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Abstract—The world of electronic communication is growing.
Most of our work today is done using electronic devices. The
amount of messages, voice and video calls, and other electronic
communication is enormous. To make this possible, data com-
pression is used everywhere. The amount of information must
be compressed in order to reduce the requirements imposed on
communication channels and data storage. This paper describes
a novel transformation for compression of small text files.Such
type of data are produced every day in huge amounts, because
emails, text messages, instant messages, and many other data
types belong to this data type. Proposed transformation leads to
significant improvement of compression ratio in comparison with
standard compression algorithms.
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I. INTRODUCTION

The idea of data compression dates back to the 19th century.
The first widely used compression techniques may be found
in the Morse code for telegraphy from the year 1832 and
in the Braille system for the blind from 1820. The main
development of compression methods dates back to the 20th
century, when computers and electronic telecommunication
techniques were invented. At the beginning, the evolution of
compression methods was motivated by the need to transmit
messages through very slow channels (physically through
metallic wires or by radio waves). It was necessary to send data
between universities, tactical information for military forces,
pictures and sensor data from satellites and probes, etc. These
days, data compression is used everywhere in the information
society.

Two main reasons for the usage of data compression exist.
Large amounts of data must be stored into data storage
or transmitted through limited communication channels. The
application of data compression leads to a significant reduction
in the disk space used and the necessary bandwidth. The data
which must be stored or transmitted may be text documents,
images, audio and video files, etc. Moreover, stored data are
usually backed up to prevent data loss.

Text compression is a special task in the field of data
compression, because the world is full of textual information.
Textual data has existed since the start of computers, because
information written in text is more suitable for humans than
information written as binary code or a sequence of integers.
Today, many places where textual information is used - books,
forms, web pages, laws, personal notes, chats, and many other
types - exist. A great effort is being dedicated around the
world to the building of electronic libraries. It is not only

about real books, but it is necessary to create data stores with
laws, archives of web pages, data stores for emails, etc. Any
of the universal compression methods may be used for the
compression of text files, but practice has shown that it is
better to use an algorithm developed especially for text, such
as PPM methods [4], [12], a Burrows-Wheeler transformation-
based method [2], or others.

The efficiency of the compression methods is based on
the context information contained in the data or on the
differences in probability between the occurrences of symbols.
A good compression ratio is achieved for files with sufficient
context information or with enough differences between the
probability of symbols. Context information in random data
is not sufficient. Moreover, symbols have equal probability
and therefore it is not possible to gain any compression.
Compression of very small text files, such as text messages,
chat messages, messages in instant messaging networks, and
emails, is even more specialized task, because such files have
different attributes than normal and large text files. The main
difficulty is insufficient context information.

Several algorithms for the compression of small files have
been developed. The first group of algorithms use a model
prepared before compression. The data used for the creation
of models are the same or similar to the compressed one.
This solves the problem with modeling the context in short
messages, but the model used must be part of the decompressor
of the compressed data. This approach was used by Rein
et.al. [16], which use a PPM-based method with a strict
memory constraint and a static model for the compression
of text messages in mobile devices. Korodi et.al. [10] use
the Tree Machine for compression. The Tree Machine uses
a trained model with a limited size. Hatton [8] presents a
different approach for estimating symbol probability, based on
the counts of previous occurrences. An SAMC compression
algorithm is based on this computation of probability, multi-
pass model training, and a variable-length Markov model. The
results achieved are better than with using PPM, with a smaller
memory requirement for very small files.

The second group of algorithms solve the problem of
insufficient context using application of transformation. El-
Qawasmeh and Kattan in 2006 [5] introduce Boolean mini-
mization in data compression. A modification of this approach
focused on small text files was published in 2008 by Platos
et.al. [15]. In that paper, several new transformation was
suggested as well as other encodings for the final stage of
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the compression. In this technique, the compression process
splits the input data stream into 16-bit blocks. After that,
the Quine-McCluskey approach is used to handle this input
in order to find the minimized expression. The minimized
expressions of the input data stream are stored in a file. After
minimization, El-Qawasmeh uses static Huffman encoding for
obtaining redundancy-loss data.

This paper proposes a modification of the second approach,
but a variant on the first approach is also described. The
common phase is transformation of the data using Boolean
minimization, but, for effective compression, it is necessary
to solve a few other problems.

Organization of this paper is as follows. The Section II
contains short description of the algorithm for compression
of small text files as well as its new modification. The
Section IV describes the testing data collection and results
of the experiments are discussed in Section V. The Section
VI present a summary of this paper.

II. COMPRESSION OF SMALL TEXT FILES

The compression algorithms, as was published in [15], may
be described in the following steps. The input messages are
split into 16-bit vectors. Each vector corresponds to a 4-
variable truth table. Vectors are transformed using mapping
table into mapped vectors. If the semi/adaptive mapping is
used, mapping table is stored into output. Mapped vectors are
minimized using the Quine-McCluskey algorithm into product
terms. Product terms are transformed into its numeric repre-
sentation. Finally, compression algorithm is used for storing
product terms numbers into output. The details about Boolean
minimization, Quine-McCluskey algorithms and product terms
may be found in [15], [7], [13], [17]. Application of Boolean
minimization leads to the reduction of the alphabet size to
83 symbols [5], [15] and to the increasing of the number of
symbols (data volume). Therefore, reduction of the number
of symbols must be applied. Improvement of the final step -
compression of the number, may be also improved by mapping
function for increasing of the context information.

A. Reduction of the number of symbols
Several techniques solve this problem. The main technique

is the reduction of the products that are generated. But the
volume of data may also be reduced using the elimination
of some parts of the generated data. Both techniques are
described in the following paragraphs.

1) Reduction of the number of products: Reduction of the
number of products must originate from the nature of the data.
Because this method is focused on the compression of small
text files, the determination of the distinct vectors count may
be useful. Text files have very low numbers of distinct vectors
- typically less than 5,000 out of 65,536 vectors ≈ 8%; e.g.
the bible.txt file from the Canterbury Compression Corpus [1]
has 1121 distinct vectors and latimes.txt from TREC [6, 7, 8]
has 4984 distinct vectors.

Moreover, the number of products used for describing the
vectors is not identical for each vector. Some vectors are
described by only one product and some use more than four.

Fig. 1. Elimination of separators

Since only a small number of distinct vectors is present
in the data, a mapping transformation may be applied. This
transformation will map the most used vectors on the vectors
with the lowest number of products, and the least used vectors
on the vectors with the highest number of product terms.
This mapping may be static or dynamic. The advantage of
the static variant is that the mapping table is part of the
compressor/decompressor and not a part of the compressed
data. On the contrary, dynamic mapping better matches the
content of the data, but it also needs two-pass processing and
the mapping table must be stored as a part of the compressed
data.

2) Separator elimination: Another reduction can be
achieved with separator elimination. Products which describe
vectors may be sorted from lowest to highest, according to
their numeric representation, without loss of commonness.
The passing between the products of adjacent vectors can be
detected by reducing the term number. This principle works
in most cases but not in all. The problems and advantages of
this method may be seen from the following example. More
details and example may be fount in [15].

a) Example:: Let the message may be encoded using
five vectors v1, . . . , v5. These vectors are processed using
Boolean minimization and the results products are these
v1 = {4, 5, 24}, v2 = {14, 25, 34, 35}, v3 = {11, 22}, v4 =
{33, 43}, v5 = {16, 23, 45, 56}. These product lists are shown
in Figure 1. As may be seen, decreasing of product number
may not be seen between vectors 3 and 4. In other cases, the
decreasing is presents. Therefore, three from four separator
may be eliminated.

B. Increasing of context information

Increasing the amount of contextual information was
achieved using Boolean functions, but it may still be improved.
One method is reducing the size of the alphabet. Another is
modification of the mapping function, which was introduced
in the previous section.

1) Reduction of the number of symbols: The context in-
formation is increased by the reduction of the number of
symbols, but this reduction may not be final. We may reduce
the alphabet and compress data by smaller parts than products
- logical variables (A,A′, B, . . .D′). In this case, the separator
between products must also be compressed. This final alphabet
contains 12 symbols (A,A′, B, . . . , D′, 0, 1,+, comma). This
reduction again leads to an increase in the data volume.
The ratio between increasing the contextual information and
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increasing the data volume may not be as good as in the case
of the representation of vectors as Boolean functions. This will
be proven by the following experiments.

2) Modification of the mapping function: The mapping
function introduced in Section II-A1 substitutes vectors in
data with vectors with the lowest number of the representing
products. This reduces the size of the data but the products of
the result vectors are within the scope of the whole alphabet,
because at the beginning of the mapping table are vectors
which have only one product in their minimization, as may
be seen in the following notation.

(0, 1, A,A′, B, . . . , D′, AB,AB′, . . . , A′B′C ′D′, A+B, . . .)

The mapping function may be modified to move vectors with
the same products in their representation to the front. The
ordering of the representation of the vectors is shown in the
next notations.

(0, 1, A,A′, B,A+B,A′ +B,B′, A+B′, A′ +B′, C, . . .)

This mapping function is not so effective in reducing the
volume of the data, but it reduces the number of symbols
used.

C. Encoding of the product terms

Encoding the output is the final part of the algorithm.
El-Qawasmeh and Kattan in 2006 [5] used semi-adaptive
Huffman encoding in order to achieve the compression for the
product terms. This approach has many disadvantages - this
encoding needs two passes over the file and the storing of the
Huffman table into a compressed file, and the compression
ratio of the Huffman encoding is usually lower than when
using other compression methods.

In our experiments, many compression methods will be
tested. The context information was increased by the Boolean
minimization and other transformations, therefore, any of the
algorithms described in may be used without any modification.
Statistical compression methods may use improved contextual
information for the better modeling of symbol probabilities
and dictionary-based methods find longer matches. Burrows-
Wheeler transformation generates longer sequences of sym-
bols.

Moreover, the sorting of products which represent vectors
allows the creation of a better statistical model, because the
probability of the product in the data depends not only on the
overall probability of this product but also on the previous
product. These models are also called models with context
length 1 or models of order-1. In addition, this model may
be initialized prior to encoding more accurately, because after
each product only the product with a higher number or comma
symbol may be present.

III. THE COMPRESSION FRAMEWORK

The compression algorithm for small text files was derived
into compression framework. This framework has several
parts, but in this section only few of the will be described.
More information about this framework may be found in [14].

A. Static mapping

The static mapping is used for reducing the generated
product terms by using the mapping of the vectors that are used
into other vectors according to some criteria. The ideas are
described in Sections II-A1 and II-B. Three possible variants
were implemented.

The first variant map vectors into vectors with the smallest
number of the representing products. The vectors that were
originally present are mapped according to their numeric
representations independent on the frequency. The vectors that
were originally present are mapped according to their numeric
representations. Let the sorted list of vectors be called S, the
first vector in S, i.e. with the smallest number of product terms,
S1, the second S2, etc. When the data contain vectors (123,
43, 65, 234), then vector 43 is mapped into vector S1, vector
65 is mapped into vector S2, vector 123 is mapped into S3

and vector 234 into vector S4. This variant is called smf.
The second variant is similar to the previous one, but the

vectors that were originally present are mapped according to
their frequency in the data. When the data contain vectors
(123, 43, 64, 123, 64, 123, 234), then vector 123 is mapped
into S1, vector 64 into vector S2, vector 43 into vector S3 and
vector 234 into vector S4. This variant will be called sms.

The last variant sorts vectors according to the criterion
described in Section II-B2 for improving context information
using a reduction in the number of symbols. The vectors that
were originally present are mapped in the same way as in smf.
This variant will be called con.

Static mapping is used globally for all messages from
the collection without the necessity of storing anything to
output, because the mapping function is part of the compres-
sor/decompressor. The information needed for the mapping is
gained from the whole collection before encoding.

B. Vector mapping

Vector mapping is used for each message. This means that
for each used message an individual mapping function is con-
structed and it is stored into the output for the decompression
process. The mapping table is stored as a map of the vectors,
where the distances between vectors are stored using Fibonacci
encoding [6]. The size of the mapping table may be reduced
using an adaptive mapping scheme. This adaptive mapping
scheme is used before the vector mapping and it is updated
after each message using a Move-to-Front scheme. The content
of the adaptive mapping scheme is based on all the previously
encoded messages, but this may be achieved in practical usage.

Two basic variants of the vector mapping were implemented
- the smf and con. Both variants were described in the
previous section. Each variant was used with and without
a global adaptive scheme. The first variant is called smf
without a global mapping scheme and smf g with a global
mapping scheme. The second scheme is called con and con g
respectively.
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C. Boolean minimization

Boolean minimization is used for converting vectors into a
list of product terms. The vectors are transformed according
to the algorithm described at the beginning of this chapter,
i.e. a vector is taken as a truth table and minimized using the
Quine-McCluskey algorithm, and the final list of products is
the shortest possible list covering all the true values from the
table. Product terms for each vector are sorted according to
their numeric representation.

D. Product transformation

Transformations for product terms were described in Sub-
sections II-A2 and II-B1. The separator elimination is used for
reducing the number of products and is called sepElim. The
decomposition to logical values is used for the reduction of
the number of symbols and increasing the context information.
This transform is called logValue.

E. Product encoding

Encoding of the list of products is the final stage of the algo-
rithm. Several algorithms were used. The size of the alphabet
was set to 83. Direct Encoding means the the product number
were stored directly into out using 7-bit per number. Other
encoding is based on compression algorithms: Semi-adaptive
and Adaptive Huffman Encoding, LZW algorithm, Burrows-
Wheeler based encoding, Order-O and Order-1 Range Encod-
ing [11]. The Order-1 Range encoder use the knowledge about
sorting to improve prediction of the following symbol.

1) Direct encoding: Direct encoding is the simplest pos-
sible encoding of the product terms. The products are stored
with only the necessary number of bits. When the size of the
alphabet is 83, only 7 bits are necessary. For an alphabet with
a size of 12, only 4 bits are used. This encoding is called
min dc.

2) Semi-adaptive Huffman encoding: This algorithm is
used in its standard form. It needs two-pass processing and
storing of the Huffman tree into an output file. This algorithm
was used in the original work of El-Qawasmeh and Kattan [5].
This encoding is called min sh.

3) Adaptive Huffman encoding: This algorithm was also
used in its standard form. In comparison with the semi-
adaptive version, it needs only one-pass processing and it is
not necessary to store the encoding tree to the output. This
encoding is called min ah.

4) LZW algorithm: The LZW algorithm was used in its
standard form with the size of the dictionary set to 220

symbols. LZW uses storage with an increasing number of bits.
At the beginning only 83 phrases are used and therefore only
7 bits are necessary to store the phrase number. When the
number of phrases exceeds 127, 8 bits is used. This encoding
is called min lzw.

5) Burrows-Wheeler transformation based encoding:
Burrows-Wheeler transform was used for encoding the product
in two variants. The first variant uses BWT with Move-to-
Front and adaptive Huffman encoding. This variant is called

TABLE I
STATISTICS OF THE TESTING FILES

smsCorpus smsLarge
Message count 854 10 117

Char. count 93 288 588 161
Avg. Message length 109.24 58.14

Vector count 46 860 296 582

min bwt ahc. The second variant uses BWT with Move-To-
Front, run-length encoding, and adaptive Huffman encoding.
This variant is called min bwt ahc rle.

6) Order-0 Range encoding: This encoding uses an Order-
0 model with range encoding. Range encoding [11] is math-
ematically equivalent to arithmetic encoding. The principle
of the algorithm is very similar to arithmetic encoding and
may be used instead of it. The used model is tuned for better
performance. The tuning consists of the initialization of the
model. Each symbol is initialized at the same frequency, but
the Comma symbol has a higher frequency than the other
symbols, because each list of products must be followed by
the Comma symbol. When the sepElim transform is used, the
preference of the Comma symbol is lower. This encoding is
called min 0r.

7) Order-1 Range encoding: This encoding uses an Order-
1 model with range encoding. The model is again tuned for
better performance. Because of the sorting of the products,
it is not possible to find a product with a lower numeric
representation than the actual one, except after the Comma
symbol. The probability of each symbol with a lower numeric
representation than the actual one is set to 0. The Comma
symbol is also preferred, as in the previous encoding. When
the sepElim transform is used, only the Comma symbol is
preferred, because the rule about the presence of a product
with a lower numeric representation is not valid. This encoding
is called min 1r. Pure encoding is the general name for
standard algorithms used to store messages in their original
form - without Boolean minimization.

IV. DATA COLLECTIONS

Two collections of text messages (SMS) were chosen as
the main test data. The first one contains 854 messages and
was collected by Monojit Choudhury and his team [3]. The
second one contains 10,117 messages and was collected at the
Department of Computer Science at the National University
of Singapore by students [9]. These collections are called
smsCorpus and smsLarge.The statistics of used files is shown
in Table I.

V. EXPERIMENTS

Several experiments were performed. The total number of
possible variants may be calculated from four possible static
mappings (none, SMS, SMF, CON), five possible vector map-
ping (none, SMF G, SMF, CON G, CON) and tree possible
transformations (none, SepElim, LogVal). The total number is
4 × 5 × 3 = 60 and all were performed on all collections.
This section will contain only the most interesting result.
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all results are published in [14]. The configuration of the
testing computer is not important, because all experiments
were focused on the best possible compression ratio and not
on the compression time.

A. Experiments without static mapping

The first experiments were performed without static map-
ping. Therefore, each mapping function must be stored into
the output. The most effective mapping function is smf g for
both collections, but the variant without the adaptive mapping
scheme smf produces almost the same low count of symbols.
The difference between the con g and con mapping is higher
but still very small. Any of the mapping functions produces a
significantly lower count of symbols than the amount produced
without mapping functions. The most interesting results for
both collections are summarized in Table II. When the BWT-
based compression method was used, better results were
achieved without sepElim transformation. This transformation
reduces the number of clues, which leads to longer sequences
of symbols and, consequently, to better compression. The
mapping with minimization leads to an improvement in the
compression ratio from 1 to 6 percent.

As may be seen, the methods based on Boolean minimiza-
tion without static mapping are more suitable for the compres-
sion of short messages. The improvement in the compressed
ratio for short messages was up to 7%. The result size is
greatly affected by the size of the mapping function and, there-
fore, it is necessary to reduce the size of the mapping function
as far as possible. The transformations used for improving
efficiency were also important, because the compression ratio
achieved is much better when the transformations are used.

B. Experiments with static mapping

The second group of experiments was focused on static
mapping. Three different types of static mapping were tested.
The main advantage of the usage of static mapping is that the
mapping function is part of the compressor/decompressor and
not a part of the compressed data. This has one main advantage
and one main disadvantage. The advantage is that the mapping
function is not stored in the data and, therefore, the data are
much smaller than without static mapping. The disadvantage
is that the mapping function is more general than the mapping
function generated for each message, because it must produce
the best mapping for all the messages in the collections.

The significant attribute for static mapping is the source of
the knowledge used for the creation of the mapping function.
This source must have the same characteristics as the com-
pressed data to achieve good results. In our experiments, the
mapping function was generated from the compressed data
themselves.

The summarization of the results for SMS files is in Table
III. The best results for SMS files were achieved with sms
static mapping and sepElim transformation, but the results
without sepElim transformation are very close to the best
results. The improvement achieved is more than 20% in
comparison with pure algorithms for both files, but not as

good as may be expected from results without static mapping,
because the static mapping is modeled according to all the
messages, as mentioned above.

The compression method based on Boolean minimization
with static mapping are suitable for messages of any-size,
but better results were achieved for shorter messages. The
best combination of the parts of the compression framework
is sms static mapping without per-message mapping and
transformation for very short messages represented by both
sms collections.

VI. CONCLUSION

The proposed algorithm is designed for the compression
of very small text files. Very small text files are text files
with a length up to 500 B. The compression of these files
is very difficult, because all compression algorithms lack
enough information about the compressed data to achieve good
compression. The proposed algorithm introduces a new type
of transformation for compression - Boolean minimization, in
combination with additional transformation for solving this
problem. Briefly described, the proposed transformations lead
to the reducing of the size of the alphabet and increasing of
the context information in the data. Additional transformations
may be divided into 3 groups - static mapping, per-message
mapping, and symbol transformation. When no static mapping
is used, the algorithm needs no previous knowledge about the
compressed data; otherwise pre-compression analysis must be
performed. A comparison was performed of standard com-
pression algorithms without and with the proposed techniques.
When no static mapping was used, the compression achieved
was up to 8% better than without the proposed transformation.
When static mapping was used, the improvement achieved was
up to 25%.
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