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1.INTRODUCTION 

All graphs we consider are simple and finite. Let ∆(G)  denote the maximum degree of a 

graph G. A coloring of the edges of a graph is proper if no pair of incident edges receive the same 

color. A proper coloring C of the edges of a graph G is acyclic if there is no two-colored (bichromatic) 

cycle in G with respect to C. The minimum number of colors required to edge-color a graph G 

acyclically is termed the acyclic chromatic index of G and is denoted by a′(G). The notion of acyclic 

coloring was introduced by Grunbaum in [6]. Determining a′(G) either theoretically or algorithmically 

has been a very difficult problem. Even for the highly structured and simple class of complete graphs, 

the value of a′(G) is not yet determined. Determining the exact values of a′(G) even for very special 

classes of graphs is still open [3]. The acyclic chromatic index and its vertex analogue can be used to 

bound other parameters like oriented chromatic number and star chromatic number of a graph G, 

both of which has many practical applications such as in wavelength routing in optic networks [8]. In 

other words, in all-optical networks a single physical optical link can carry several logical signals 

provided that they are transmitted on different wavelengths. An all to all routing in n- node network is 

a set of n(n-1) simple paths specified for every ordered pair (x,y) of nodes. The routing will be feasible 

if an assignment of wavelengths to the paths can be given such that no link will carry in the same 

direction two different paths of the routing on the same wavelength. With such a routing, it is possible 

to perform gossiping in one round. 

 

It is easy to see that a′(G) ≥ א`(G) ≥ ∆(G) for any graph G. Here, א′(G) is the minimum number of 

colors used in any proper edge coloring of G, and is called the chromatic index of G. 

 

2.HEXAGONAL NETWORK 

Higher dimensional hexagonal graphs are the generalization of a triangular plane tessellation, 

and considered as a multiprocessor interconnection network. Nodes in a k-dimensional (k-D) 

hexagonal network are placed at the vertices of a k-D triangular tessellation, so that each node has 

upto 2k + 2 neighbors. 
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                               Figure 1: HX(2) 

 

We call edges along a row as horizontal and the remaining edges as oblique acute and 

oblique obtuse edges.  

 

Algorithm Acyclic edge-coloring HX(n) 

 

Input: HX(n) 

 

Algorithm: 

 

1. Label alternate horizontal edges along row i, from left to right beginning from the first edge as 

1 and the remaining edges as 2. 

2. Label alternate oblique edges along column i, i odd, from left to right beginning from the first 

edge as 3 and the remaining edges as 4. 

3. Label alternate oblique edges along column i, i even, from left to right beginning from the first 

edge as 5 and the remaining edges as 6. 

Output: HX(n)= 6 
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           Figure 2: Acyclic Edge-coloring of HX(3) 

Proof of Correctness:  

 Every cycle includes atleast one oblique acute, one oblique obtuse and one horizontal edge. 

By the algorithm these 3 colors are different. Thus the edges of any cycle are colored with at least 

three colors. 
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We have a′(HX(n)) ≥ ∆(HX(n)) = 6. By the algorithm, a′(HX(n)) = 6.          ■ 

3.HONEYCOMB NETWORK 

Honeycomb networks are built recursively from hexagonal tessellation. The honeycomb network 

HC(1) is a hexagon. The honeycomb network HC(2) is obtained by adding six hexagons to the 

boundary edges of HC(1). Inductively, honeycomb network HC(n) is obtained from HC(n – 1) by 

adding a layer of hexagons around the boundary of  HC(n – 1). 

 

                                                 Figure 3: HC(2) 

 

We call edges along a column as vertical edges and the remaining edges as oblique acute 

and oblique obtuse edges.  
 

Algorithm Acyclic edge-coloring HC(n) 

 

Input: Honeycomb network HC(n)  

 

Algorithm: 

 

1. Label all vertical edges along row i, as 1. 

2. Label alternate oblique edges along row i, from left to right beginning from the first edge as 2 

and the remaining oblique edges as 3. 

Output: a′(HC(n)) = 3 
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                            Figure 4: Acyclic Edge-coloring HC(3) 

Proof of Correctness:  

Every cycle includes atleast two oblique acute, two oblique obtuse and two vertical edges. By 

the algorithm these 3 colors are different. Thus the edges of any cycle are colored with at least three 

colors. 

Since a′(HC(n)) ≥ ∆(HC(n)) = 3 , we have  a′(HC(n)) = 3.                                             ■ 

4.SIERPINSKI NETWORK 

The Sierpinski triangle also called the Sierpinski gasket, is a fractal and attractive fixed 

set named after the Polish mathematician Wacław Sierpiński   who described it in 1915. However, 

similar patterns appear already in the 13
th
 century Cosmati mosaics in the cathedral 

of Anagni, Italy, and other places, such as in the nave of the Roman Basilica of Santa Maria in 

Cosmedin. Originally constructed as a curve, this is one of the basic examples of self-similar sets, i.e. 

it is a mathematically generated pattern that can be reproducible at any magnification or reduction. 

Comparing the Sierpinski triangle or the Sierpinski carpet to equivalent repetitive tiling 

arrangements, it is evident that similar structures can be built into any rep-tile arrangements. 

A fractal which can be constructed by a recursive procedure; at each step a triangle is divided 

into four new triangles, only three of which are kept for further iterations.  
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                                                       Figure 5: S(3) 

Consider S(2). It contains three copies of S(1), Let us name the three copies of S(1) as Top, 

Left and Right. Name the edges as TL, TR, TB, LL, LR, LB, RL, RR, RB respectively. See figure 6. 
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RRRLLL LR

 

                                  Figure 6 

 

Algorithm Acyclic edge-coloring S(n) 
 
Input: Sierpinski network S(n)  
 
Algorithm: 
 

Step 1: Arbitrarily color the edges of the top S(1), (ie)  TL, TR, TB.  

Step 2: TL=RR=LB;  TR=LR;  TB=RB 

Step 3: LL=RL (Missing color of the four degree) 

In order to know the color the edges of the top S(1) in the next level.     
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(i) Left: LR=TL;  LB=TB;  TR=Missing color of the four degree. See figure (a). 

(ii) Right: RL=TR;  RB=TB; TL =Missing color of the four degree. See figure (b). 

Repeat: Step 1 

Output: a′(S (n)) = 4 
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              Figure 7: Acyclic Edge-coloring S(4) 

Proof of Correctness:  

 Every cycle includes atleast one oblique acute, one oblique obtuse and one horizontal edge. 

By the algorithm these 3 colors are different. Thus the edges of any cycle are colored with at least 

three colors. 

We have a′(S(n)) ≥ ∆(S(n))  = 4. By the algorithm, a′(S(n))  = 4.              ■ 

5.CONCLUSION      

The problem of acyclic edge-coloring for architecture such as butterfly, benes and pyramid 

networks are under investigation. 
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