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Abstract— The electroencephalogram (EEG) signal plays an 
important role in the detection of epilepsy. The EEG recordings 
of the ambulatory recording systems generate very lengthy data 
and the detection of the epileptic activity requires a time-
consuming analysis of the entire length of the EEG data by an 
expert. The aim of this work is to develop a new method for 
automatic detection of EEG patterns using wavelet based 
approximate entropy (ApEn) and probabilistic neural network 
(PNN). Our method consists of EEG data collection, feature 
extraction and classification stages. ApEn is a statistical 
parameter that measures the predictability of the current 
amplitude values of a physiological signal based on its previous 
amplitude values. In feature extraction stage we use best basis 
mother wavelet functions and wavelet thresholding technique. 
For the feature selection we have used a new methodology, that is 
minimal variance within class and maximal absolute difference 
between classes are used for feature selection. In classification 
stage we implement PNN to detect epileptic seizure detection. It 
is known that the value of the ApEn drops sharply during an 
epileptic seizure and this fact is used in the proposed system and 
overall accuracies as high as 100% can be achieved by using the 
proposed system..

Keywords— approximate entropy (ApEn), wavelet transform, 
artificial neural network (ANN), electroencephalogram (EEG), 
EEG classification, epilepsy, seizure detection, probabilistic 
neural network (PNN).

I. INTRODUCTION

Epilepsy is a chronic disorder characterized by recurrent 
seizures which may vary from muscle jerks to several 
convolutions. Estimated 1% of world population suffers from 
epilepsy [1], while 85% of them live in the developing 
countries. Epileptic detection is done from 
electroencephalogram (EEG) signal as epilepsy is a condition 
related to the brain’s electrical activity. Electroencephalogram 
(EEG) is routinely used clinically to diagnose, monitor and 
localize epileptogenic zone. Occurrence of recurrent seizures 
in the EEG signal is characteristics of epilepsy. In majority of 
the cases, the onset of the seizures cannot be predicted in a 
short period, a continuous recording of the EEG is required to 
detect epilepsy. The entire length of the EEG recordings is 
analyzed by expert to detect the traces of epilepsy. The 

traditional methods of analysis are tedious and time-
consuming and so many automated epileptic EEG detection 
systems have been developed [2]. This paper discusses an
automated epileptic EEG detection system using probabilistic 
neural network (PNN) using a time-frequency domain feature 
of the EEG signal called approximate entropy (ApEn). EEG 
data is first digitized. The digital EEG data is fed as an input 
to an automated seizure detection system in order to detect the 
seizures present in the EEG data. Approximate Entropy drops 
abruptly due to the synchronous discharge of large groups of 
neurons during an epileptic activity. Hence, it is a good 
feature to make use of in the automated detection of epilepsy.

    Entropy is a thermodynamic quantity describing the 
amount of disorder in the system. From an information theory 
perspective, the above concept of entropy is generalized as the 
amount of information stored in a more general probability 
distribution. First Shannon applied the concept of information 
or logical entropy to the science of information theory and 
data communications. Recently, a number of different entropy 
estimators [2] have been applied to quantify the complexity of 
the signal. Entropy estimators are broadly classified into two 
categories spectral entropies and embedding entropies. The 
spectral entropies use the amplitude components of the power 
spectrum of the signal as the probabilities in entropy 
calculations. It quantifies the spectral complexity of the time 
series. The embedding entropies use the time series directly to 
estimate the entropy. Kolmogorov—Sinai entropy and the 
approximate entropy are the embedding entropies discussed 
here [3].

The discrete wavelet transform is a versatile signal 
processing tool that has many engineering and scientific 
applications. DWT employs two sets of functions called 
scaling functions and wavelet functions, which are associated 
with low-pass and high-pass filters, respectively. The 
decomposition of the signal into the different frequency bands 
is simply obtained by successive high-pass and low pass 
filtering of the time domain signal. Subasi [4] deals with a 
novel method of analysis of EEG signals using discrete 
wavelet transform, and classification using ANN. The pseudo 
Wigner-Ville and the smoothed pseudo Wigner-Ville 
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distribution [5] was used for extracting features from the time-
frequency plane. PNN is predominantly a classifier since it 
can map any input pattern to a number of classifications. 
Among the main advantages that discriminate PNN is: Fast 
training process, an inherently parallel structure, guaranteed to 
converge to an optimal classifier as the size of the 
epresentative training set increases and training samples can 
be added or removed without extensive retraining. 
Accordingly, a PNN learns more quickly than many neural 
networks model, which led to its success on variety of 
applications. Based on these facts and advantages, PNN can 
be viewed as a supervised neural network that is capable of 
using it in system classification and pattern recognition [6]. 

The detection of epilepsy, which includes visual scanning 
of EEG recordings for the spikes and seizures, is very time 
consuming, especially in the case of long recordings. In 
addition, bio-signals are highly subjective so disagreement on 
the same record is possible, so the EEG signal parameters 
extracted and analyzed using computers, are highly useful in 
diagnostics. Automatic analysis of EEG recordings in the
diagnosis of epilepsy started in the early 1970s and lot of 
seizure detection algorithms have been developed. In this 
paper, approximate entropy-based epileptic EEG detection 
proposed by the author Vairavan Srinivasan et al [11], is used 
with some modified approach such as wavelet domain. Since 
wavelet has several advantages, it is both time and frequency 
based and it can simultaneously possess compact support, 
orthogonality, symmetry, and short support, and high order 
approximation.     

Therefore, main objective of this paper is to propose a 
novel feature extraction technique for the detection of epilepsy. 
The wavelet transformation is used for extracting 
Approximate Entropy and   a new methodology is presented 
for feature selection. The methodology is applied to two 
different groups of EEG signals for analysis of EEGs and 
EEG sub bands for detection of epileptic seizure: 1) healthy 
subjects; 2) epileptic subjects during a seizure (ictal EEG). 
Each EEG is decomposed into two constituent EEG sub bands: 
delta, theta, alpha, beta, and gamma using wavelet-based 
filters. The features such as Approximate Entropy of the 
wavelet coefficients are used to represent the time frequency 
distribution of the EEG signals in each sub-band of the 
wavelet transformation and the probabilistic neural network is 
used to detect epileptic EEG signals.

II. PROPOSED METHODOLOGY

As in traditional pattern recognition systems, the epileptic
seizure detection consists of main modules such as a feature 
extractor that generates a wavelet based feature from the EEG 
signals, feature selection that composes composite features, 
and a feature classifier (PNN) that outputs the class based on 
the composite features. The data flow of the proposed 
approach is illustrated in Fig. 1.

Fig. 1 Data flow diagram of the proposed system

A. Dataset Description

The data used in this research are a subset of the EEG data 
for both healthy and epileptic subjects made available online 
by Dr. Ralph Andrzejak of the Epilepsy Centre at the 
University of Bonn, Germany 
(http://www.meb.unibonn.de/epileptologie/science/physik/eeg
data.html) [1]. EEGs from two different groups: group H 
(healthy subjects) and group S (epileptic subjects during 
seizure) are analyzed. The type of epilepsy was diagnosed as 
temporal lobe epilepsy with the epileptogenic focus being the 
hippocampal formation. Each group contains 100 single 
channel EEG segments of 23.6 sec duration each sampled at 
173.61 Hz. As such, each data segment contains N=4097 data 
points collected at intervals of 1/173.61th of 1s. Each EEG 
segment is considered as a separate EEG signal resulting in a 
total of 200 EEG signals or EEGs. As an example, the first 6s 
of two EEGs (signal numbers in parentheses) for groups H 
(H029) and S (S001) are magnified and displayed in Fig. 2.

Fig. 2  Sample unfiltered EEGs (0–6 s) for (from top to bottom) Group H 
(H029) and Group S (S001)
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B. Wavelet Transformation

Wavelet transform is a spectral estimation technique in 
which any general function can be expressed as an infinite 
series of wavelets. The basic idea underlying wavelet analysis 
consists of expressing a signal as a linear combination of a 
particular set of functions (wavelet transform, WT), obtained 
by shifting and dilating one single function called a mother 
wavelet. The decomposition of the signal leads to a set of 
coefficients called wavelet coefficients. Therefore the signal 
can be reconstructed as a linear combination of the wavelet 
functions weighted by the wavelet coefficients. The key 
feature of wavelets is the time-frequency localization. It 
means that most of the energy of the wavelet is restricted to a 
finite time interval. 

The wavelet technique applied to the EEG signal will 
reveal features related to the transient nature of the signal, 
which is not made obvious by the Fourier transform. Adeli et 
al. [7] gave an overview of the discrete wavelet transform 
(DWT) developed for recognizing and quantifying spikes, 
sharp waves and spike-waves. In general, it must be said that 
no time-frequency regions but rather time-scale regions are 
defined. All wavelet transforms can be specified in terms of a 
low-pass filter, which satisfies the standard quadrature mirror 
filter condition. One area in which the wavelet transformation 
has been particularly successful is the epileptic seizure 
detection because it captures transient features and localizes 
them in both time and frequency content accurately. The 
wavelet transformation analyses the signal at different 
frequency bands, with different resolutions by decomposing 
the signal into a coarse approximation and detail information 
[8]. The decomposition of the signal into the different 
frequency bands is merely obtained by consecutive high-pass 
and low-pass filtering of the time domain signal. The 
procedure of multi-resolution decomposition of a signal x[n] 
is schematically shown in Fig. 3. Each stage of this scheme 
consists of two digital filters and two down-samplers by 2. 
The first filter, h[n] is the discrete mother wavelet, high pass 
in nature, and the second, g[n] is its mirror version, low-pass 
in nature. The down-sampled outputs of first high-pass and 
low-pass filters provide the detail, D1 and the approximation, 
A1, respectively. The first approximation, A1 is further 
decomposed and this process is continued as shown in Fig. 3. 
The EEG sub bands of a2, d2 and d1are shown in fig. 4.

Fig. 3 Two level wavelet decomposition

Selection of suitable wavelet and the number of 
decomposition levels is very important in analysis of signals 
using the wavelet transformation. The number of 
decomposition levels is chosen based on the dominant 
frequency components of the signal. In the present study, 
since the EEG signals do not have any useful frequency 
components above 30 Hz, the number of decomposition levels 
was chosen to be 2.  Thus, the EEG signals were decomposed 
into details D1–D2 and one final approximation, A2. Usually, 
tests are performed with different types of wavelets and the 
one, which gives maximum efficiency, is selected for the 
particular application. The smoothing feature of the 
Daubechies wavelet of order 4 (db4) made it more appropriate 
to detect changes of EEG signals. Hence, the wavelet 
coefficients were computed using the db4 in the present study. 
The proposed method was applied on both data set of EEG 
data (Sets H and S). In the discrete wavelet analysis, a signal 
can be represented by its approximations and details. The 
detail at level j is defined as

)(,k  j, taD kj

Zk

j 


                                                   (1)

and the approximation at level J is defined as





Jj

jj DA                                                   (2)

It becomes obvious that

jjj DAA  1                                                          (3)

and  



Jj

jj DAtf )(                                                (4)

Wavelet has several advantages, which can simultaneously 
possess compact support, orthogonality, symmetry, and short 
support, and high order approximation. We experimentally 
found that time-frequency domain feature provides superior 
performance over time domain feature in the detection of 
epileptic EEG signals.

Fig. 4 Level 2 decomposition of the band-limited EEG into three EEG sub 
bands using fourth-order Daubechies wavelet (s = a2+d2+d1)
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C. Feature Extraction

The proposed system makes use of a single feature called 
ApEn for the epileptic detection. The ApEn is a wavelet-
domain feature that is capable of classifying complex systems. 
The value of the ApEn is determined as shown in the 
following steps [9], [10].

1) Let the data sequence containing N data points be X = [x(1), 
x(2), x(3), . . . , x(N)].

2) Let x(i) be a subsequence of X such that x(i) = [x(i), x(i + 
1), x(i + 2), . . . , x(i + m − 1)] for 1 ≤ i ≤N − m, where m 
represents the number of samples used for the prediction.

3) Let r represent the noise filter level that is defined as 

r = k × SD                                                                                (5)

for k = 0, 0.1, 0.2, 0.3,…, 0.9 where SDis the standard 
deviation of the data sequence X.

4) Let {x(j)} represent a set of subsequences obtained from x(j) 
by varying j from 1 to N. Each sequence x(j) in the set of {x(j)} 
is compared with x(i) and, in this process, two parameters, 
namely Ci

m(r) and Ci
m+1(r) are defined as follows:

Ci
m(r)  = 

1

N m

j
k




                    N-m                                                                      (6)

where k =   1, if |x(i) − x(j)|≤r  for 1 ≤ j ≤ N − m

                       0, otherwise

and  Ci
m+1(r) =   

1

N m

j
k


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                               N-m                                                           (7)
with conditions depicted by (A) as shown at the bottom of the 
page.

5) We define Φm(r) and Φm+1(r)  as follows:

Φm(r) =  
1

ln( ( ))
mN m

i i
C r


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                         N−m                                                                (8)

Φm+1(r) =  
1

1
ln( ( ))

mN m

i i
C r


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                         N−m                                                                (9)

Small values of ApEn imply strong regularity in a data 
sequence and large values imply substantial fluctuations [11]. 
In the proposed approach, ApEn is calculated for one 
approximation and for detailed information such as a2 and d2.

D. Feature Selection

As discussed in the above section, 30 ApEn features have 
been obtained from each sub band leading to a total of 60 

ApEn features. As it consumes more time in processing these 
60 ApEn features, there is a need to select the best thirty 
features. Table. 1 shows the extracted features (ApEn) for the 
sub bands for the sample set A. These best features are 
selected by our novel approach which involves choosing the 
feature having minimal variance within the class and 
maximum absolute difference between the classes. Variance 
has been calculated for each class of sample set to find the 
minimal variance. And absolute difference between classes of 
sample set to find the maximal difference.

TABLE I
FEATURE EXTRACTION  SAMPLE DATA – SET A

Set Sub-bands ApEn

H

D1 -12513000

D2 295

A2 -101890

S

D1 -4391700000

D2 47289

A2 -16616000

E. Probabilistic Neural Network Classifier

The classification of EEG signals into healthy and epileptic 
signals is done using the probabilistic neural network. The 
architecture of the PNN is shown in Fig. 5. In machine 
learning, a classifier is essentially a mapping from the feature 
space to the class space. An Artificial Neural Network (ANN) 
implements such a mapping by using a group of 
interconnected artificial neurons simulating the human brain. 
An ANN can be trained to achieve expected classification 
results against the input and output information stream, so 
there may not be a need to provide a specified classification 
algorithm. There is no need to train the network over the 
entire data set again, so we use PNN to enable quick updates 
of our network as more patients’ data becomes available. Our 
PNN has three layers: the Input Layer, the Radial Basis Layer 
which evaluates distances between the input vector and rows 
in the weight matrix, and the Competitive Layer which 
determines the classification with maximum probability of 
correctness. Dimensions of matrices are marked under their 
names.
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Fig. 5 PNN structure, R: number of features, Q: number of training samples, 
K: number of classes. 

1)  Input Layer: The input vector, denoted as p, is 
presented as a black vertical bar in Fig. 5. The input layer unit 
does not perform any computation and simply distributes the 
input to neurons in the pattern layer. On receiving a pattern x 
from input layer, the neuron xij of the pattern layer computes 
its output using the below formula.     

T
ij ij

ij 0.5d d 2

( ) ( )1
( ) exp

(2 ) 2

  
       

x x x x
x                      (10)

Where d denotes dimension of the pattern vector x,   is the 
smoothing parameter and xij is the neuron vector.

2)         Radial Basis Layer: In the Radial Basis Layer, 
the vector distances between input vector p and the weight 
vector, made up of each row of the weight matrix W are 
calculated. Here, the vector distance is defined as the dot 
product between two vectors. The dot product between p and 
the i-th row of W produces the i-th element of the distance 
vector matrix, denoted as ||W− p||. The bias vector b is then 
combined with ||W−p|| by an element-by-element 
multiplication, represented as “•×” in Fig. 5. The result is 
denoted as n = ||W−p||•×b. The transfer function in PNN has 
built into a distance criterion with respect to a center. In this 
paper, we define it as radbas(n) = e−n2 . Each element of n is 
substituted into the transfer function and produces 
corresponding element of a, the output vector of Radial Basis 
Layer. We can represent the i-th element of a as ai = 
radbas(||Wi−p||•×bi), where Wi is the i-th row of W, and bi is 
the i-th element of bias vector b. 

Radial Basis Layer Weights: Each row of W is the feature 
vector of one training sample. The number of rows is equal to 
the number of training samples. 

Radial Basis Layer Biases: All biases in the radial basis layer 
are set to √ln0.5/s, resulting in radial basis functions that cross 
0.5 at weighted inputs of ±s, where s is the spread constant of 
PNN. According to our experience, s = 0.1 can typically result 
in the highest accuracy. Summation layer neurons compute 
the maximum likelihood of a pattern x being classified into Ci, 
by averaging the output of all neurons that belong to the same 
class using

i
TN

ij ij
i 0.5d d 2

j 1i

( ) ( )1
P( ) exp

N (2 ) 2

  
      


x x x x

x                 

(11)

Where Ni denotes the total number of samples in class Ci.

3)  Competitive Layer: There is no bias in the Competitive 
Layer. In this layer, the vector a is first multiplied by the layer 
weight matrix M, producing an output vector d. The 
competitive function C produces a 1 corresponding to the 
largest element of d, and 0’s elsewhere. The index of the 1 is 
the class of the EEG segment. M is set to a K×Q matrix of Q 
target class vectors. If the i-th sample in the training set is of 
class j, then we have a 1 on the j-th row of the i-th column of 
M. The decision layer classifies the pattern x in accordance 
with Bayes decision rule based on the output of all summation 
layer neurons using 

 iĈ( ) arg max P ( ) , i 1, 2,.., m x x                                       (12)

Where   denotes the estimated class of pattern x, and m is the 
total number of classes in training samples.
Hence, PNN employed in this work possesses 30 nodes in the 
input layer and 2 nodes in the output layer (the number of 
nodes in the output layer is the number of classifications of 
EEG signals). The performance of the neural model was 
evaluated in terms of training performance and classification 
accuracies and the results confirmed that the proposed scheme 
has potential in classifying the EEG signals.

III. RESULTS AND DISCUSSION

ApEn values are computed for selected combinations of m, r, 
and N. The values of m, r, and N that are used for the 
experiments are as follows: ) m = 1, 2, 3; r = 0%–90% of SD 
of the data sequence in increments of 10%; and N = 4097. 
ApEn values are computed for both normal and epileptic EEG 
signals and are fed as inputs to the two neural networks. 
Among the available 100 EEG data sets, 50 data sets are used 
for training and the remaining data sets are used for testing the 
performance of the neural networks. The potentiality of the 
ApEn to discriminate the two signals, namely, normal and 
epileptic EEG signals depends on the values of m, r, and N. 
Fig. 6 shows Receiver Operating Characteristics Curve for the 
overall detection accuracy (%) obtained by the PNN using 
ApEn as the input feature. The experimental results show that 
our PNN using wavelet based ApEn can well preserve the 
most discriminant information of EEG signals and improve 
the performance over the exiting system in terms of detection 
rate. PNN gives good overall accuracy values in the range 
98% - 100%, only for a few combinations of m, r, and N (e.g., 
m = 1, r = 0× SD for all the values of N and m = 3,  r = 0.2 × 
SD, N = 4097). Though the use of ANNs increases the 
computational complexity, the high overall detection 
accuracies are achieved with this system surpasses its 
disadvantage as in any automated seizure detection system, the 
detection of the seizure with high accuracy is of primary 
importance.
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Fig. 6. ROC Curve: Overall Classification Rate 

Our experimental results are based on data sets corresponding 
to five different subjects only. The optimum ApEn parameter 
values obtained based on this data may not hold good for a 
general case. Hence, using a linear separator with known 
ApEn parameter values may not give good results in situations 
where a large number of different subjects are involved. This 
problem will not arise in the proposed PNN-based method as 
it has performed well irrespective of the ApEn parameter 
values used. It is shown that our wavelet based ApEn 
possesses good characteristics such as robustness in the 
characterization of the epileptic patterns and low 
computational burden. Hence, an automated system using 
wavelet based ApEn as the input feature is best suited for the 
real time detection of the epileptic seizures. The proposed 
system is based on two types of EEG, namely, EEG signals of 
awake and epileptic subjects. It can be made more robust by 
acclimatizing it to the other manifestations of EEG like sleep 
EEG. 

IV. CONCLUSION

In this paper, the neural network namely Probabilistic Neural 
Network (PNN), has been employed for the automated 
detection of epilepsy. A robust and computationally low-
intensive feature such as wavelet domain based Approximate 
Entropy (ApEn) has been used for the proposed epileptic 
detection system and a new approach has been used for feature 
selection in order to reduce the dimension and increase the 
computation speed. Experimental results show that overall 
accuracies as high as 100% can be achieved by this system. As 
the proposed system is based on a single feature that has a low 
computational burden, it is best suited for the real-time 
detection of epileptic seizures from ambulatory recordings.
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