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Abstract 

This paper presents a formulation of formal context satisfying some constraints which we already 
know, and an encoding a constraint-implying problem into SAT problem. The constraint-implying 
problem is whether an attribute implication which holds in the formal context is implied by the other 
attribute implications which also hold in the formal context together with information of the constraints. 
This problem occurs in attribute exploration of formal context. 
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1 INTRODUCTION 

Recently, studying attribute exploration of formal context considers background knowledge. In this 
attribute exploration, some attribute implications are ignored if they are implied by some other attribute 

implications together with the background knowledge [2][6][7]. In [15], the problem to check whether 

an attribute exploration is implied by some other attribute implications together with background 
knowledge is called a background-implying problem.   

In [2][5], attribute exploration for many-valued context is presented. A problem in attribute exploration 

for its derived context is similar with a problem for formal context with background knowledge. In this 
case, all scales of the many-valued context are considered as the background knowledge of the 
derived context. 

Furthermore the background-implying problem in attribute exploration for many-valued context is 

encoded into SAT (satisfiability) problem in [15], which can be solved by SAT solver. SAT problem is 

interesting since any problem can be encoded into a SAT problem to solve it[8]. Many studies 

concerning this area have been done e.g studies in [13] and [14]. Researches about the problem do 

not only concern in theoretical aspect but also in implementation and application. Some algorithms 

and some SAT solvers to solve the problem have been developed [9][10][11][12]. Recently, a SAT 

solver can solve a SAT problem with large clauses and large number of variables in reasonable time. 
However, many SAT solvers only solve a propositional formula in Conjunction Normal Form (CNF). 

A constraint is another form of background knowledge. The constraint restricts attribute-values of a 
formal context. A formal context satisfies the constraint if and only if each object has attributes which 
satisfy the constraint. Suppose we already know that a formal context satisfying some constraints. We 
get the same problem in attribute exploration with background knowledge which is a set of constraints 
in this case. We will call the problem the constraint-implying problem. 

This paper will propose a formulation of a formal context with constraints and an encoding the 
constraint-implying problem into a SAT problem such that the problem can be solved by SAT solver. 
However, we leave the problem in general propositional formula without converting the formula into 
CNF.  

2 FOUNDATION 

2.1 Formal Context 

We rewrite some definition from our previous paper in [15]. 
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Definition 1. Formal Context 

A formal context (G,M,I) consists of two non-empty sets G and M, and a relation I  GM. We call 

the set G a set of objects, whereas the set M a set of attributes. For g  G and m  M,  (g,m)I or gI 

m is read as the object g has the attribute m.[3]   

A cross table can represent a formal context (G,M,I), where rows represent G and columns represent 

M. A cell of the table in row g and column m represents a relation I of object gG and attribute mM. 

We cross the cell if (g,m)I. Fig. 1 is an example of formal context in a cross table. 

Definition 2. Derivation Operator 

If A G and B M  is a set of objects, then we define [3]: 

 AgallforImgmAI  ),(|  (1) 

 BmallforImggB I  ),(|  (2)  

Notation A
II 
refers to (A

I
)
I
. 

Definition 3. Many-valued Context 

A many-valued context (G,M,W,I) consists of a set of objects G, a set of attributes M, a set of 

attribute values W, and a ternary relation IGMW where  (g,m,w)I and (g,m,v)I implies w=v. 

[1][4][5].  

Scaling transforms a many-valued context into a one-valued context by some scales which are also 
formal contexts. We call the one-valued context the derived context. 

Definition 4. Scale 

A scale for attribute mM of a many-valued context (G,M,W,I) is a one-valued context Sm = (Gm,Mm, 

Sm) where   mGGgandIwmgw ),,(| .  

Definition 5. Derived Context 

The derived context in scaling of the many-valued context (G,M,W,I) and scales Sm for all mM is the 
context (G,N,J) where 

 
Mm

mMN



  

and for gG and nN:   Jng , iff Iwmg ),,(  and mInw ),( [1].  

A. Attribute Exploration 

An implication in the form AB where A,BM is an attribute implication over a formal context (G,M,I). 

The attribute implication holds in the formal context iff each object respects it[1]. 

Definition 6. Model of Attribute Implication 

Let A,B,T  M. T is a model of attribute implication AB iff A  T or B  T.  

Definition 7. Object Respecting 

An object g  G respects AB over (G,M,I) iff g
I
 is a model of the attribute implication.  

B. Attribute Exploration of Many-Valued Context 

For attribute exploration of many-valued context, we define the background-implying problem which is 
whether an attribute implication holding in its derived-context is implied by the other ones holding also 
in the derived-context together with its scales. 

Definition 8. Background-implying Problem[15] 

Let L a set of attributes implications which hold in the derived context from a many-valued context 

(G,M,W,I) and scales Sm for all m  M, H information representing the scales, and AB an attribute 

implication which also holds in the derived context. The background-implying problem is whether[5]: 
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 L   H implies AB.  

It means that all models of L and H are also models of AB.[4][15] 

2.2 Constraint 

A constraint on a set of variables is a restriction on the values that they can take simultaneously. A 
constraint can be represented in many ways. However, a constraint can be represented as a set which 

contains all the legal compound labels for the variables[16]. 

Definition 9. Label 

Let W a finite set of variables and Dx a domain of x  W. A label in W is a pair <x,v> where x  W 

and v  Dx, which means that a value v is assigned to a variable x.  

Definition 10. Compound Label 

Let <xi,vi> a label in W. A compound label over W is LW  = (<x1,v1><x2,v2><xn,vn>) which means 

that values v1, v2, , vn are assigned to variabels x1, x2, , xn, respectively.  

Definition 11. Constraint 

Let S = {x1, x2,, xn}. A constraint on set S, is denoted by CS , is a set of legal compound labels, 

which each compound label is in the form (<x1,v1><x2,v2><xn,vn>).  

Definition 12. Constraint Satisfying 

Let S and W finite sets. A compound label LW  satisfies CS iff there is a compound label L  CS such 

that every pair <x,v> in L is also a pair in LW.  

Example 1 

Let S = {x1, x2}, Dx1=Dx2={1,2,3,4} and CS = {(<x1,1>,<x2,2>),(<x1,2>,<x2,3>),(<x1,3>,<x2,4>)}. The 

compound label (<x1,2>,<x2,3>) satisfies CS, where as the compound label (<x1,2>,<x2,2>) does not 

satisfy CS.  

2.3 SAT Problem 

We take some notations from [8] and [9] to formulate the propositional formula and the SAT problem. 

Let p, q, possibly with índices be propositional variables and , T be truth values denoting false and 
true, respectively. 

Definition 13. Propositional Formula 

Let p, q, possibly with índices be propositional variables. A propositional formulas F is defined as 
follows: 













21

1

FF

F

v

F  

where: 

 v : a propositional variable, p or q 

 F1, F2 : propositional formulas 

 ¬ : negation operation 

 * : either ˅,˄,→, or ↔ which are disjunction, conjunction, implication, or bi-implication 

operation respectively.  

Definition 14. Interpretation 

An interpretation Int is a mapping propositional formulas to truth values {T, }.  
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An interpretation Int will uniquely act on each variable occurring in F. Let p a propositional variable. Int 

will be either Int(p) = T or Int(p) = .  

Example 2 

Let F = (p1 ˅ p2) → (p1 ˄ p2). If Int(p1)=T and Int(p2)= then Int(F)=. If Int(p1)=T and Int(p2)=T then 

Int(F)=T.  

Definition 15. Model, Satisfiable, Unsatisfiable 

An interpretation Int will be a model of formula F iff Int(F) = T. F is satisfiable iff F has some models, 

and F is unsatisfiable iff F has no models.  

Example 3 

1. (p1 ˅ p2) → (p1 ˄ p2) is satisfiable since these interpretations are models of the formula: 

a. Int(p1)=T and Int(p2)=T. 

b. Int(p1)= and Int(p2)=. 

2. (p1 ˄ p2) ˄ (¬p1 ˅ ¬p2) is unsatisfiable since the formula has no models.  

Definition 16. SAT Problem 

Given a propositional formula F, the SAT Problem is to determine whether the formula F is satisfiable 

or unsatisfiable.  

SAT solver is software to solve SAT problem of propositional formula in CNF (Conjunction Normal 

Form). Thus, we have to convert any propositional formulas into CNF[8]. 

Definition 17. CNF Formula 

A propositional formula F is in CNF if the formula is in the form: 

 F = (l1,1 ˅ l1,2 ˅ ... ˅ l1,m1) ˄ (l2,1 ˅ l2,2 ˅ ... ˅ l2,m2) ˄ ... ˄ (ln,1 ˅ ln,2 ˅ ... ˅ ln,mn) 

where li,j is either p or ¬p for any propositional variable p.   

Example 4 

Recall Example 3. Respectively, the propositional formulas in CNF are follows: 

1. (¬p1 ˅ p2) ˄ (p1 ˅¬p2) 

2. p1 ˄ p2 ˄ (¬p1 ˅ ¬p2)   

3 FORMAL CONTEXT WITH CONSTRAINT 

3.1 Constraints for a Formal Context 

Suppose we have a formal context (G,M,I). We define a variables set S = {xP | P  M}. We also define 

a domain for each variable xP is DP = 2
P
. Here we want to give a constraint to restrict some attributes 

of P  M for each object in G. Then, we can define a constraint 

  PPPPx DvvxC
P

 ,}{  (3) 

Example 5 

Fig. 1 shows a formal context of “Bodies of Water”. From our previous knowledge, we know well that 
there is a constraint for attributes stagnant-running. The constraint for the attributes is each object in 
the formal context having exactly one attribute of both, either stagnant or running. There are also 
similar constraints for attributes inland-maritime and constant-temporary. Let P1 = {stagnant, running}, 
P2 = {inland, maritime}, and P3 = {constant, temporary}. Then, we have three constraints for the formal 
context, i.e.: 

 }{ 1PxC = {(<
1Px , {stagnant}>), (<

1Px , {running}>)} 

}{ 2PxC = {(<
2Px , {inland}>), (<

2Px , {maritime}>)} 



ICIT 2013 The 6th International Conference on Information Technology 

 

 

}{ 3PxC = {(<
3Px , {constant}>), (<

3Px , {temporary}>)}  

An object g  G satisfies a constraint }{ PxC iff the attributes combination belonging to g in P is a value 

assigned to xP in the constraint. For example, object tarn satisfies three constraints in Example 5 since 
attributes combination belonging to g in P1 is {stagnant}, in P2 is {inland}, and in P3 is {constant}, which 

are assigned to 
1Px in }{ 1PxC , 

2Px in }{ 2PxC , and 
3Px in }{ 3PxC , respectively.  

Definition 18. Constraint Satisfying Object 

An object g  G of formal context (G,M,I) satisfies a constraint }{ PxC where P  M iff a compound 

label }{ PxL = (<xP, g
I
  P>) satisfies the constraint.  

Definition 19. Constraint Satisfying Formal-Context 

A formal context (G,M,I) satisfies a constraint }{ PxC  iff for all g  G, g satisfies the constraint.  

It is trivial to check that the formal context of “Bodies of Water” satisfies the three constraints in 
Example 5. 

 

Fig. 1. Formal Context of “Bodies of Water”[2] 

3.2 Representing a Constraint as a Formal Context 

Interestingly, we can represent a constraint as a formal context. Let }{ PxC a constraint of formal context 

(G,M,I). The constraint is able to be represented as a formal context (GP,MP,IP) which is defined as 
follows: 

 GP = }{ PxC  

 MP = P 

 (g,m)  IP where g = (<xP,A>)  GP and m  MP iff m  A. 

Example 6 
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Recall Example 5. The constraints }{ 1PxC , }{ 2PxC , and }{ 3PxC  are represented respectively as the 

following formal contexts: 

 

The object names in this representation are not important. An important thing we need to note is that 
each object of the formal context is associated to a label of the represented constraint. 

Proposition 1 

Let (GP,MP,IP) the representation of constraint }{ PxC . A formal context (G,M,I) satisfies a constraint 

(GP,MP,IP) iff for all g  G, there is gP  GP such that  g
I
  MP = PI

Pg . 

Proof: 

(G,M,I) satisfies (GP,MP,IP) iff (G,M,I) satisfies }{ PxC iff for all g  G, g satisfies }{ PxC . 

g  G satisfies }{ PxC iff a compound label }{ PxL = (<xP, g
I
  P>) satisfies }{ PxC  

iff there is a label (<xP, A>)  }{ PxC , such that g
I
  P = A 

iff there is gP  GP, which associated to the label, such that g
I
  P =  PI

Pg  (since PI
Pg = A) 

iff there is gP  GP, such that g
I
  MP =  PI

Pg .  

4 CONSTRAINT-IMPLYING PROBLEM 

We will define the constraint-implying problem. For this case, we already know that a formal context 
satisfies some constraints. 

Definition 20. Constraint-Implying Problem  

Given an attribute implication AB which holds in a formal context (G,M,I), a set of attribute 

implications L which also hold in the formal context, and n constraints }{ 1PxC , }{ 2PxC ,  , }{ nPxC  which 

the formal context satisfies. The constraint-implying problem is whether: 

 L  K implies AB 

where K is a representation of the constraints.   

4.1 Background-Implying Problem is also Constraint-Implying Problem 

The difference between the constraint-implying problem and background-implying problem is the 

information of K and H. We will prove that H in the background-implying problem is similar to K in the 

constraint-implying problem. For that purpose, it is sufficient to proof that H is also information of 

constraints. 

Proposition 2 

H in the background-implying problem is also information of constraints which the derived context 

satisfies. 

Proof: 

H in the background-implying problem is information of scales. Thus, we will prove that scales are 

constraints which its derived-context satisfies.  
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Let (G,N,J) a derived context of many-valued context (G,M,W,I) and Sm=(Gm,Mm,Im) a scale. (G,N,J) 

satisfies the constraint Sm=(Gm,Mm,Im) iff for all g  G, there is gm  Gm such that g
J
  Mm = 

mI
mg (Proposition 1) 

Let g  G and w  W such that (g,m,w)  I. By definition, we know that w  Gm and for all n  Mm  N, 

(g,n)  J iff (w,n)  Im. Thus, g
J
  Mm = mIw .  

Therefore, for all g  G, there is always w  Gm, where (g,m,w)  I, such that g
J
  Mm = mIw . Then, 

(G,N,J) satisfies the constraint Sm=(Gm,Mm,Im).  

4.2 Encoding Constraint-Implying Problem into SAT Problem 

From Proposition 2, we know that each scale is a constraint in H of background-implying problem. 

Since each scale which is also a constraint can be encoded independently[15], we can encode a 

constraint in the same way for the constraint-implying problem although the constraint-implying 
problem is more general than the background-implying problem. 

Thus, from our work in [15],  

 L  K does not imply AB  

if and only if the following propositional formulas are satisfiable: 
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Example 7 

Recall Example 5 and Example 6. We use natural number 1,2,,8 instead of attributes natural, 
artificial, stagnant, running, inland, maritime, constant, and temporary, resp. Let 

 L = {{8}{1,3,5},{6}{1,3,7}} 

 K is information of constraints }{ 1PxC , }{ 2PxC , and }{ 3PxC  

L  K does not imply {4}{5,7}, if only if the following formulas are satisfiable: 

 (p8 → p1)  (p8 → p3)  (p8 → p5) 

 (p6 → p1)  (p6 → p3)  (p6 → p7) 

 (p3  p4)  (p3  p4) 

 (p5  p6)  (p5  p6) 

 (p7  p8)  (p7  p8) 

  ((p4 → p5)  (p4 → p7))  

5 CONCLUSION 

We have proposed a formulation of a formal context with constraints and an encoding of a constraints-
implying problem into a SAT problem. The constraint-implying problem occurs in attribute exploration 
of formal context with background knowledge which is a set of constraints in this case. However, we 
need a step to convert the propositional formula into CNF before a SAT solver can solve the encoded 
SAT problem.  
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6 FUTURE WORKS 

The next research is to find a best method for converting the encoded propositional formula into CNF 
since a bad CNF formula can make performance of a SAT solver worse. Another next research is to 
develop some applications of the attribute exploration of formal context with constraint in real world. 
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