NEW UPPER AND LOWER BOUNDS FOR LAPLACIAN EIGENVALUES OF GRAPHS

Amal Al-Saket

Department of Mathematics, Al-Zaytoonah University, Amman, Jordan amal_saket@zuj.edu.jo

Abstract

In this article, we present lower bounds for the Laplacian spectral radius, λ_1 and the second largest eigenvalue, λ_2 of the Laplacian matrix, L, of a simple connected graph in terms of basic invariants of the graph. Also, we use a well-known result to obtain an upper bound for λ_1 in terms of traces of powers of L. Finally, we apply these bounds to some examples of graphs and make a comparison with some known bounds.

2010 Mathematics Subject Classification: 05C05, 05C50, 15A42, 15A36

Keywords: graphs, Laplacian matrix, eigenvalues, spectral radius principal Submatrix, interlacing, trace of a matrix.

1 INTRODUCTION

Let G=(V, E) be a simple connected graph with vertex set $V = \{v_1, v_2, ..., v_n\}$ and edge set *E*. For $v_i \in V$, let the degree of v_i and the average of the degrees of the vertices adjacent to v_i be denoted by d_i and m_i , respectively and let n_{ij} denotes the number of common neighbors of v_i and v_j . We write $i \sim j$ to indicate that the edge $v_i v_j \in E$. Let *A* be the adjacency matrix of *G* and *D* be the diagonal matrix of vertex degrees. The Laplacian matrix of *G* is L(G) = L = D - A. Clearly, *L* is symmetric and positive semi-definite and consequently its eigenvalues, which are called the Laplacian eigenvalues of *G*, are real nonnegative numbers and since each row sum of *L* is equal to 0, then 0 is the smallest eigenvalue of *L*. Denote the eigenvalues of *L* by $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$.

The spectrum of the Laplacian matrix is important in graph theory because it has a close relation to numerous graph invariants, such as diameter, chromatic number, maximum cut, spanning trees, connectivity, etc. (for more details, see [1, 2] and the references therein). Thus, good lower and upper bounds for the eigenvalues of L are needed in many applications.

Among the known lower bounds for the Laplacian spectral radius, λ_1 , are the following:

(1) R. Grone and R. Merris' bound [3]

$$\lambda_1 \ge 1 + \max_{v_i \in V} d_i$$
(1)

(2) K. C. Das' bound [4]

$$\lambda_{1} \geq \frac{1}{\sqrt{2}} \max_{i \sim j} \sqrt{(d_{i}^{2} + 2d_{i} - 2d_{j} - 2) + \sqrt{(d_{i}^{2} + 2d_{i} + 2d_{j} + 4)^{2} + 4(d_{i} - n_{ij} - 1)(d_{j} - n_{ij} - 1)}}$$
(2)

(3) For triangle-free graphs, X.D. Zhang and R. Luo's bound [5]

$$\lambda_{1} \geq \frac{1}{2} \max_{\nu_{i} \in V} \left\{ (d_{i} + m_{i}) + \sqrt{(d_{i} - m_{i})^{2} + 4d_{i}} \right\}$$
(3)

Among the known upper bounds for the spectral radius, λ_1 , are the following:

(1) R. Merris' bound [6] $\lambda_1 \le \max_{v_i \in V} \left\{ d_i + m_i \right\}$ (4)

(2) K. C. Das' bound [7]

$$\lambda_{1} \leq \frac{1}{2} \max_{i \sim j} \left\{ d_{i} + d_{j} + \sqrt{(d_{i} - d_{j})^{2} + 4m_{i}m_{j}} \right\}$$
(5)

(3) T. Wang, J. Yang and B. Li's bound [8]

$$\lambda_{1} \leq \max_{v_{i} \in V} \left\{ d_{i} + \frac{d_{i} \left(m_{i} + \sqrt{m_{i}} \right)}{d_{i} + \sqrt{d_{i}}} \right\}$$
(6)

In this paper, we derive lower bounds for the Laplacian spectral radius, λ_1 , and the second largest eigenvalue, λ_2 , in terms of basic invariants of the graph. We also imploy one well-known result to compute an upper bound for λ_1 in terms of traces of powers of *L*.Finally, we apply the above mentioned bounds and our bounds on some examples of graphs to conclude that our bounds are good in some sense.

2 MAIN RESULTS

First, we obtain lower bounds for the Laplacian eigenvalues λ_1 and λ_2 , of a simple graph by employing the following result, known as the Cauchy interlacing property. For a proof, see [9, p. 189].

Lemma 1. If *B* is an $n \times n$ symmetric matrix and \tilde{B} is an $m \times m$ principal submatrix of *B* with eigenvalues $\lambda_1(B) \ge \ldots \ge \lambda_n(B)$ and $\lambda_1(\tilde{B}) \ge \ldots \ge \lambda_m(\tilde{B})$, respectively, then the eigenvalues of *B* interlace those of \tilde{B} , that is

$$\lambda_i(B) \ge \lambda_i(B) \ge \lambda_{n-m+i}(B)$$
 for $i = 1, ..., m$.

Theorem 1. Let *G* be a simple connected graph and let λ_1 and λ_2 be the largest and the second

largest eigenvalues of $L(G) = (l_{ii})$. Then

$$\lambda_1 \ge \frac{1}{\sqrt{2}} \max_{i < j} \sqrt{\delta_i + \delta_j + \sqrt{(\delta_i - \delta_j)^2 + 4m_{ij}^2}}$$
(7)

and

$$\lambda_2 \ge \frac{1}{\sqrt{2}} \max_{i < j} \sqrt{\delta_i + \delta_j - \sqrt{(\delta_i - \delta_j)^2 + 4m_{ij}^2}},$$
e
$$(8)$$

where

$$\delta_i = d_i^2 + d_i$$
 and $m_{ij} = (d_i + d_j) l_{ij} + n_{ij}$.

Moreover, the equality in (7) holds if G is a complete graph K_n .

,

Proof. Let \widetilde{L}_{ij} be the 2×2 principal submatrix of L^2 corresponding to two vertices $v_i, v_j \in V$, then \widetilde{L}_{ij} has the form

$$\widetilde{L}_{ij} = \begin{bmatrix} l_i^{\ t} l_i & l_i^{\ t} l_j \\ l_j^{\ t} l_i & l_j^{\ t} l_j \end{bmatrix}$$

where l_i is the i^{th} column vector of L and the superscript t denotes transposition. It is easy to show that

$$\widetilde{L}_{ij} = \begin{bmatrix} \delta_i & m_{ij} \\ m_{ij} & \delta_j \end{bmatrix}.$$

Since $\lambda_i(L) = \sqrt{\lambda_i(L^2)}$ and, by Lemma 1, the eigenvalues of L^2 interlace those of \tilde{L}_{ij} then by direct computation of the two eigenvalues of \tilde{L}_{ij} , the inequalities in (7) and (8) follow. Now, if $G = K_n$, then $\delta_i = \delta_j = n(n-1)$ and $m_{ij} = -n$, so the lower bound in (7) is equal to $n = \lambda_1(K_n)$.

Let ℓ be our lower bound in (7). The following lemma present a case where ℓ is better than a well-known lower bound for λ_1 .

Lemma 2. Let *G* be a simple connected graph and let v_i and v_j be the two vertices with largest degrees. If v_i and v_j are adjacent and have equal degrees, say $d_i = d_j = d$, then

$$\ell \ge 1 + d \quad . \tag{9}$$

Proof . Clearly, we will have

$$\ell \geq \frac{1}{\sqrt{2}} \sqrt{2d(d+1) + \sqrt{4m^2_{ij}}} .$$

Since $m_{ij} = n_{ij} - 2d$ and $d - n_{ij} \ge 1$, we obtain that (9) holds.

Remark 1. Note that the right hand side in (9) is the lower bound in (1) due to Grone and Merris [3].

Next we obtain an upper bound for the Laplacian spectral radius, λ_1 , of a graph by employing the following well-known result. For a proof, see [11].

Lemma 3. Let *B* be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \ge ... \ge \lambda_n$ and let

$$m = \frac{tr(B)}{n}$$
 and $s^2 = \frac{tr(B^2)}{n} - m^2$

where tr(B) stands for the trace of *B*. Then

$$\lambda_1 \le m + s \sqrt{n-1} \quad . \tag{10}$$

Theorem 2. Let G be a simple graph of order n. Then

$$\lambda_1 \le \sqrt{m + s \sqrt{n - 1}} , \tag{11}$$

where

$$m = \frac{1}{n} \sum_{i=1}^{n} \delta_{i}$$
 and $s^{2} = \frac{1}{n} \left[\sum_{i=1}^{n} \delta^{2}_{i} + 2\sum_{i < j} m^{2}_{ij} \right] - m^{2}$

Proof . Clearly,

$$(L^2)_{ij} = \begin{cases} \delta_i & , i = j \\ m_{ij} & , i \neq j \end{cases}.$$

So, one can easily see that

$$tr(L^2) = \sum_{i=1}^n \delta_i$$
 and $tr(L^4) = \sum_{i=1}^n \delta^2_i + 2\sum_{i< j} m^2_{ij}$.

Since L^2 is symmetric and $\lambda_1(L) = \sqrt{\lambda_1(L^2)}$, the inequality in (11) follows by applying Lemma 2 to $B = L^2$.

In the following lemma, we investigate the case where the equality in (10) holds and show that this imposes a certain relation between the eigenvalues of the matrix B.

Lemma 4. The equality in (10) holds if and only if $\lambda_2 = \ldots = \lambda_n$.

Proof. From the definition of s^2 in Theorem 1, from the fact that the sum of the eigenvalues of a matrix is equal to its trace and by using Lagrange's identity, we have

$$s^{2} = \frac{1}{n^{2}} \left[n \sum_{i=1}^{n} \lambda_{i}^{2} - \left(\sum_{i=1}^{n} \lambda_{i} \right)^{2} \right] = \frac{1}{n^{2}} \sum_{1 \le i < j \le n} (\lambda_{i} - \lambda_{j})^{2}.$$

Therefore, the equality in (10) is equivalent to

$$\lambda_1 = \frac{1}{n} \left[\sum_{i=1}^n \lambda_i + \sqrt{(n-1) \sum_{1 \le i < j \le n} (\lambda_i - \lambda_j)^2} \right] ,$$

which is equivalent to

$$\left[(n-1)\lambda_1 - \sum_{i=2}^n \lambda_i\right]^2 = (n-1)\sum_{1 \le i < j \le n} (\lambda_i - \lambda_j)^2 ,$$

which is the same as

$$\left[\sum_{j=2}^{n} \left(\lambda_{1}-\lambda_{j}\right)\right]^{2} = (n-1)\sum_{1\leq i< j\leq n} \left(\lambda_{i}-\lambda_{j}\right)^{2} \quad .$$
(12)

Since, by Cauchy-Schwartz inequality, we have

$$\left[\sum_{j=2}^{n} \left(\lambda_1 - \lambda_j\right)\right]^2 \le (n-1)\sum_{j=2}^{n} \left(\lambda_1 - \lambda_j\right)^2 ,$$

then it is easy to see that the equality (12) holds if and only if $\lambda_2 = ... = \lambda_n$.

3 EXAMPLES

As the conclusion of this article, we give some examples to illustrate our results. Consider the three graphs shown in the figure below.

The actual values of λ_1 and λ_2 and their bounds are as shown in the tables below.

		1				
		λ_1	(1)	(2)	(3)	(7)
	G ₁	4.17	4	4.01	4.08	3.85
	G ₂	5.65	5	4.02	5.16	5.29
	G ₃	5.56	4	4.01	4.57	4.24

Table 1: The values of λ_1 and the lower bounds in (1)-(3) and (7)

Table 2: The values of λ_2 and the lower bound in (8)

	λ_2	(8)
G ₁	2.31	1.78
G ₂	4	3.46
G ₃	3	2.45

Table 3: The values of λ_1 and the upper bounds in (4)-(6) and (10)

	λ_1	(1)	(2)	(3)	(10)
G ₁	4.17	4.33	4.21	4.57	4.24
G ₂	5.65	5.75	5.75	6.05	5.75
G ₃	5.56	5.66	5.67	5.93	5.67

Remark 2. From the tables above, we can see that in some cases our bounds are better than some well-known bounds and so, they are good in some sense.

Remark 3. Note that Lemma 2 applies to G_2 and G_3 and also to any regular graph. For example, for the Petersen graph, shown in the figure below , which is a 3-regular graph and for which $\lambda_1 = 5$, applying (7), we get $\lambda_1 \ge 4.24$. However, applying (1) and (2), we have $\lambda_1 \ge 4$ and $\lambda_1 \ge 4.02$, respectively. This adds an example where our bound in (7) is better than some known lower bounds for λ_1 .

Fig. 2: The Petersen graph

Remark 4. For the interested reader, in [12] we give good estimates of a lower bound for the Laplacian spectral radius, λ_1 , of triangle-free graphs that is better than most of the known lower bounds for λ_1 .

Remark 5. We would like to note that the equality in (10) does not hold for the Laplacian matrix of a connected graph since it is well-known that the algebraic connectivity of a connected graph which is the second smallest Laplacian eigenvalue is greater than zero, that is, $\lambda_{n-1} > 0 = \lambda_n$.

4 REFERENCES

- [1] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197-198(1994), 143-176.
- [2] B. Mohar, Laplace eigenvalues of graphs: a survey, Discrete Math., 109(1992), 171-183.
- [3] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7(2), (1994), 221-229.
- [4] K. C. Das, The largest two Laplacian eigenvalues of a graph, Linear and Multilinear Algebra, 52(6), (2004), 441-460.
- [5] X. D. Zhang and R. Luo, The spectral radius of triangle-free graphs, Australasian J. of Combinatorics, 26(2002), 33-39.
- [6] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl., 285(1998), 33-35.

- [7] K.C. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl., 368(2003), 269-278.
- [8] T. Wang, J. Yang and B. Li, Improved upper bounds for the Laplacian spectral radius of a graph, the Electronic J. of Combinatorics, 18(2011), 1-11.
- [9] G. H. Golub and C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press, Baltimore, 1989.
- [10] J. Li and Y. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear and Multilinear Algebra, 48(2000), 117-121.
- [11] H. Wolkowicz and G. styan, Bounds for eigenvalues using traces, Linear Algebra Appl., 29(1980), 471-506.
- [12] A. Al-Saket, On estimating a lower bound for the Laplacian spectral radius of triangle-free graphs, Int. J. Contemp. Math. Sciences, 7(46), (2012), 2265-2275.