
ICIT 2013 The 6th International Conference on Information Technology

SOME HEURISTICS FOR SOLVING PRODUCTION PLANNING
PROBLEM WITH SEQUENCE DEPENDENT SETUP TIMES

Zrinka Lukač

Faculty of Economics & Business Zagreb
Zagreb, Croatia
zlukac@efzg.hr

Abstract

This paper addresses the problem of production planning of multiple items on two non-identical
machines with sequence dependent setup times in order to meet deterministic dynamic demand and
minimize overall costs consisting of production, holding and setup costs. The problem is formulated as
quadratic 0-1 mixed-integer programming problem. Its linear formulation is also given. Three heuristics
based on variable neighborhood search (VNS) are developed. Heuristics are tested and compared to
Lagrangean relaxation heuristics, three versions of tabu search heuristics and CPLEX. Computational
results show tradeoff between solution quality and run time needed to obtain solution.

Keywords - lot-sizing, sequence dependent setup times, lagrangean relaxation, tabu search,
variable neighborhood search, heuristic

1 INTRODUCTION

Ever since the beginning of industrialization, production planning problems have posed an important
problem for practitioners and researchers alike. Since 1950s, there has been an ample research in the
area resulting in many different theoretical advances and successful applications alike.

Scheduling problems involving setup times and costs are of particular interest in many process
industries and have drawn much attention recently. A survey on the subject can be found in Allahverdi
et al. [1] and Allahverdi et al. [2]. Scheduling problems often arise on the operational level and deal
with daily, weekly or monthly production. An efficient scheduling decision which takes into account
setup considerations may result in significant savings for such an industry. In particular, we have
encountered this problem in one pharmaceutical company that produces different kinds of drugs and
food supplements using two production facilities. Each facility is capable of producing any type of
product and has different technological constraints. Within the same time period each facility can
produce one type of product only. Furthermore, production changeover from one product type to
another requires cleaning of the facility, where cleaning time is sequence dependent. For example, if
in a given time period facility produces antibiotics and in the following period vitamins, it needs to be
cleaned thoroughly and cleaning process lasts for a long time. On the other hand, if vitamins are being
produced first, cleaning the facility should not be so thorough and therefore cleaning process lasts
much shorter. Cleaning is performed at the beginning of time period, while the rest of the period can
be used for production. If there is no change of production type, no cleaning is needed. The problem is
to find production plan that meets demand and minimizes total costs. It can be modeled as lot-sizing
problem on two non-identical parallel machines with sequence dependent setup times.

Generally, lot-sizing problems (LSP) deal with how to plan production of multiple products over
planning horizon divided into finite number of periods of time so as to meet deterministic dynamic
demand and minimize the sum of production costs, inventory holding costs and machine setup costs.
In order to do so, decisions regarding exact production sequence and production quantities are
needed. Regarding complexity, lot sizing problems are known to be NP-hard [3].

The text is organized as follows. In Section 2 mathematical formulation of the problem is given. The
problem is formulated as quadratic 0-1 mixed-integer programming problem. The linear formulation of
the model is also given. In Section 3 three different heuristic approaches for the problem are
presented: Lagrangean relaxation, Tabu search and VNS. Efficiency of the heuristics proposed is
tested by computational study in Section 4. Finally, Section 5 contains conclusions.

ICIT 2013 The 6th International Conference on Information Technology

2 MODEL FORMULATION

We consider the problem of how to plan production of n different items on two non-identical machines
over finite planning horizon divided into T periods of time in order to fulfill demand, where deterministic
dynamic demand is assumed. The model does not allow backlogging. Each machine is capable of
producing all types of items. Therefore, an item can be produced on either the first or the second
machine, but it is also possible to produce the same item on both machines simultaneously. Moreover,
within the same time period each machine may produce one type of item only. Therefore, this model
belongs to the class of small-bucket lot sizing models. Whenever there is a switch of production from
one item type to another, a sequence dependent setup operation is to be performed on a machine at
the beginning of time period, while the remaining time in that period is available for production.
Furthermore, setup operations consume machine resources and incur setup costs. We assume that
the machine capacity is finite and expressed in time units. The setup costs are sequence independent.
The storage of items incurs holding costs. Therefore, the whole production process incurs production
costs, holding costs and setup costs. Additional assumption on the model is that the machines are
deteriorating with time, thus increasing the setup time as machines are getting older.

2.1 Quadratic formulation

In order to mathematically formulate the problem [8], we use the following notation.

Let ni ,...,1 denote item types, let 2,1j denote machine types and let Tt ,...,1 denote time

periods within planning horizon. Furthermore, let itd denote demand for item i in period t, itjp

production cost per unit of item i on machine j in period t, ith holding cost per unit of item i in period t,

itjk fixed setup cost of item i on machine j in period t, iltju the setup time needed to switch production

from item i to item l in period t on machine j, tjc capacity of machine j in period t (in time units), ija

capacity consumption of machine j per unit of item i (in time units) and itjM upper bound on

production of item i on machine j in time period t, where

ij

tj

itj
a

c
M  .

The machine deterioration is modeled by assuming that setup times iltju required for the setup

operation from item i to item l are mutually proportional with respect to some proportionality factor r>1,

i.e. we assume that iltjjtil uru )1(.

The decision variables are: itjx - amount of item i produced on machine j in period t, its - inventory of

item i in period I,t and






otherwise 0

 periodin itemfor setup is machine if 1 tij
yitj

.

The problem can be formulated as the following mixed-integer 0-1 quadratic programming problem [8]:

  
   
















n

i

T

t j j

itjitjitititjitj ykshxpf
1 1

2

1

2

1

),,(min syx (1)

subject to




 
2

1

1,

j

itititjti sdxs ti, (2)

 
 

 
n

i

n

i

tjitjij

n

l

ltjjtiiltj cxayyu
1 11

)1(jt, (3)

itjitjitj yMx  jti ,, (4)

ICIT 2013 The 6th International Conference on Information Technology





n

i

itjy
1

1 jt, (5)

0, ititj sx jti ,, (6)

 1,0itjy (7)

The objective function (1) minimizes the sum of production, holding and setup costs. Constraints (2)
are inventory balance constraints. Also, they ensure that demand is to be met. Quadratic constraints
(3) are machine capacity constraints stating that the time needed for production and setup operations
cannot exceed the available capacity of the machine (capacity is expressed in time units). The

quadratic term 
 



n

i

n

l

ltjjtiiltj yyu
1 1

)1(in constraints (3) which refers to setup operations reduces to one

term only: (i) 0, if there is no change of production type from period t-1 to period t; or (ii) setup time

iltju if machine is setup to production of item i in period t-1 (1)1( jtiy) and to production of item l in

period l (1ltjy) (in other words, setup operation is required at the beginning of period t). Due to

constraints (4), in period t each machine can produce only an item type to which it is setup to.
Constraints (5) ensure that in each time period there is at most one setup state for each machine.
Finally, constraints (6) and (7) impose non-negativity and binary conditions respectively.

2.2 Linear formulation

Problem (1)-(7) can also be formulated as a linear programming problem. In order to do so and avoid

the quadratic term in constraints (3), we introduce additional 0-1 variables iltjw :











otherwise 0

 period of beginning at the

 machineon performed is item to item fromoperation setup a if 1

t

jli

wiltj (8)

The problem can now be formulated as the following linear programming problem:

  
   
















n

i

T

t j j

itjitjitititjitj ykshxpf
1 1

2

1

2

1

),,,(min wsyx (9)

subject to




 
2

1

1,

j

itititjti sdxs ti, (10)

 
 


n

i

n

i

tjitjij

n

l

iltjiltj cxawu
1 11

 jt, (11)

itjitjitj yMx  jti ,, (12)

1)1(  ltjjtiiltj yyw lijtli  ,,,, (13)

jtiiltj yw)1( jtli ,,, (14)

ltjiltj yw  jtli ,,, (15)





n

i

itjy
1

1 jt, (16)

0, ititj sx jti ,, (17)

ICIT 2013 The 6th International Conference on Information Technology

 1,0, iltjitj wy (18)

This model differs from model (1)-(7) in constraints (11), (13)-(15). Constraints (11), just like
constraints (3), are machine capacity constraints but this time expressed in linear form. Constraints

(13)-(15) describe the relationship between variables iltjw and ltjy which can be stated in quadratic

form as

itjjtiiltj yyw  )1(, lijtli  ,,,, (19)

The problem formulation in its linear form can be solved by using commercial software like CPLEX.

3 HEURISTICS

We propose several heuristics based on VNS method for solving the problem. VNS is a recent
metaheuristics [7] which systematically exploits the idea of neighborhood change as a mean of
escaping from local optima. The basic form of VNS consists of exploring the set of neighborhoods of
the current solution, conducting local search from a neighbor solution to local optima and then moving
to it only if it results in improvement of search criterion.

VNS based heuristics proposed here use Lagrangean relaxation heuristic and tabu search heuristic
presented in [8]. Therefore first we briefly present these two heuristics.

3.1 Lagrangean relaxation heuristics

This heuristics works on quadratic mixed-integer formulation (1)-(7) of the problem. Hereby we identify
constraints (3) as the set of complicating constraints to be relaxed. In order to describe Lagrangean
heuristics more easily, we introduce the following notation. Let

 
 

 
n

i

n

i

tjitjij

n

l

ltjjtiiltjjt cxayyug
1 11

)1(),(yx jt, (20)

let

 
 


n

i

n

l

ltjjtiiltjtj yyuF
1 1

)1()(y jt, (21)

and let X be the set of all (x, y, s) satisfying constraints (2), (4)-(7). Now the problem (1)-(7) can be
written as

),,(min syxf (22)

s.t.

 0),(yxjtg jt, (23)

 X),,(syx (24)

Since the expression 
 



n

i

n

l

ltjjtiiltj yyu
1 1

)1(reduces to one term only: (i) 0, if there is no change of

production type; and (ii) iltju if there is a change of production from item i to item l, we know that

 max,0)(tjtj FF y , where iltj
li

tj uF
,

max max , jt, . Let LB denote lower bound and let UB denote

upper bound on optimal value of the problem (22)-(24).

The Lagrangean relaxation heuristics is now as follows.

Lagrangean relaxation heuristics (H-LR):

Step 1 Initialization

ICIT 2013 The 6th International Conference on Information Technology

Dualize set (19) of complicating constraints.

Let UB = + Infinity; let LB = - Infinity

Step 2 Initialize Lagrangean vector

For r=1 to R do

Fix)(ytjF randomly to some value from the interval  max,0 tjF and solve problem (P).

Denote the so obtained solution as
rrr

syx ,, .

If
rrr

syx ,, is feasible to (22)-(24), update upper bound UB.

Use the so obtained solution to initialize Lagrangean vector  .

Step 2 Obtain lower bound

Solve the relaxed problem

 
 


T

t j

tjtj gf
1

2

1
,,

),,(min syx
syx

 (25)

s.t. X),,(syx (26)

Denote the so obtained solution as)(),(),( syx .

Update LB; If)(),(),( syx is feasible to (22)-(24), update UB.

Step 3 Stopping criterion

If)
2

(05.0
LBUB

LBUB


 , STOP. Accept)(),(),( syx as optimal solution.

Otherwise, use)(),(),( syx to update Lagrangean vector and go to Step 2.

The heuristic stops when the difference between upper and lower bound becomes less then 5% of
their arithmetic mean (UB+LB)/2.

3.2 Tabu Search heuristics

Next we describe tabu search heuristics presented in [8]. Tabu search [5],[6] has proved to be very
efficient in solving many hard combinatorial problems. Good choice of search space and
neighborhood structure are crucial for its effective implementation.

In order to formulate the tabu search heuristics for problem (1)-(7), auxiliary 0-1 variables ijz are

introduced. They determine which items are going to be produced on which machine:






otherwise 0

 machineon produced is item if 1 ji
zij

 (27)

According to the definition, constraints

ijitj zy  jti ,, (28)

 1,0ijz ji, (29)

can also be added to the set of problem constraints (2)-(7), without changing the solution space.
Therefore, from now on we consider problem (1)-(7),(28)-(29).

ICIT 2013 The 6th International Conference on Information Technology

This heuristic also operates on the quadratic formulation of the problem (1)-(7), (28)-(29). The search

space is defined with respect to auxiliary variables ijz defined by (27). Once we have values of

variables ijz , values of decision variables x, y, s are obtained by fixing z, fixing 0itjy for all

indexes jti ,, such that 0ijz (because of constraints (28)), and then applying H-LR heuristic.

Starting solutions are constructed by decomposing items to the machines, i.e. by determining initial

values of z . The underlying rationale is to try to fix 0ijz for as many indexes as possible, because

then according to (28) many of the variables itjy become 0 as well. This significantly reduces the size

of the problem. Variables ijz determine the set of items to be produced on each machine. The less

time we spend on setup operations, the more time we have available for production. However, even if
we know the set of items to be produced on a given machine, we still don't know the exact sequence
of production. Therefore, for each machine j, j=1,2, we consider all pairs of items (i,l) to be produced

on machine j and compute the sum of their setup times litjiltj uu  . If this sum is sufficiently small, i.e.

if suu litjiltj  for some s, we assign both items to machine j. The items still left unassigned are

then distributed to the machines randomly. For different values of s we obtain different starting
solutions of the search. In order to create the first starting solution, we use s as small as possible.

For each solution from the search space, we construct a neighborhood consisting of four solutions.
Given an arbitrary solution z , its neighborhood is constructed as follows. First consider the first
machine and find the pair of items (i,l) scheduled for production on the first machine for which the

setup time iltju is maximal. The first two neighborhood solutions are obtained by separating these two

items: the first solution by sending item i to be produced on the second machine (1,0 21  ii zz) and

keeping item l to be produced on the first machine (11 lz), the second solution by keeping item i to

be produced on the first machine (11 iz) and sending item l to be produced on the second machine

(1,0 21  ll zz). The last two neighborhood solutions are obtained in the same manner, but now by

fixing the second machine and then separating the items. Again, the pair of products (i,l) scheduled for

production on the second machine for which setup time iltju is maximal is found first and then

separated, first by sending item i to be produced on the first machine (1,0 12  ii zz) and keeping

item l to be produced on the first machine (12 lz), and then by keeping item i to be produced on the

second machine (12 iz) and sending item l to be produced on the first machine (1,0 12  ll zz).

Tabu list consists of the last L moves, where L is fixed and prescribed. Aspiration criterion is set to the
value of the objective function value in the best solution found so far.

Let NS denote the total number of generated starting points, let S denote their counter, let NU denote
the allowed number of uphill moves during the search.

Now the tabu search heuristics is as follows:

T-LR Heuristics:

Step1 Initialization

a) Set S=1
b) Set J=0. If S>NS, go to Step 4; otherwise go to Step 2.

Step 2 Choice

a) Generate S-th starting decomposition  Sz . Fix  Sz and find)(),(),( syx by using

H-LR. If S=1, set            ),,(*,*,*,* SSSSSS ff syxssyyxx  .

ICIT 2013 The 6th International Conference on Information Technology

b) Construct neighborhood solutions  
'

Iz , I=1,...,4. For each I, fix  
'

Iz and find      
''' ,, III syx

by using H-LR. If  
'

Iz is not tabu or satisfies aspiration criteria, compute

       ),,('''

IIII ff syx .

c) As new        SSSS zsyx ,,, , choose the allowable neighborhood point having the minimal

objective function value. Let B be the index of that point and let f̂ be its objective function

value.

Step 3 Update

a) Update tabu list and aspiration criterion. If *ˆ ff  , set J=J+1; otherwise set

        ffBBBB
ˆ*,*,*,*,* ''''  zzssyyxx and set J=0.

b) If J>NU, set S=S+1 and go to Step 1b. Otherwise go to Step 2b.

Step 4 Termination

 STOP. The optimal solution has been achieved.

3.3 Variable Neighborhood Search heuristics

Here three versions of the VNS based heuristics for the problem in question are being proposed.

The search space of these three heuristics is defined with respect to auxiliary variables ijz defined by

(27). They determine which items are going to be produced on which machines. Therefore heuristics
consider quadratic formulation of the problem (1)-(7), (28)-(29). As in T-LR heuristics, once we have

values of variables ijz , the values of decision variables x, y, s are obtained by using H-LR heuristics.

The first VNS heuristic is based on basic VNS scheme. The search space of this heuristic is defined
with respect to variables z . The heuristic uses two types of neighborhood structures: (i)

)(zkN , max,...,1 kk  , where m axk is prescribed; and (i))(zLN . Here)(zkN is defined as the set of

all 'z for which the Hamming distance from z is equal to k . In other words,)(zkN is the set of all 'z

that have exactly k coordinates different from z . Neighborhood structure)(zLN consists of four

constructed solutions and two randomly generated solutions. For a given z , the first four

neighborhood solutions of)(zLN neighborhood structure are constructed in a same manner as

neighborhood structure for T-LR heuristics. In other words, for each machine we find the pair of items
for which the setup time is maximal and then separate them. The last two neighborhood solutions of

)(zLN neighborhood structure are obtained by generating two solutions which differ from z in a

random number of coordinates.

The local search step of the first VNS heuristics uses T-LR heuristic, as described in section 3.2.

The VNS1 heuristics is now as follows:

VNS1 Heuristics:

Step 1 Initialization

a) Select the set of neighborhood structures)(zkN and)(zLN

b) Generate initial value of z ; fix z ; find syx ,, by using H-LR heuristics

c) Set),,(*,*,*,*,* syxzzssyyxx ff  .

Step 2 Repeat until the objective function value is being improved:

a) Set k=1
b) Repeat until k=kmax:

ICIT 2013 The 6th International Conference on Information Technology

i. Shaking: Generate a point)(zz kN at random. Find syx  ,, by using H-LR

heuristics

ii. Local Search: Apply T-LR heuristic with 'z as initial solution. For T-LR use)(zLN

neighborhood structure. Denote with  zsyx  ,,, the so obtained local optima.

iii. Move or not: If   *,, ff  syx , set ,*,*,*,* zzssyyxx 

),,(* syx  ff and set k=1. Otherwise set k=k+1.

The VNS2 heuristic is also based on basic VNS scheme. It uses the same search space and the same

two types of neighborhood structures)(zkN , max,...,1 kk  and)(zLN as VNS1. The main

difference to VNS1 is in its local search step. Instead of using T-LR, here we look for the best neighbor

within the)(zLN neighborhood structure of the current solution.

VNS2 Heuristics:

Step 1 Initialization

a) Select the set of neighborhood structures)(zkN and)(zLN

b) Generate z ; fix z ; find syx ,, by using H-LR heuristics

c) Set),,(*,*,*,*,* syxzzssyyxx ff  .

Step 2 Repeat until the objective function value is being improved:

a) Set k=1
b) Repeat until k=kmax:

i. Shaking: Generate a point)(zz kN at random. Find syx  ,, by using H-LR

heuristics

ii. Local Search: Find the best neighbor)(zz  kN . Obtain syx  ,, by using H-LR

heuristics. Denote with  zsyx  ,,, the so obtained local optima.

iii. Move or not: If   *,, ff  syx , set ,*,*,*,* zzssyyxx 

),,(* syx  ff and set k=1. Otherwise set k=k+1.

Unlike VNS1 and VNS2, VNS3 is based on reduced VNS scheme. It still uses the same solution

space as VNS1 and VNS2, but it uses neighborhood structures)(zkN , max,...,1 kk  only. The

stopping criterion is the maximum number of iterations controlled by max_iter parameter.

VNS3 Heuristics:

Step 1 Initialization

a) Select the set of neighborhood structures)(zkN and)(zLN

b) Set iter=1.
c) Generate z ; fix z ; find syx ,, by using H-LR heuristics

d) Set),,(*,*,*,*,* syxzzssyyxx ff  .

Step 2 Repeat until iter = max_iter:

b) Set k=1
c) Repeat until k=kmax:

i. Set k=1.

ii. Shaking: Generate a point)(zz kN at random. Find syx  ,, by using H-LR

heuristics

iii. Move or not: If   *,, ff  syx , set ,*,*,*,* zzssyyxx 

),,(* syx  ff and set k=1. Otherwise set k=k+1.

ICIT 2013 The 6th International Conference on Information Technology

4 COMPUTATIONAL RESULTS

We have generated 9 problem classes. Each class is defined by number of different items to be
produced and length of planning horizon. Table 1 shows the size of generated problem classes and
corresponding number of variables, constraints and 0-1 variables for the quadratic formulation of the
problem, while Table 2 shows the size of the problem classes and the corresponding number of
variables and constraints for the linear formulation of the problem

Table 1. Number of variables, constraints and 0-1 variables for quadratic formulation of the problem

Problem Class (T,n) No. of Variables No. of Constraints No. of 0-1 Variables

(4,3) 66 76 30

(4,4) 88 96 40

(6,4) 128 144 56

(10,5) 260 290 110

(15,5) 385 435 160

(15,8) 616 660 256

(20,5) 510 580 210

(20,10) 1020 1080 420

(20,15) 1530 1580 630

Table 2. Number of variables, constraints and 0-1 variables for linear formulation of the problem

Problem Class (T,n) No. of Variables No. of Constraints No. of 0-1 Variables

(4,3) 138 220 102

(4,4) 216 384 168

(6,4) 320 574 248

(10,5) 760 1490 610

(15,5) 1135 2235 910

(15,8) 2536 5700 2176

(20,5) 1510 2980 1210

(20,10) 5020 11880 4420

(20,15) 10530 26780 9630

ICIT 2013 The 6th International Conference on Information Technology

For each problem class 30 problem instances were generated. Demand matrix was generated by

randomly choosing 1id from the interval  110,30 and then randomly generating demands itd for

time periods t>1 from the interval  50,10  itit dd by using uniform distribution. Production costs

itjp were randomly generated in a similar manner. First production costs jip 1 for the first time period

were chosen from the interval  110,30 and then production costs itjp for time periods t>1 were

generated from the interval  30,10  itjitj pp by using uniform distribution. Holding costs ith were

chosen from the interval  20,10 , fixed setup costs itjk from the interval  40,20 and machine

capacity consumption ija from the interval  6,1 , all by using uniform distribution. Setup times iltju

were generated as follows. First, setup times jilu 1 for the first time period were randomly chosen from

the interval  15,5 by using uniform distribution, and then proportionality factor r was chosen from the

interval  15.1,001.1 . Setup times iltju for t>1 were calculated by using the rule iltjjtil uru )1(.

Furthermore, 0iitju . In order to generate machine capacities, average overall demand per single

time period avgD was computed by using the formula:

T

d

D

n

i

T

t

it

avg


  1 1

 (30)

Then machine capacities tjc were determined according to the rule

 avgtjtj DaUc  max (31)

where ij
ji

aa
,

max max is maximal time needed for production of any item on any of the machines and

tjU are random numbers generated from the interval  2,4.0 by using uniform distribution. Here

avgDa max is an upper bound on production of average overall demand per time period. Setup times

are not included in the process of generating capacities, so machine capacities are determined as a
random percentage of that upper bound.

Each problem instance was solved by 7 heuristics (using quadratic formulation of the problem) and by
CPLEX 9.0 (using linear MIP formulation of the problem). The heuristics are: three different versions of
T-LR heuristics, VNS1, VNS2, VNS3 and H-LR heuristics. Three versions of T-LR heuristics are as
follows: T-LR as presented in section 3.2., T-LR1 obtained from T-LR by expanding the neighborhood
structure consisting of 4 constructed solutions with 2 randomly generated solutions and T-LR2
obtained from T-LR by expanding the neighborhood structure consisting of 4 constructed solutions
with 4 randomly generated solutions. All heuristics were implemented in AMPL programming language
[4]. Tests were run on PC Pentium IV with 2.4 GHz processor and 1Gb RAM. The MIP sub-programs
appearing in various steps of heuristics were solved by using CPLEX 9.0.

Table 3 displays the size of the problem classes together with average CPU time (in seconds)
required by each heuristics and CPLEX to reach termination.

Table 3. Average CPU time (in seconds) to reach termination

Problem
Class (T,n)

T-LR T-LR1 T-LR2 VNS1 VNS2 VNS3 H-LR CPLEX

(4,3) 2,84 4,39 5,93 10,52 8,67 3,85 0,19 0,04

(4,4) 3,58 5,49 7,18 13,51 15,92 6,01 0,30 0,05

ICIT 2013 The 6th International Conference on Information Technology

(6,4) 4,59 8,52 12,14 40,03 28,26 4,44 0,49 0,09

(10,5) 8,14 31,68 39,97 114,39 88,33 13,12 2,59 1,18

(15,5) 9,73 34,92 44,78 123,65 111,16 19,61 1,60 3,02

(20,5) 17,39 56,56 94,39 331,46 230,70 19,80 2,86 7,45

(15,8) 174,05 1041,90 1414,11 2966,98 2288,51 334,70 1633,61 11046,45

(20,10) 661,00 1211,93 1951,12 4049,99 2569,64 478,58 - 86400,00

(20,15) 1513,93 2569,64 3161,59 4316,54 2385,05 654,64 - 86400,00

Computational time for each problem instance was limited to 86400 seconds (24 hours). For problem

classes)10,20(and)15,20(H-LR heuristics was unable to produce any solution within the time

limit, as indicated by missing entry. For the same problem classes CPLEX did not reach termination
within the time limit, so the process was stopped and the solution obtained within the time limit was
used for comparison. As expected, parameters T and n have significant impact on CPU run-time. By
comparing run-times for problem classes (10,5), (15,5) and (15,8), we see that CPU time grows much
faster as n increases than as T increases. For small problem instances (problem classes (4,3), (4,4),
(6,4) and (10,5)) CPLEX is superior to any heuristics. For these problem classes, H-LR is the only
heuristics with run time close to CPLEX. All other heuristics are much slower. For problem classes
(15,5) and (20,5) the best run time is obtained by H-LR. These are the first problem classes for which
some heuristics outperforms CPLEX, though CPLEX outperforms heuristics other than H-LR. For
problem class (15,8), the best run-time is obtained by T-LR, followed by H-LR. Run times of other
heuristics are greater by factor 10, still outperforming CPLEX with run time of approximately 3 hours.
For problem classes (20,10) and (20,15) heuristic H-LR was unable to produce any solution within the
limit. The best run time was obtained by VNS3 heuristic, followed by T-LR.

Table 4 displays comparison of results in terms of solution quality. The comparison was made with
respect to objective function value obtained by CPLEX. Therefore, Table 4 displays average optimality
gap, where optimality gap for a single problem instance and a single heuristic is defined as:

%100
 valueobjective CPLEX

 value)objective (heuristic- value)objective (CPLEX
Gap(%)  (32)

The average optimality gap for a certain problem class is calculated by computing the average
optimality gap of 30 problem instances generated for this problem class.

Table 4. Average optimality gap of objective function value

Problem Class

(T,n)
T-LR T-LR1 T-LR2 VNS1 VNS2 VNS3 H-LR

(4,3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

(4,4) 0,34% 0,31% 0,31% 0,31% 0,00% 0,00% 0,00%

(6,4) 3,49% 2,53% 2,38% -0,25% -0,03% 0,21% -0,28%

(10,5) 3,38% -0,11% -0,14% -0,26% -0,19% -0,01% -0,44%

(15,5) 3,67% 0,24% 0,34% -0,13% -0,10% -0,26% -0,26%

(15,8) 3,55% 0,56% 0,36% 0,07% 0,09% 0,17% -0,04%

ICIT 2013 The 6th International Conference on Information Technology

(20,5) 4,32% 1,07% 0,38% -0,13% 0,01% 0,36% -0,20%

(20,10) 1,71% 1,13% 1,01% 0,42% 0,60% 0,60% -

(20,15) 0,41% 0,12% 0,10% 0,16% 0,19% 0,63% -

For problem class (4,3) all heuristics obtained the same objective function value as CPLEX. For
problem class (6,4) and (15,5), in average heuristics VNS1, VNS2, VNS3 and H-LT obtained better
results than CPLEX, with H-LR achieving the best result. For problem class (10,5) all heuristics but T-
LR outperform CPLEX, the best one being H-LR. For problem class (15,8) heuristic H-LR slightly
outperforms CPLEX. However, heuristics other than T-LR also obtain good results, with optimality gap
less than 1%. For problem class (20,5) the best results were again obtained by H-LR, which
outperforms CPLEX just as VNS1. For problem classes (20,10) and (20,15) H-LR was unable to
produce any solution. However, other heuristics have produced results within 2% gap from objective
value obtained by CPLEX in 24 hours computational time in significantly less time. For problem class
(20,10) the best results were obtained by VNS1 with average gap of 0.42% and only 478,58 CPU
seconds of computational time. For problem class (20,15), the best solution quality is obtained by T-
LR2 heuristics, but with 3161,59 CPU run time. However, VNS3 finds solution in 654,64 CPU seconds
with 0.63% gap.

The results show that the choice of neighborhood structure effects both solution quality and
computational time. Regarding solution quality, neighborhood structures containing 4 constructed
solutions only might be a bit too restrictive, thus preventing thorough diversification of the search.
Better results are obtained for neighborhood structures expanded by 2 or 4 solution obtained by
changing random number of coordinates of variable z. However, such structures increase run times of
heuristics in question, thus creating a tradeoff between solution quality and run time needed to obtain
solution.

5 CONCLUSIONS AND FUTURE WORK

This paper proposes three different VNS heuristic procedures for the quadratic formulation of
capacitated lot-sizing and scheduling production planning problem with sequence dependent setup
times. The first two are based on basic VNS scheme. Hereby the first one uses tabu search heuristics
in its local search step, while the second performs the search for the best neighbor only. The third
VNS heuristic is based on reduced VNS scheme. Since the search space of these heuristics is
different from the problem solution space, all three heuristics use Langrangean relaxation of machine
capacity constraints to construct complete solutions. Heuristics were tested and compared to
Lagrangean relaxation heuristics and three versions of tabu search heuristic, with each version having
a different neighborhood structure in terms of number of solutions it contains. Heuristics were also
compared to CPLEX, were CPLEX was used to solve the linear formulation of the problem. The
effectiveness of the heuristic procedures proposed was tested on nine generated problem classes,
each class having 30 problem instances. Computational results show that for large problem instances
computational time required by heuristics to reach solution is significantly less than CPLEX run time.
However, there is a tradeoff between the solution quality and computational time needed to obtain
solution.

Since the real world industrial processes require fast and efficient solutions for large problem
instances, future work should deal with creating VNS solution procedures using some of constructive
methods for creating solutions. This might result in further improvement of computational time as well
as in improvement of solution quality for large problem instances. Moreover, such a procedure would
not require use of sophisticated solvers, thus making it more accessible to implementation in actual
production industries.

References

[1] Allahverdi A, Gupta J N D, Aldowaisan T (1999) A review of scheduling research involving setup
considerations. OMEGA The International Journal of Management Science 27: 217-239

ICIT 2013 The 6th International Conference on Information Technology

[2] Allahverdi A, Ng C T, Cheng T C E, Kovalyov M Y (2008) A survey of scheduling problems with
setup times or costs. European Journal of Operational Research 187: 985-1032

[3] Florian M, Lenstra J K, Rinnooy Kan G (1980) Deterministic production planning: algorithms and
complexity. Management Science 26: 669-679

[4] Fourer R., Gay D M, Kernighan B W (1990) A Modeling Language for Mathematical Programming.
Management Science 36: 519-554

[5] Glover F (1989) Tabu Search – Part I. ORSA Journal of Computing 1: 190-206

[6] Glover F (1990) Tabu Search – Part II. ORSA Journal of Computing 2: 4-32

[7] Hansen P, Mladenović N (2001) Variable neighborhood search: Principles and applications.
European Journal of Operations Research 130: 449-467

[8] Lukač Z, Šorić K, Vojvodić-Rosenzweig V (2005) One Heuristics for Production Planning Problem
with Sequence Dependent Setups, The International Conference on Industrial Engineering and
Systems Management IESM 2005.

