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Abstract 

Yield curve represents a relationship between the rate of return and maturity of certain securities. A 
range of activities on the market is determined by the abovementioned relationship; therefore its 
significance is unquestionable. Besides that, its shape reflects the shape of the economy, i.e. it can 
predict recession. These are the reasons why it is very important to properly and accurately estimate 
the yield curve. There are various models evolved for its estimation; however the most used is a 
parametric Nelson-Siegel model. What is also important is the ability of forecasting yield curve. 
Therefore in this paper after the estimation of weekly yield curves on Croatian financial market in 
years 2011 and 2012 with Nelson-Siegel model, yield curves are predicted using Neural networks and 
Vector autoregressive model. The obtained results are compared and conclusions regarding 
forecasting yield curves are given. 
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1 INTRODUCTION 

The yield curve, as a picture of relationships between the yields on bonds of different maturities, 
provides a way of understanding the common markets’ evaluation in the future, and whether the 
economy will be strong or weak [4]. 

Interest rates movements depend on the maturity period and the form of the yield curve has a great 
effect on the financial markets and the behaviour of financial intermediaries. Intermediaries will, to 
maximize their own profits, take into account the difference between short-term and long-term interest 
rates. A full range of activities in the financial markets is actually determined by the relationship 
between the interest rate and maturity.  

Nelson Siegel model is extremely popular in the practice; both individual investors and the central 
banks use this model. This model is simple and stable for the evaluation, it is quite flexible and very 
well suited for assessing yields for more bonds or one bond and for the time series of returns, for a 
large number of countries and time periods and for different classes of bonds. It also has good 
prediction ability [8].  

In this paper yield curves on Croatian financial market are calculated on weekly basis from 7
th
 October 

2011 to 24
th
 August 2012 using Nelson-Siegel model and forecasted using Neural networks and 

Vector autoregressive model as it is given in Dedi et al [5]. 

In the first part of the paper theoretical overview of the yield curve is provided, followed by the 
explanation of the Nelson-Siegel model, most commonly used model for yield curve evaluation. 
Furthermore, Vector autoregressive and Neural network models are introduced. Finally, yield curves 
are calculated using Nelson-Siegel model and forecasted using both, Neural network and Vector 
autoregressive models on Croatian financial market.  
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2 NELSON-SIEGEL MODEL 

Often used model for developing yield curve in the practice is the Nelson-Siegel model [9]. Nelson and 
Siegel introduced a simple, parsimonious model, which can adapt to the range of shapes of yield 
curves: monotonic, humped and S shape. 

A class of functions that readily generates the typical yield curve shapes is that associated with 
solutions to differential or difference equations [1]. If the instantaneous forward rate at maturity T, 
f(t,T), is given by the solution to a second-order differential equation with real and unequal roots, it is 
of the form: 
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where 1  and 2  are time constants associated with the equation, and 0 , 1  
and 2  are 

determined by initial conditions.  

Now, zero-coupon rates ( )R t  can be calculated by averaging the corresponding instantaneous 

forward rates:  

 

   
1

, ,

T

t

R t T f x T dx
T t


 

                                                                      (2) 

A more parsimonious model that can generate the same range of shapes is given by the equation 
solution for the case of equal roots: 
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By substituting (3) into (2) and integrating, it is obtained: 
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After a simple rearrangement of this expression, the yield to maturity is given by:  
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So, the forward and zero-coupon yield curves are functions of four parameters: 0 , 1 , 2  and  . 

It can be seen that  
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and 0  corresponds to zero-coupon rates for very long maturities.  

At the short end of the curve it is: 
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which implies that the sum of parameter values 0  and 1  should be equal to the level of the shortest 

interest rates.  

It can be seen that if 1  is negative, the forward curve will have a positive slope and other way round. 

The parameter 2 , indicates the magnitude and the direction of the hump and if it is positive, a hump 

will occur at   whereas,. In case it is negative, a U-shaped value will occur at  . So it can be 

concluded that parameter   which is positive, specifies the position of the hump or U-shape on the 

entire curve. Consequently, Nelson and Siegel propose that with appropriate choices of weights for 
these three components, it is possible to generate a variety of yield curves based on forward rate 
curves with monotonic and humped shapes [1]. 

The Nelson-Siegel model, which has only four parameters, enables us to estimate the yield curve, 
without being over-parameterized, when the number of observed bond prices is limited [7]. In the 
practice Nelson-Siegel model is preferred for the use especially where there are few input data [10]. 
Nelson and Siegel [9] demonstrated that their proposed model is capable of capturing many of the 
typically observed shapes that the spot rate curve assumes over time [3]. A significant weakness of 
the Nelson-Siegel model, resulting from its low elasticity, is goodness of fit that is lower than in the 
case of polynomial models. When the curve is fitted to an irregular set of data points this can result in 
relatively large deviations of model values from actually observed rates [8]. 

3 THE BASICS OF THE FORECASTING METHODS 

3.1 VECTOR AUTOREGRESSIVE MODEL 

Vector Autoregressive (VAR) model is a multivariate time series model that consist of multiple 
equations [2]. VAR model defined with n endogenous variables and k lags can be written as: 

 0 1 1 ...t t k t k t tZ a A Z A Z BD       
                                             (8)

 

where Zt is n-dimensional vector of potentially endogenous variables, A1,..., Ak are n x n coefficient 
matrices, Dt is a vector of other exogenous variables with coefficient matrix B. Vector a0 is a vector of 
constants (intercept) and εt is vector of error terms, i.e. n-dimensional white noise process. The 
parameters of VAR model can be estimated using ordinary least squares method, where the optimal 
order, i.e. number of lags k can be found using information criteria: final prediction error (FPE), 
Akaike's information criterion (AIC), Schwarz's Bayesian information criterion (SBIC), and the Hannan 
and Quinn information criterion (HQIC). The advantages of VAR models are: simplicity of the model (it 
is not necessary to classify endogenous and exogenous variables in the model), ease of estimation 
(each equation can be estimated with ordinary least square method), quality of forecasted estimates. 

3.2 NEURAL NETWORKS 

Neural network (NN) is an artificial intelligence method, which has recently received a great deal of 
attention in many fields of study. It attempts to model the capabilities of the human brain [15]. Neural 
networks have been used for a wide variety of applications (engineering, law, computer science, 
medicine, manufacturing, transportation, finance etc.) where statistical methods are traditionally 
employed. Neural networks can be seen as a non-parametric statistical procedure that uses the 
observed data to estimate the unknown function [12]. Neural networks depend on data; they can learn 
from it and adjust to it, which implies that there is no need for a priori knowledge of the functional form 
of the relationship between variables. When appropriately specified, they are universal approximators, 
i.e. they can approximate any functional form between variables with high level of accuracy. Neural 
network architecture is very flexible. A wide range of statistical and econometric models can be 
specified modifying activation functions or the structure of the network (number of hidden layers, 
number of neurons etc.): multiple regression, vector autoregression, logistic regression, time series 
models, etc. Neural networks often give better results than statistical methods because of their 
possibility of analyzing the missing data, data with noise and learning from the previous data. 
Empirical researches show that neural networks are successful in forecasting extremely volatile 
financial variables that are hard to predict with standard statistical methods such as: exchange rates 
[6], interest rates [13] and stocks.  
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The same as human brain, neural network is an ensemble of interconnected neurons grouped in 
layers that send information to one another. Neural networks usually have two or more layers: input, 
hidden and output layer. Input neurons receive data from the external world and send it to one or more 
hidden neurons. In the hidden layer information from neurons are processed and sent to output 
neurons. Information than backpropagate through network and the values of weights between neurons 
are adjusted to the target output. The process in the network is repeated as much iterations (epochs) 
as needed to reach the output that is the closest to the targeted output. Learning in neural network is a 
process in which the system comes to the values of the weights between neurons. The weight is 
actually the power of the relationship between the two neurons. If the neuron j is connected to neuron 
i, wij is interpreted as the strength of the connection from neuron j to neuron i. The Figure 1 (a) 
presents a classic schematic representation of the neural network with one hidden layer and one 
neuron in a hidden layer, where output y and inputs x1, x2,…,xj are n x 1 vectors, and n is a number of 
observations.  

 

Figure 1 (a) Classic schematic representation of neural network; (b) Neural network MLP (3-2-1) 

When a neuron receives inputs from connected units, the value of its input is calculated based on 
activation function. In most cases one of the inputs is called a bias, which is equal to one for all the 
observations. The value of the hidden neuron hi can be calculated as: 
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The output from the neuron is calculated based on the activation function: 
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          (10)
 

In the simplest neural network the activation function is linear, and the most commonly used are 
exponential, logistic and hyperbolic tangent function. Using nonlinear activation function allows a 
neural network to capture nonlinearity in data. Designing neural network is the process of trial and 
errors, where a vast number of neural networks are trained and the best neural network gives the 
minimum mean squared error (MSE). 

The Figure 1 (b) is a representation of three-layer feedforward neural network, also called multilayer 
perceptron (MLP), with three inputs, two neurons in the hidden layer and one output, i.e. MLP (3-2-1).  

4 EMPIRICAL RESULTS 

In Croatia still does not exist an official yield curve due to a scarce issue of Croatian bonds 
denominated in Kuna and weak trade on a secondary market. In order to calculate yield curve on a 
Croatian financial market data from Zagreb money market, where data for treasury bills can be found, 
and Reuters data base, where data for government bonds can be found, is collected. Yield curves are 
calculated on a weekly basis from 7

th
 October 2011 to 24

th
 August 2012 using Nelson-Siegel model. 

Even though on these dates there was pour trade on treasury bills and bonds (on observed dates the 
number of securities traded was mostly 10), yield curves are successfully estimated using above 
mentioned formulas. 
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Parameters 0 , 1 , 2  and   are estimated for Nelson-Siegel model in MS Office Excel using least 

square method with quasi-Newton. In the case where it was particularly difficult to estimate 
parameters, using Simplex method in Statistica10 starting points for an estimation of parameters are 
generated. These appropriate start values are then used in subsequent quasi-Newton iterations

1
. 

Resulting yield curves are given in Figure 2. 

 

Figure 2 Yield curves on Croatian financial market using Nelson-Siegel model 

After the estimation of the parameters using Nelson-Siegel model, yield curves are forecasted using 

Vector autoregressive and Neural network models, by predicting parameters 0 , 1 , 2  and  .  

The parameters are predicted using Vector autoregressive (VAR) model in Stata11 by dividing the 
sample on two sets: first, the test set from 7

th
 October 2011 until 15

th
 June 2012 and second, the 

validation set from 22
nd

 June 2012 until 24
th
 August 2012. Based on final prediction error (FPE) and 

Akaike's information criterion (AIC) VAR (1) model is chosen, which is defined as:  

  0 1 1t t tZ a A Z   
       (9) 

 

 VAR (1) model is tested on test set and predictions of four parameters 0 , 1 , 2  and  in out-of-

sample forecast with mean square error (MSE) are given in the Table 1.  

Table 1 Estimated and predicted parameters using VAR(1) with MSE 

Parameters 0  
0̂  1  

1̂    ̂  2  
2̂  

22.6.2012 0.0792 0.0684 -0.0422 -0.0507 2.3586 0.7737 0.0000 0.0032 

29.6.2012 0.0769 0.0685 -0.0444 -0.0493 1.7828 0.8435 0.0000 0.0082 

6.7.2012 0.0619 0.0693 -0.0490 -0.0495 0.1801 0.7983 0.0000 0.0054 

13.7.2012 0.0694 0.0695 -0.0419 -0.0493 0.8197 0.8057 0.0000 0.0042 

20.7.2012 0.0659 0.0695 -0.0497 -0.0491 0.4400 0.8234 0.0000 0.0043 

27.7.2012 0.0688 0.0695 -0.0394 -0.0490 1.0312 0.8286 0.0000 0.0044 

                                                   
1 Simplex method is generally less sensitive to local minima and is usually used in combination with the quasi-

Newton method [11] 

http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/S/Simplexalgorithm
http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/Q/QuasiNewtonMethod
http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/Q/QuasiNewtonMethod
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3.8.2012 0.0667 0.0695 -0.0462 -0.0490 0.5670 0.8290 0.0000 0.0044 

10.8.2012 0.0669 0.0695 -0.0443 -0.0490 0.6059 0.8294 0.0000 0.0044 

17.8.2012 0.0663 0.0695 -0.0458 -0.0490 0.5763 0.8297 0.0000 0.0044 

MSE 0.00028 0.00029 4.14751 0.00022 

For prediction of Nelson-Siegel parameters using Neural networks (NN), training sample from 7
th
 

October 2011 until 11
th
 May 2012, testing sample from 18

th
 May 2012 until 15

th
 June 2012 and 

validation sample from 22
nd

 June 2012 until 24
th
 August 2012 is used. MLP model with one hidden 

layer is used with the process of trial and errors for defining the right number of units in a hidden layer 
and the activation function. The best neutral network is obtained with seven hidden neurons (MLP 4-7-
4), exponential activation function in hidden layer and logistic activation function in output layer. The 

predictions of four parameters 0 , 1 , 2  and  in out-of-sample forecast and mean square error 

(MSE) are given in the Table 2. 

Table 2 Estimated and predicted parameters using NN(4-7-4) with MSE 

Parameters 0  
0̂  1  

1̂    ̂  2  
2̂  

22.6.2012 0.0792 0.0697 -0.0422 -0.0490 2.3586 0.8707 0.0000 0.0053 

29.6.2012 0.0769 0.0697 -0.0444 -0.0489 1.7828 0.8721 0.0000 0.0054 

6.7.2012 0.0619 0.0697 -0.0490 -0.0489 0.1801 0.8754 0.0000 0.0054 

13.7.2012 0.0694 0.0696 -0.0419 -0.0488 0.8197 0.8824 0.0000 0.0054 

20.7.2012 0.0659 0.0697 -0.0497 -0.0488 0.4400 0.8780 0.0000 0.0054 

27.7.2012 0.0688 0.0696 -0.0394 -0.0488 1.0312 0.8822 0.0000 0.0054 

3.8.2012 0.0667 0.0697 -0.0462 -0.0488 0.5670 0.8759 0.0000 0.0054 

10.8.2012 0.0669 0.0697 -0.0443 -0.0488 0.6059 0.8804 0.0000 0.0054 

17.8.2012 0.0663 0.0697 -0.0458 -0.0488 0.5763 0.8795 0.0000 0.0054 

MSE 0.00024 0.00024 4.00756 0.00026 

 

Neural network model gives marginally smaller MSE than VAR based method, which means that 
neural networks give better results than Vector autoregressive model in forecasting yield curve. Both 

models predict the values of parameters 0 , 1  and 2  extremely well, ending with small mean 

square errors. However, due to the fact that estimated parameter   is varying extremely through 

forecasting period, both models’ forecasting abilities are weak, ending with much larger mean square 
errors. Figure 3 shows the yield curve estimated with Nelson-Siegel model on 22

nd
 June 2012 and 

yield curves predicted with neural network and vector autoregressive model. It shows good short term 
forecast abilities of both models and marginally better results of NN model. 
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Figure 3 Nelson-Siegel yield curve and predicted yield curves using VAR and NN models on 
22.06.2012. 

Figure 4 shows the yield curve estimated with Nelson-Siegel model on 24
th
 August 2012 and yield 

curves predicted with neural network and vector autoregressive model. It shows long term forecast 
abilities of both models and it can be concluded that both models perform poorly in longer term 
forecast horizons.  

 

Figure 4 Nelson-Siegel yield curve and predicted yield curves using VAR and NN models on 
24.08.2012. 

5 CONCLUSION 

It is well known that yield curve estimation is of crucial importance for all the participants on financial 
market and beyond. What is also very important is the ability of forecasting yield curves especially on 
emerging markets, like Croatian financial market, where a marginal bond trade exists. The main issue 
in the paper was to investigate the forecasting features of Neural networks and Vector autoregressive 
models. Empirical research on Croatian financial market shows rather good forecasting capacity of 
both methods, with slightly better results given by neural networks. The lack of reliability is evident 
primarily in long term forecasts.  
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