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Abstract 

   

In this article, we present lower bounds for the Laplacian spectral radius, 1  and the second   

largest eigenvalue, 2   of the Laplacian matrix , L , of a simple connected graph in terms of basic 

invariants of the graph. Also, we use a well-known result to obtain an upper bound for 1 in terms 

of traces of powers of  L. Finally, we apply these bounds to some examples of graphs and make 
a comparison with some known bounds.   
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1   INTRODUCTION 
 

   

Let G=(V, E) be a simple connected graph with vertex set  nvvvV ,,, 21  and edge set E. For 

,Vvi   let the degree of iv  and the average of the degrees of the vertices adjacent to iv be 

denoted by ii md  and , respectively and let ijn  denotes the number of common neighbors of 

. and  ji vv We write i~j to indicate that the edge Evv ji  . Let A be the adjacency matrix of G and 

D be the diagonal matrix of vertex degrees. The Laplacian matrix of G is ADLGL )( . 

Clearly, L is symmetric and positive semi-definite and consequently its eigenvalues, which are 
called the Laplacian eigenvalues of G, are real nonnegative numbers and since each row sum of  
L is equal to 0, then  0 is the smallest eigenvalue of  L. Denote the eigenvalues of  L  by 

0
21


n

  .  

The spectrum of the Laplacian matrix is important in graph theory because it has a close relation 
to numerous graph invariants, such as diameter, chromatic number, maximum cut, spanning 
trees, connectivity, etc. ( for more details, see [1, 2] and the references therein).Thus, good lower 
and upper bounds for the eigenvalues of L are needed in many applications.  

Among the known lower bounds for the Laplacian spectral radius, 1 , are the following: 

 
(1) R. Grone and R. Merris’ bound [3]  

           i
Vv

d
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(2) K. C. Das’ bound [4] 
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(3) For triangle-free graphs, X.D. Zhang and R. Luo’s bound [5] 
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Among the known upper bounds for the spectral radius, 1 , are the following: 

(1) R. Merris’ bound [6]  
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(2) K. C. Das’ bound [7] 
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(3) T. Wang, J. Yang and B. Li’s bound  [8] 
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In this paper, we derive lower bounds for the Laplacian spectral radius, 1 , and the second 

largest eigenvalue, 2 ,in terms of  basic invariants of the graph. We also imploy one well-known 

result to compute an upper bound for 1   in terms of traces of powers of  L.Finally, we apply the 

above mentioned bounds and our bounds on some examples of  graphs to conclude that our 
bounds are good in some sense. 
 
 

2   MAIN RESULTS 
  

First, we obtain lower bounds for the Laplacian eigenvalues 1λ and 2λ  ,of a simple graph by 

employing  the following result, known as the Cauchy  interlacing property. For a proof, see 
[9, p. 189]. 

 

Lemma 1.  If B is an nn   symmetric matrix and  B
~

 is an mm  principal submatrix of   

B with eigenvalues )()(1 BB n   and )
~

()
~

(1 BB m  , respectively, then the 

eigenvalues of B interlace those of B
~

, that is 
 

   . ,,1for     )()
~

()( miBBB imnii    

 

Theorem 1.  Let G be a simple connected graph and let  1  and 2  be the largest and the 

second   

 largest eigenvalues of )()( ijlGL  . Then 
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 where 

         i = ii dd 
2

     and   ijijjiij
nlddm   )(  . 

 
Moreover, the equality in (7) holds if G is a complete graph nK  . 

 

Proof .  Let  ijL
~

 be the 22 principal submatrix of 
2L  corresponding to two vetrtices  

Vvv ji , , then ijL
~

 has the form  
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where i
l  is the 

thi  column vector of  L  and the superscript  t  denotes transposition. 

It is easy to show that 
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Since  )()( 2LL ii    and, by Lemma 1, the eigenvalues of 
2L  interlace those of ijL

~
then 

by direct computation of the two eigenvalues of ijL
~

, the inequalities in (7) and (8) follow.  

Now, if nKG   , then )1(  nnji    and   nm
ji   , so the lower bound in (7) is equal 

to )(1 nKn  .  

    

Let   be our lower bound in (7). The following lemma present a case where  is better than  

a well-known lower bound for 
1
λ  . 

  

Lemma 2.  Let G be a simple connected graph and let  ji vv  and  be the two vertices with largest 

degrees. If  ji vv  and  are adjacent and have equal degrees, say ddd ji  , then 

  

              d1  .                                                                                                      (9)    
 
Proof .  Clearly, we will have 
 

              ijmdd 24)1(2  
2

1    . 

 

Since 1  and  2  ijijij nddnm , we obtain that (9) holds. 

              
Remark 1. Note that the right hand side in (9) is the lower bound in (1) due to Grone and   
Merris [3]. 
 

Next we obtain an upper bound for the Laplacian spectral radius, 1λ , of a graph by employing the 

following well-known result. For a proof, see [11]. 
  

Lemma 3.  Let  B  be an nn   symmetric matrix with eigenvalues n
 

1  and let      
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where . of  tracefor the stands  )( BBtr  Then 

 

                1 
1

 nsmλ   .                                                                              (10) 

 
 
Theorem 2.  Let G be a simple graph of order n. Then 
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Proof .  Clearly, 
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So, one can easily see that  
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Since 
2L  is symmetric and )()( 2

11
LL    , the inequality in (11) follows by applying 

Lemma 2 to 
2LB   .  

 
In the following lemma, we investigate the case where the equality in (10) holds and show 
that this imposes a certain relation between the eigenvalues of the matrix  B. 
 
 

Lemma 4.  The equality in (10) holds if and only if  
n

 
2

. 

 

Proof .  From the definition of 
2s   in Theorem 1, from the fact that the sum of the eigenvalues  

of a matrix is equal to its trace and by using Lagrange’s identity, we have 
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Therefore, the equality in (10) is equivalent to  
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which is equivalent to  
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which is the same as 
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Since, by Cauchy-Schwartz inequality, we have 
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then it is easy to see that the equality (12)  holds if and only if  
n

 
2

. 

 
 

3   EXAMPLES  
 
As the conclusion of this article, we give some examples to illustrate our results. 
Consider the three graphs shown in the figure below. 
 
 
 
                               
                                                                             
 
                                                        
                G1                                       G2                                                                G3         
  
 
                                                        Fig. 1 
 
 

The actual values of  
1

  and 2 and their bounds are as shown in the tables below. 

 
 

Table 1: The values of 1 and the lower bounds in (1)-(3) and (7) 

 
1  (1) (2) (3) (7) 

G1 4.17 4 4.01 4.08 3.85 
G2 5.65 5 4.02 5.16 5.29 
G3 5.56 4 4.01 4.57 4.24 

 
 
 

Table 2: The values of 2  and the lower bound  in (8) 

 
2  (8) 

G1 2.31 1.78 
G2 4 3.46 
G3 3 2.45 

 
 

Table 3: The values of 1 and the upper bounds in (4)-(6) and (10) 

 
1  (1) (2) (3) (10) 

G1 4.17 4.33 4.21 4.57 4.24 
G2 5.65 5.75 5.75 6.05 5.75 
G3 5.56 5.66 5.67 5.93 5.67 
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 Remark 2.  From the tables above, we can see that in some cases our bounds are better 
 than some well-known bounds and so, they are good in some sense. 
 

 Remark 3.  Note that Lemma 2 applies to 
32

 and GG  and also to any regular graph. For example, 

for the Petersen graph, shown in the figure below , which is a 3-regular graph and for which 

51  , applying (7), we get 24.41  . However, applying (1) and (2), we have  4
1
 and 

 02.41  , respectively. This adds an example where our bound in (7) is better than some known 

lower bounds for 1  .  

 
 

                                            
                                               
                                   
                                     Fig. 2: The Petersen graph 
 
 
Remark 4.  For the interested reader, in [12] we give good estimates of a lower bound for the 

Laplacian spectral radius, 1 , of triangle-free graphs that is better than most of the known lower 

bounds for 1 . 

  
Remark 5.  We would like to note that the equality in (10) does not hold for the Laplacian matrix 
of a connected graph since it is well-known that the algebraic connectivity of a connected graph 

which is the second smallest Laplacian eigenvalue is greater than zero, that is,  .0
1 nn

 
  
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