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Abstract 
 

This paper investigates the approximate solution of the Lane-Emden equation using new analytic 

technique. The solution was calculated in the form of a convergent power series with easily 

computable components. The proposed method obtains Taylor expansion of the solution and 

reproduces the exact solution when the solution is polynomial. The proposed technique is applied to 

several examples to illustrate the accuracy, efficiency, and applicability of the method. 
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1    INTRODUCTION 
 

The Lane-Emden equation has been used to model several phenomena in mathematical physics and 

astrophysics such as the theory of stellar structure, the thermal behavior of a spherical cloud of gas, 

the isothermal gas spheres, and the theory of thermionic currents [1-8]. The Lane-Emden equation 

was first studied by the astrophysicists Jonathan Homer Lane and Robert Emden, where they 

considered the thermal behavior of a spherical cloud of gas acting under the mutual attraction of its 

molecules and subject to the classical laws of thermodynamics. The reader is kindly requested to go 

through [1-12] in order to know more details about the Lane-Emden equation, including its history, 

types and kinds, method of solutions, its applications, and so forth. 

       In the present paper, we introduce a new simple analytical method we call it the residual power 

series (RPS) method [13] to find out series solutions to strongly linear and nonlinear Lane-Emden 

equation. The RPS method is effective and easy to use for solving linear and nonlinear Lane-Emden 

equation without linearization, perturbation, or discretization. This method constructs an analytical 

approximate solution in the form of a polynomial. The RPS method is different from the traditional 

higher order Taylor series method. The Taylor series method is computationally expensive for large 

orders and suited for the linear problems. The RPS method is an alternative procedure for obtaining 

analytic Taylor series solution of the Lane-Emden equation. By using residual error concept, we get a 

series solution, in practice a truncated series solution.  

       The RPS method has the following characteristics; first, the method obtains Taylor expansion of 

the solution; as a result, the exact solution is available when the solution is polynomial. Moreover the 

solutions and all its derivatives are applicable for each arbitrary point in the given interval. Second, the 

method can be applied directly to the given problem by choosing an appropriate value for the initial 

guess approximation without any modification. Third, the RPS method needs small computational 

requirements with high precision and less time. 

       The purpose of this paper is to obtain symbolic approximate RPS solutions for the Lane-Emden 

equation of the following form: 

     𝑦 ′′  𝑥 +
𝜅

𝑥
𝑦 ′ 𝑥 + 𝑓 𝑦 𝑥  = 0, 𝑥 ∈  0, 𝑎 , (1) 

subject to the initial conditions 

     𝑦 0 = 𝛼0 , 𝑦 ′ 0 = 𝛼1 , (2) 

http://www.google.jo/search?hl=en&tbo=d&biw=1280&bih=643&nfpr=1&q=SOLUTION+OF+LANE-EMDEN+EQUATION+BY+RESEDUAL+POWER+SERIES+METHOD&sa=X&ei=8sDMUNqTC4Si0QXvpIG4AQ&ved=0CCwQvgUoAQ
http://www.google.jo/search?hl=en&tbo=d&biw=1280&bih=643&nfpr=1&q=SOLUTION+OF+LANE-EMDEN+EQUATION+BY+RESEDUAL+POWER+SERIES+METHOD&sa=X&ei=8sDMUNqTC4Si0QXvpIG4AQ&ved=0CCwQvgUoAQ
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where 𝑓 is nonlinear analytic function, 𝑦 𝑥  is an unknown function of independent variable 𝑥 to be 

determined, and 𝛼𝑖 , 𝜅, 𝑎 ∈ ℝ with 𝑎 > 0. 

       In general, the Lane-Emden equation does not always have solutions which we can obtain using 

analytical methods. Due to this, some authors have proposed numerical methods to approximate the 

solution. To mention a few, the Adomian decomposition method has been applied to solve Eqs. (1) 

and (2) as described in [9]. In [10] the author has developed the linearization method to solve the 

singular Eqs. (1) and (2). In [11] also, the author has provided the variational iteration method to 

further investigation to Eqs. (1) and (2). Furthermore, the homotopy perturbation method is carried out 

in [12] for solving singular Eqs. (1) and (2). 

       However, previous studies require more effort to achieve the results and usually they are suited 

for linear form of Eqs. (1) and (2). But on the other aspects as well, the applications of other versions 

of series solutions to linear and nonlinear problems can be found in [13-18] and for numerical 

solvability of different categories of singular differential equations one can consult the reference [19]. 

       The outline of the paper is as follows: in the next section, we present the basic idea of the RPS 

method. In section 3, numerical examples are given to illustrate the capability of proposed method. 

This article ends in section 4 with some concluding remarks. 

 

2    FORMULATION OF THE RESEDUAL POWER SERIES METHOD 

 

In this section, we employ our technique of the RPS method to find out series solution for the Lane-

Emden equation subject to the given initial conditions. 

       The RPS method consists in expressing the solution of Eqs. (1) and (2) as a power series 

expansion about the initial point 𝑥 = 0 [13]. To achieve our goal, we suppose that this solution takes 

the form 𝑦 𝑥 =  𝑦𝑚  𝑥 ∞
𝑚=0 , where 𝑦𝑚  are terms of approximations and are given as 𝑦𝑚  𝑥 = 𝑐𝑚𝑥𝑚 . 

       Obviously, when 𝑚 = 0,1 since 𝑦0 𝑥 , 𝑦1
′  𝑥  satisfy the initial conditions (2) as 𝑦 0 = 𝑐0 = 𝑦0 0  

and 𝑦 ′ 0 = 𝑐1 = 𝑦1
′  0 , we have the initial guess approximation of 𝑦 𝑥  which is as follows: 

       𝑦initial 𝑥 = 𝑦 0 + 𝑦 ′ 0 𝑥. 

If we choose 𝑦initial 𝑥  as initial guess approximation of 𝑦(𝑥), then we can calculate 𝑦𝑚  𝑥  for 𝑚 =

2,3, … and approximate the solution 𝑦(𝑥) of Eqs. (1) and (2) by the 𝑘th-truncated series 

     𝑦𝑘 𝑥 =  𝑐𝑚𝑥𝑚

𝑘

𝑚=0

. (3) 

       Prior to applying the RPS method, we rewrite singular Eqs. (1) and (2) in the form of the following: 

     𝑥 𝑦 ′′  𝑥 + 𝜅𝑦 ′ 𝑥 + 𝑥𝑓 𝑦 𝑥  = 0. (4) 

The substituting of 𝑘th-truncated series 𝑦𝑘 𝑥  of Eq. (3) into Eq. (4) leads to the following definition for 

the 𝑘th residual function: 

     Res𝑘 𝑥 =  𝑚 𝑚 − 1 𝑐𝑚𝑥𝑚−1

𝑘

𝑚=2

+ 𝜅  𝑚𝑐𝑚𝑥𝑚−1

𝑘

𝑚=1

+ 𝑥𝑓   𝑐𝑚𝑥𝑚

𝑘

𝑚=0

 , (5) 

and the following ∞th residual function: 

       Res∞  𝑥 = lim
𝑘→∞

Res𝑘 𝑥 . 

       It easy to see that, Res∞ 𝑥 = 0 for each 𝑥 ∈  0, 𝑎 . This show that Res∞ 𝑥  is infinitely many times 

differentiable at 𝑥 = 0. On the other hand, 
𝑑𝑘−1

𝑑𝑥𝑘−1 Res∞  0 =
𝑑𝑘−1

𝑑𝑥𝑘−1 Res𝑘 0 = 0. In fact, this relation is a 

fundamental rule in RPS method and its applications [13]. 

       Now, in order to obtain the 2nd-approximate solution, we put 𝑘 = 2 and 𝑦2 𝑥 =  𝑐𝑚𝑥2
𝑚=0 . On the 

other hand, we differentiate both sides of Eq. (5) with respect to 𝑥 and substitute 𝑥 = 0, to conclude 

     
𝑑

𝑑𝑥
Res2 0 = 2𝑐2 1 + 𝜅 + 𝑓 𝑐0 . (6) 

       Using the fact that 
𝑑

𝑑𝑥
Res∞ 0 =

𝑑

𝑑𝑥
Res2 0 = 0 make Eq. (6) gives the following value for 𝑐2: 
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       𝑐2 = −
1

2 1 + 𝜅 
𝑓 𝑐0 . 

Thus, using 2nd-truncated series, the 2nd-approximate solution for Eqs. (1) and (2) can be written as 

       𝑦2 𝑥 = 𝛼0 + 𝛼1𝑥 −
1

2!

1

1 + 𝜅
𝑓 𝛼0 𝑥

2 . 

       Similarly, we can find the 3ed-approximate solution, by letting 𝑘 = 3 and 𝑦3 𝑥 =  𝑐𝑚𝑥𝑚3
𝑚=0 . On 

the other aspects as well, this procedure can be repeated till the arbitrary order coefficients of RPS 

solutions for Eqs. (1) and (2) are obtained. Moreover, higher accuracy can be achieved by evaluating 

more components of the solution. 
 

Theorem 2.1. Suppose that 𝑦 𝑥  is the exact solution for Eqs. (1) and (2). Then, the approximate 

solution obtained by the RPS method is just the Taylor expansion of 𝑦 𝑥 . 
 

Proof. See [13]. 
 

Corollary 2.1. If 𝑦 𝑥  is a polynomial, then the RPS method will be obtained the exact solution. 
 

Proof. Obvious. 
 

       It will be convenient to have a notation for the error in the approximation 𝑦 𝑥 ≈ 𝑦𝑘 𝑥 . 

Accordingly, we will let Rem𝑘 𝑥  denote the difference between 𝑦 𝑥  and its 𝑘th Taylor polynomial 

obtained from the RPS method; that is, 

       Rem𝑘 𝑥 = 𝑦 𝑥 − 𝑦𝑘 𝑥 =  
𝑦 𝑚  0 

𝑚!
𝑥𝑚

∞

𝑚=𝑘+1

. 

       The functions Rem𝑘 𝑥  is called the 𝑘th remainder for the RPS approximation of 𝑦 𝑥 . In fact, it 

often happens that the remainders Rem𝑘 𝑥  become smaller and smaller, approaching zero, as 𝑘 gets 

large. 

 

3    NUMERICAL EXPERIMENTS 
 

The proposed method provides an analytical approximate solution in terms of an infinite power series. 

However, there is a practical need to evaluate this solution, and to obtain numerical values from the 

infinite power series. The consequent series truncation and the practical procedure are conducted to 

accomplish this task, transforms the otherwise analytical results into an exact solution, which is 

evaluated to a finite degree of accuracy. 

       In this section, we consider three examples to demonstrate the performance and efficiency of the 

present technique. Throughout this paper, all the symbolic and numerical computations performed by 

using Mable 13 software package. 
 

Example 3.1. Consider the following linear nonhomogeneous Lane-Emden equation: 

     𝑦 ′′  𝑥 +
2

𝑥
𝑦 ′ 𝑥 + 𝑦 𝑥 = 𝑥3 + 𝑥2 + 12𝑥 + 6, 0 < 𝑥 < ∞, (7) 

subject to the initial conditions 

     𝑦 0 = 0, 𝑦 ′ 0 = 0. (8) 
 

       As in the previous discussion, if we select the two terms of approximations as 𝑦0 𝑥 =0 and 

𝑦1 𝑥 = 0, then the power series expansion of the solution takes the form 

     𝑦 𝑥 = 𝑐2𝑥
2 + 𝑐3𝑥

3 + 𝑐4𝑥
4 + ⋯. (9) 

       Consequently, the 3ed-order approximation of the RPS solution for Eqs. (7) and (8) according to 

these terms is as follows: 𝑦3 𝑥 = 𝑥3 + 𝑥2. It easy to discover that the each of the coefficients 𝑐𝑚  for 

𝑚 ≥ 4 in the expansions (9) are vanished. In other words,  𝑐𝑚𝑥𝑚∞
𝑚=0 =  𝑐𝑚𝑥𝑚3

𝑚=0 . Thus, the analytic 

approximate solution of Eqs. (7) and (8) agree well with the exact solutions 𝑦 𝑥 = 𝑥3 + 𝑥2 with full 

agreement with Corolary 2.1. 
 

Example 3.2. Consider the following nonlinear homogeneous Lane-Emden equation: 
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     𝑦 ′′  𝑥 +
8

𝑥
𝑦 ′ 𝑥 + 9𝜋𝑦 𝑥 + 2𝜋𝑦 𝑥 ln 𝑦 𝑥 = 0, 0 < 𝑥 < ∞, (10) 

subject to the initial conditions 

     𝑦 0 = 1, 𝑦 ′ 𝑥 = 0. (11) 
 

       Assuming that the initial guess approximation has the form 𝑦1 𝑥 = 1. Then, the 10th-truncated 

series of the RPS solution of 𝑦 𝑥  for Eqs. (10) and (11) is as follows: 

       𝑦10 𝑥 = 1 −
𝜋

2
𝑥2 +

𝜋2

8
𝑥4 −

𝜋3

48
𝑥6 +

𝜋4

384
𝑥8 −

𝜋5

3840
𝑥10 =   −

𝜋

2
 

j 𝑥2𝑗

𝑗

5

𝑗 =0

. 

       Thus, the exact solution of Eqs. (10) and (11) has the general form which is coinciding with the 

exact solution 𝑦 𝑥 =   −
𝜋

2
 

j  𝑥2 
𝑗

𝑗

∞
𝑗=0 = 𝑒−

𝜋

2
𝑥2

. 

       Let us now carry out the error analysis of the RPS method for this example. Figure 1 shows the 

exact solution 𝑦 𝑥  and the four iterates approximations 𝑦𝑘 𝑥  for 𝑘 = 5,10,15,20. This graph exhibits 

the convergence of the approximate solutions to the exact solutions with respect to the order of the 

solutions. 

      
Figure 1. Plots of RPS solution for Eqs. (10) and (11) when 𝑘 = 5,10,15,20 together with exact solution 

on  0,
𝜋

2
 . 

 

       In Figure 2, we plot the error functions Ext𝑘 𝑥  when  𝑘 = 5,10,15,20 which are approaching the 

axis 𝑦 = 0 as the number of iterations increase. This graph shows that the exact errors are getting 

smaller as the order of the solutions is increasing. In other words, as we progress through more 

iterations. These error indicators confirm the convergence of the RPS method with respect to the order 

of approximations. 
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Figure 2. Plots of exact error functions for Eqs. (10) and (11) when 𝑘 = 5,10,15,20 on  0,
𝜋

2
 . 

 

 

Example 3.3. Consider the following nonlinear homogeneous Lane-Emden equation: 

     𝑦 ′′  𝑥 +
2

𝑥
𝑦 ′ 𝑥 + 4  2𝑒𝑦 𝑥 + 𝑒

1
2
𝑦 𝑥 

 = 0, 0 < 𝑥 < ∞, (12) 

subject to the initial conditions 

     𝑦 0 = 0, 𝑦 ′ 0 = 0. (13) 
 

       As we mentioned earlier, if we select the two terms of approximations as 𝑦0 𝑥 = 0 and 𝑦1 𝑥 = 0, 

then the first few terms approximations of the RPS solution for Eqs. (12) and (13) are 𝑦2 𝑥 =

−2, 𝑦3 𝑥 = 0, 𝑦4 𝑡 = 1, 𝑦5 𝑥 = 0, 𝑦5 𝑥 = −
2

3
, …, and so on. If we collect these results, then the 10th-

truncated series of the RPS solution for y 𝑥  is as follows: 

       𝑦10 𝑥 = −2𝑥2 + 𝑥4 −
2

3
𝑥6 +

1

2
𝑥8 −

2

5
𝑥10 = −2   𝑥2 1 −

1

2
 𝑥2 2 +

1

3
 𝑥2 3 −

1

4
 𝑥2 4 +

1

5
 𝑥2 5 . 

       Thus, the exact solution of Eqs. (12) and (13) has the general form which is coinciding with the 

exact solution 𝑦 𝑥 = −2   −1 𝑗 +1 𝑥2𝑗

𝑗

∞
𝑗=1 = − 2 ln 1 + 𝑥2 . 

 

4    CONCLUSION 
 

The main concern of this work has been to propose an efficient algorithm for the solutions of the Lane-

Emden equation. The main goal has been achieved by introducing the RPS method to solve this class 

of singular differential equations. We can conclude that the RPS method is powerful and efficient 

technique in finding approximate solution for linear and nonlinear Lane-Emden equation. 
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