
g

tz

B
ltz

B
le

z

B
rc

h
n

e
 B

ra
n

c
h

 A
lu

s
rc

 R
e
g

d
s
t

 R
e
g

w
rite

 L
h

u
 L

b
u

 S
h

_
B

 O
p

c
o

d
e

 In
s
tru

c
tio

n

110 0 0 00 0 0 0 0 0 0 00 01 1 x x xx 000000 R_type
000 0 0 01 0 0 0 0 0 0 01 00 1 x x xx 100011 lw

000 0 0 xx 1 0 0 0 0 0 01 xx 0 0 0 11 101011 sw
001 0 0 xx 0 0 0 0 0 1 00 xx 0 x x xx 000100 beq
001 0 0 xx 0 0 0 0 1 0 00 xx 0 x x xx 000101 bne

001 0 0 xx 0 0 0 1 0 0 00 xx 0 x x xx 000111 blez
001 0 0 xx 0 0 1 0 0 0 00 xx 0 x x xx 000001 bltz
001 0 0 xx 0 1 0 0 0 0 00 xx 0 x x xx 000110 bgtz

000 0 0 00 0 0 0 0 0 0 01 00 1 x x xx 001000 addi
000 0 0 00 0 0 0 0 0 0 01 00 1 x x xx 001001 addiu
xxx 0 1 xx 0 x x x x x xx xx 0 x x xx 000010 j

xxx 1 1 xx 0 x x x x x xx 10 1 x x xx 000011 jal
010 0 0 00 0 0 0 0 0 0 10 00 1 x x xx 001100 andi
011 0 0 00 0 0 0 0 0 0 10 00 1 x x xx 001101 ori

100 0 0 00 0 0 0 0 0 0 10 00 1 x x xx 001110 xori
101 0 0 00 0 0 0 0 0 0 01 00 1 x x xx 001010 slti
101 0 0 00 0 0 0 0 0 0 01 00 1 x x xx 001011 sltiu

000 0 0 00 0 0 0 0 0 0 11 00 1 x x xx 001111 lui
000 0 0 11 0 0 0 0 0 0 01 00 1 0 0 xx 100000 lb
000 0 0 11 0 0 0 0 0 0 01 00 1 0 1 xx 100100 lbu

000 0 0 10 0 0 0 0 0 0 01 00 1 0 0 xx 100001 lh
000 0 0 10 0 0 0 0 0 0 01 00 1 1 0 xx 100101 lhu
000 0 0 xx 1 0 0 0 0 0 01 xx 0 x x 00 101000 sb

000 0 0 xx 1 0 0 0 0 0 01 xx 0 x x 01 101001 sh

ICIT 2013 The 6th International Conference on Information Technology

write and 3-bit ALUop signals as shown in table 3. The meanings of ALUop signals are giving in
table 4.

Table 4. ALUop meaning

ALUop signals with funct (instr 5:0) field of instruction are used by the R-type control to produce
ALUcontrol (5:0) signals and several signals that are necessary in the execution of R-type
instructions. Table 5 shows the truth table of R-type control.

Table 5. R-type control truth table.

3.3 VHDL TOP-LEVEL IMPLEMENTATION

In VHDL (Very high speed IC Hardware Description Language), each element in the datapath and
control unit is composed as component then these components are combined to form the single cycle
MIPS (Microprocessor without Interlocked Pipeline Stages) processor. This processor is connected to

Meaning Aluop

Add 000
Sub 001
And 010
Or 011
Xor 100
Slt 101
Look at funct field 110
N/a 111

Mflo Mfhi Mtlo Mthi Sign Mult div Jalr Jr Alucontrol Funct Aluop

0 0 0 0 0 0 0 0 0 000010 (add) xxxxxx 000
0 0 0 0 0 0 0 0 0 010010 (sub) xxxxxx 001
0 0 0 0 0 0 0 0 0 000000 (and) xxxxxx 010
0 0 0 0 0 0 0 0 0 000001 (or) xxxxxx 011
0 0 0 0 0 0 0 0 0 000101 (xor) xxxxxx 100
0 0 0 0 0 0 0 0 0 010011 (slt) xxxxxx 101
0 0 0 0 0 0 0 0 0 000010 (add) 100000 11x
0 0 0 0 0 0 0 0 0 000010 (add) 100001 11x
0 0 0 0 0 0 0 0 0 010010 (sub) 100010 11x
0 0 0 0 0 0 0 0 0 010010 (sub) 100011 11x
0 0 0 0 0 0 0 0 0 000000 (and) 100100 11x
0 0 0 0 0 0 0 0 0 000001 (or) 100101 11x
0 0 0 0 0 0 0 0 0 000101 (xor) 100110 11x
0 0 0 0 0 0 0 0 0 000110 (nor) 100111 11x
0 0 0 0 0 0 0 0 0 010011 (slt) 101010 11x
0 0 0 0 0 0 0 0 0 010011 (slt) 101011 11x
0 0 0 0 0 0 0 0 0 000100 (sll) 000000 11x
0 0 0 0 0 0 0 0 0 000111 (srl) 000010 11x
0 0 0 0 0 0 0 0 0 001000 (sra) 000011 11x
0 0 0 0 0 0 0 0 0 100100 (sllv) 000100 11x
0 0 0 0 0 0 0 0 0 100111 (srlv) 000110 11x
0 0 0 0 0 0 0 0 0 101000 (srav) 000111 11x
0 0 0 0 0 0 0 0 1 000010 (jr) 001000 11x
0 0 0 0 0 0 0 1 1 000010 (jalr) 001001 11x
0 0 0 0 1 1 0 0 0 000000 (mult) 011000 11x
0 0 0 0 0 1 0 0 0 000000 (multu) 011001 11x
0 0 0 0 1 0 1 0 0 000000 (div) 011010 11x
0 0 0 0 0 0 1 0 0 000000 (divu) 011011 11x
0 0 0 1 0 0 0 0 0 000000 (mthi) 010001 11x
0 0 1 0 0 0 0 0 0 000000 (mtlo) 010011 11x
0 1 0 0 0 0 0 0 0 000000 (mfhi) 010000 11x
1 0 0 0 0 0 0 0 0 000000 (mflo) 010010 11x

ICIT 2013 The 6th International Conference on Information Technology

external separate instruction and data memories through the data and address busses and this shows
how the MIPS can communicate with the outside world.

Fig. 4 demonstrates MIPS interfacing with data and instruction memories. In this work, data and

instruction memories each hold 64 words of 32_bit, which are quite enough to load the designed
programs, later a testbench is written and used to execute a program.

4 RESULTS AND DISCUSSION

The program shown in Fig. 5 is stored in the instruction memory, this program uses a procedure to
perform multiplication between x”fffffffe” and x”00000004” and it should produce x”00000003 fffffff8” if
all of the instructions executed properly.

Fig. 5. Assembly and machine code for MIPS test program

Fig. 4. MIPS single-cycle processor connected to external memories

ICIT 2013 The 6th International Conference on Information Technology

The program will write the values x”00000003” to address 84 and x”fffffff8” to address 80 if it runs
correctly. But not getting the desired result meaning incorrect hardware design of MIPS
(Microprocessor without Interlocked Pipeline Stages).

By using the earlier constructed top-level, memories and testbench, the program shown in Fig. 5 is
executed and the results are shown in Fig. 6. As long as memwrite signal is 1, the results are stored
at data memory. Where x”00000003” is stored at address 84 and x”fffffff8” is stored at address 80.

5 CONCLUSION

The aim of this research is to implement the complete design of a 32-bit, single cycle MIPS
(Microprocessor without Interlocked Pipeline Stages) processor using VHDL (Very high speed IC
Hardware Description Language). After completing the design, various programs were simulated using
(Xilinx ISE Design Suite 13.4) program and the desired results were obtained which indicate the
correctness of the design.

Final design which has the ability to execute all I-type, J-type and R-type instructions including mult,
multu, div, divu, mfhi, mflo, mthi, and mtlo instructions has been implemented on a SPARTAN 3AN
(XC3S700AN) starter kit and the desired results have been gotten.

6 REFERENCES

[1] Pedroni V., “circuit design with VHDL”, MIT Press, London, England, 2004.

[2] Hennessy J., Patterson D., “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann,
San Francisco, USA, 2007.

[3] Reaz M., et al., “Single Core Hardware Modelling Of 32-Bit MIPS RISC Processor With A Single
Clock “,Research Journal Of Applied Sciences, Engineering And Technology, Vol.4, No.7 , pp.825-
832, 2012.

[4] Anjana R., Krunal G., “ VHDL Implementation of a MIPS RISC Processor”, International Journal of

Advanced Research in Computer Science and Software Engineering, Vol. 2, No.8, pp.83-88, 2012.

Fig. 6. Simulation of program’s execution

ICIT 2013 The 6th International Conference on Information Technology

[5] Robio V., “A FPGA Implementation of A MIPS RISC Processor for Computer Architecture
Education”, MSc. Thesis, New Mexico State University, Las Cruses, New Mexico, America, 2004.

[6] Bϋhler M., Baitinger U., “Vhdl-Based Development of a 32-Bit Risc Processor for Educational
Purposes”, the 9

th
 IEEE Mediterranean Electrotechnical Conference (Melecon), Tel-Aviv, Israel,

PP.138 – 142, 1998.

[7] Anthony I., “VHDL Implementation of Pipelined DLX Microprocessor”, MSc. Thesis, University
Teknologi Malaysia (UTM), Malaysia, 2008.

[8] Hennessy J., Patterson D., “Computer Organization and Design: The Hardware/Software
Interface”, Morgan Kaufmann, Waltham, USA, 2012.

http://ieeexplore.ieee.org.tiger.sempertool.dk/xpl/mostRecentIssue.jsp?punumber=5631
http://ieeexplore.ieee.org.tiger.sempertool.dk/xpl/mostRecentIssue.jsp?punumber=5631

