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Abstract 

Cache memory speeds up the memory access for memory demanding and cache intensive 
algorithms. Introducing different cache levels and greater cache sizes in modern multiprocessor 
architectures reduces cache misses. Both matrix-matrix and matrix-vector multiplications are 
computation and cache intensive algorithms, as well as memory demanding algorithms and their 
execution time directly depends on CPU cache architecture and organization. This paper focuses on 
matrix-vector multiplication performance while executed on modern shared memory multiprocessor 
with shared last level L3 cache and dedicated L1 and L2 cache for each CPU core.  

Our goal is to analyze dense matrix-vector algorithm behavior and to check the hypothesis if the 
performance of today’s virtualized servers organized either in private data-centers or in cloud 
computing is usually worse than traditional servers with host operating systems without using 
virtualization. Both sequential and parallel executions are implemented in traditional and cloud 
environments using the same platform and hardware infrastructure for each test case.  
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1 INTRODUCTION 

Cloud computing paradigm emerges not only as the best service in ICT, but also as the only one. 
Gartner forecasts that public cloud services market growth will be 19.6%, or total $109 billion 
worldwide in 2012 [1]. Its pay-per-use billing model and allows huge amount of theoretically infinite 
computing and storage on-demand resources organized in virtual machine instances.  

Migration onto the cloud has several challenges both for cloud service providers and customers. Cloud 
service providers want to decrease cost using less active hardware resources in order to decrease 
electrical power and thus group active virtual machine instances in less physical servers. The authors 
in [6] determine that reserve capacity model significantly outperforms all other models to dimensioning 
the capacity of cloud-based system for time-varying customer demand. Nevertheless, adding more 
server nodes can considerably underutilize the resources and improve the performance implementing 
more parallelism, which is desired for cloud service customers [5]. Moreover, the same virtual machine 
instance will not achieve the same performance on the same hardware at different times among the 
other active virtual machine instances [7]. 

The most common public cloud service providers’ price is usually linearly proportional to offered 
hardware resources [2, 3, 4]. The price doubles for renting a virtual machine instance with double CPU 
and memory resources. However, there is performance discrepancy for different server loads. Cache 
intensive algorithms run faster in virtualized environment while executed in CPUs with distributed 
caches per core, but have huge performance drawbacks in the regions where problem size fits in 
cache that is shared among several CPU cores [8]. There are results published for performance of 
memory demanding and computation intensive algorithms using the same hardware environment but 
different platforms. The results show that there are performance drawbacks if they are hosted in the 
cloud compared to traditional environment [9].  

Matrix multiplication is one of the most important linear algebra algorithms that can be easily, 
efficiently and effectively speeduped using parallelization. Achieving near linear speedup while 
executing on more processors is imperative. However, the authors in [13] found superlinear speedup 
for sparse symmetric matrix vector multiplication. Cache associativity has great impact on algorithm 
performance. Gusev and Ristov [14] proved several theorems that determine the problem size where 
the performance drawback appear due to set cache associativity. Padding to the first element reduces 
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the associativity problem [15]. In this paper we analyze the performance of dense matrix-vector 
multiplication algorithm while executed both in traditional host operating system and in the cloud using 
the same operating system, runtime environment and hardware resources. We use sequential and 
parallel implementations to determine the problem size regions where maximum speed and speedup 
is achieved. The hypothesis we would like to confirm is that the performances are degraded when 
moving onto cloud for a constant value. We expect this to be confirmed also for parallel execution in 
multicore environment.  

The paper is organized as follows. Section 2 describes the testing methodology along with description 
of testing environment and test cases for the experiments. In Section 3 we present the results of the 
experiments for both platforms and both implementations. Finally, Section 4 is devoted to conclusion 
and future work. 

2 TESTING METHODOLOGY 

This section describes the testing methodology based on two different environments and 3 test cases 
for each environment. 

2.1 Testing Algorithm 

Dense matrix-vector multiplication algorithm CN·1 = AN·N · BN·1 is used as test data. One thread 
multiplies the whole matrix AN·N with vector BN·1 for sequential test cases. For parallel test cases each 
thread multiplies the row matrix AN·N/c with vector BN·1 where c denotes the total number of parallel 
threads and used CPU cores. 

2.2 Testing Environments 

We analyze two platforms as testing environments using the same hardware resources and runtime 
environments. 

A. Hardware Resources 

Both platforms use a workstation with shared memory multiprocessor Intel(R) Core(TM)2 Quad CPU 
Q9400 @ 2.66GHz and 8GB RAM. The multiprocessor possesses 4 cores, each with 32 KB L1 cache 
and 256KB L2 cache dedicated per core, and L3 cache with total 12 MB shared per two cores (each 
core is using 6MB). 

B. Runtime and Operating System Environments 

Linux Ubuntu Server 12.04 is installed on both machines; either virtual in the cloud or traditional host 
operating system. C++ is used together with OpenMP as API for parallel implementation. The matrix 
and vector elements are double, i.e. 8 bytes each. 

2.3 Testing Platforms 

Two different platforms are defined, i.e. traditional and cloud platform. 

A. Traditional Platform 

The traditional platform consists of one traditional operating system installed on the real hardware 
machine described in Section 2.2.A. 

B. Cloud Platform 

The cloud environment uses OpenStack open source cloud solution [10]. OpenStack is deployed in 
dual node [11] as depicted in Fig. 1.  
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Fig. 1. OpenStack dual node deployment [11] 

 

We use only two nodes, i.e. Controller Node and Compute Node since the algorithm is computation 
and cache intensive, and memory demanding executed on shared memory multiprocessor, and does 
not produce huge network traffic. Kernel-based Virtual Machine (KVM) virtualization standard is also 
used for instancing virtual machine. 

The cloud environment uses the same hardware and operating system as described in Section 2.2.A 
for Compute Node server. Virtual machine instance is instantiated with all available hardware 
resources and it is installed with the same Linux Ubuntu 12.04 operating system as traditional 
platform. 

2.4 Test Cases 

We realize three groups of test cases using different number of threads: 

- sequential execution on one core using one thread;  

- parallel execution on two cores using two threads; and  

- parallel execution on four cores using four threads. 

Series of experiments are realized in each test case by varying the matrix size N·N and vector size N 
from N = 2 to N = 1400 in order to analyze the performance behavior upon different overload and 
variable cache storage requirements, i.e. for each cache region L1 to L4 [8].  

Execution Time T(P) is measured for each test case and Speed V(P) is calculated as defined in (1). 
Variable P denotes the number of threads and cores. 

     
    

          
                 (1) 

We repeat each test case for 20 seconds and calculate the average Execution Time T(P) in order to 
achieve reliable test results. 

The speed V is expressed in Gigaflops, i.e. the number of floating point operations in second. 

Speedup S is also calculated as defined in (2) where TSeq denotes the execution time for sequential 
execution and TPar(P) denotes the execution time for parallel execution with P threads on P cores. 

     
    

       
     (2) 

We use Speedup S in order to analyze the performance of the algorithm while executing in the same 
platform using different hardware resources. 

Relative Speedup R(P) is defined in (3) in order to compare the algorithm performance in both 

platforms using the same hardware resources, i.e. P threads and CPU cores.       denotes 

execution time while the algorithm is executed using P threads on P cores in traditional platform and 

      denotes execution time while the algorithm is executed using P threads on P cores in cloud 

platform. 

     
     

     
     (3) 
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3 RESULTS OF THE EXPERIMENTS 

This section presents the results of the experiments realized on both platforms to determine algorithm 
behavior for parallel execution with two and four threads compared to sequential execution.  

3.1 Speed Analysis 

In this section we analyze the Speed V that the algorithm achieves using different number of threads 
in both platforms.  

A. Speed in Traditional Platform 

Fig. 2 presents the measured Speed V achieved in traditional platform using P = 1, 2 and 4 threads on 
1, 2 and 4 cores correspondingly.  

 

Fig. 2. Speed V in traditional platform 

We observe that the speed is greater while using greater number of threads. However, the speed V(1) 
for the sequential execution is slightly greater than both speeds V(2) and V(4) for parallel execution for 
N ≤ 32. Also, the speed V(2) is slightly greater than V(4) for N ≤ 64. We explain this with the fact that 
the operating system needs more time to create the threads and schedule the tasks. 

Three regions are observed for each test case. The speed increases proportionally for left region, 
where approximately N ≤ 128 for V(1). In the middle region, where approximately 128 ≤ N ≤ 1024 for 
V(1), the speed is constant although N increases meaning that it is independent of the problem size. 
Saturation occurs in the right region, i.e. for N ≥ 1024, and the speed begins to decrease. In this 
region the problem size is greater than cache requirements and a lot of cache misses are being 
generated, affecting the performances. 

Another unusual result is occurrence of speed drawbacks for V(4) in two regions, i.e. 120 ≤ N ≤ 156 
and 292 ≤ N ≤ 392. We also observe similar speed drawbacks for V(1) and V(2) but they are smaller 
than those for V(4). 

B. Speed in Cloud Platform 

The measured Speed V achieved in cloud platform using P = 1, 2 and 4 threads on 1, 2 and 4 cores 
correspondingly is depicted in Fig. 3.  

As in the previous case, the speed increases for greater number of threads. There is a region for N ≤ 
40, where the speed V(1) slightly leads the race in front of speeds V(2) and V(4) correspondingly. This 
happens since the time required for processing a small problem size is smaller than the time required 
by the operating system to establish and run a new thread. 

Similar to the traditional platform, three regions are observed for each test case. The speed increases 
for greater N in the left region, identified up to approximately N ≤ 128 for V(1). The middle region is 
identified for approximately 128 ≤ N ≤ 1000 for V(1). The speed in the middle region is constant 
although N increases, i.e. it is independent of the problem size. The speed in the right region, (for 
approximately N > 1000) begins to decrease. The start of the third region begins for different N values 
in the observed three platforms. 
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The unusual results identified in the traditional environment are observed for V(4) in region 302 ≤ N ≤ 
378. There are also similar speed drawbacks for V(1) and V(2) but much smaller than those for V(4). 

3.2 Speedup Analysis 

In this section we analyze the Speed V that the algorithm achieves using different number of threads 
in both platforms.  

 

Fig. 3. Speed V in cloud platform 

A. Speedup in Traditional Platform 

Fig. 4 presents the measured Speedup S achieved in traditional platform using parallel implementation 
with P = 2 and 4 threads on 2 and 4 cores correspondingly compared to sequential implementation.  

 

Fig. 4. Speedup S in traditional platform 

Similar to the speed behavior, we observe that the speedup is greater for greater number of threads. 
Interestingly, the speedup S(2) is slightly greater than S(4) for N ≤ 64, due to the already explained 
behavior for small problem sizes where the time required by the operating system to initiate a new 
thread and schedule a task is comparable to the algorithm execution times. The achieved speedup 
curves satisfy the Gustaffson’s Law [12] showing sublinear speedup, i.e. S(P) ≤ P for each matrix and 
vector size N. 

As in the speed analysis, for each test case we observe three regions with different behavior. The 
speedup rises in the left region, then shows stable performance in the middle region, and after N ≥ 
1024 the speedup begins to decrease. 

The already explained unusual results for speed V(4) are also observed for speedup S(4) when 
executing with 4 threads.  
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B. Speedup in Cloud Platform 

The measured Speedup S achieved in cloud platform using parallel implementation with P = 2 and 4 
threads on 2 and 4 cores correspondingly compared to sequential implementation is depicted in Fig. 5. 

 

Fig. 5. Speedup S in cloud platform 

The results are similar to the traditional environment, i.e. the speedup increases for greater number of 
threads. However, there is a region N ≤ 40, where the speedup S(2) is slightly greater than S(4) due to 
already explained reasons for the left region. The Speedup curves also satisfy Gustaffson’s Law [12] 
i.e. the speedup is sublinear. 

As in previous cases, three regions are also observed, i.e. the speedup rises, stabilizes and after N ≥ 
1024 the speedup begins to decrease. The difference here is manifested for the speedup S(2) which 
begins to decrease much earlier, i.e. for N ≥ 740. 

Unusual results reported for traditional environment are also present for S(4) in the same regions as 
V(4).  

3.3 Comparison of Different Platforms 

This section compares the results for both platforms, i.e. traditional with cloud platform using the same 
hardware resources. 

A. Speedup Comparison 

Fig. 6 compares the speedups S(2) for both platforms. We can conclude that traditional platform 
achieves better speedup compared to cloud platform for each N for parallel execution using two 
threads on two CPU cores. 

 

Fig. 6. Speedup S(2) in both platforms 

The comparison for speedups S(4) in both platforms is depicted in Fig. 7. We can conclude that there 
is a region (N ≤ 168) where cloud platform achieves better speedup compared to traditional platform 
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for each N for parallel execution using four threads on four CPU cores. The traditional platform 
achieves better speedup S(4) for greater N. 

 

Fig. 7. Speedup S(4) in both platforms 

B. Relative Speedup Comparison 

Fig. 8 depicts the three relative speedups using P = 1, 2 and 4 threads on 1, 2 and 4 CPU cores 
between cloud and traditional platform.  

We observe that there is a region (40 ≤ N ≤ 62) where cloud environment provides relative speed R(1) 
> 1, i.e. better performance presented as smaller execution time T(1) or greater sped V(1). The cloud 
also achieves better performance using all four cores in region (N ≤ 168) and particular points in 
region (340 ≤ N ≤ 390). In all other points cloud provides worse performance where R(1) leads the 
race. 

Calculated average relative speedups are 94.1%, 91.1% and 91.6% for P = 1, 2 and 4 
correspondingly. That is, the hypothesis is confirmed and the average factor of degradation is 5.9% for 
sequential execution and approx. 8.9% and 8.4% correspondingly for 2 and 4 threads executed on 2 
or 4 cores when the application is moved onto cloud. However, we have to be careful, since this 
behavior depends on identified region.  

 

Fig. 8. Relative speedup R for different hardware resources 

4 CONCLUSION AND FUTURE WORK 

This paper analyzes the performance of dense matrix-vector multiplication algorithm using different 
hardware resources of 1, 2 and 4 threads and cores for each test case, and executed in different 
platforms, i.e. traditional host operating system and in virtual machine instance in the cloud.  

The results show that there are regions (for small problem size) where the sequential execution 
provides slightly better performance than parallel execution using two or four cores. More generally, 
using smaller number of CPU cores is slightly better than greater number for both platforms. We 
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explain this phenomenon with the fact that operating system needs more time to create more threads 
and to schedule the tasks. 

There are regions for small problem size where the cloud provides better speed compared to 
traditional platform for sequential and parallel execution with four cores. We also determine that there 
is a region where cloud provides better speedup but only for parallel execution with four cores. 

We observe strange algorithm behavior in particular regions emphasized while executed using four 
threads on four cores in both platforms that will be the focus of our further research. We also plan to 
extend the research using different hardware resources, other cloud platforms and different 
hypervisors. 
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