
Improving Dependability of Complex Information

Systems by Fast Service Relocation
Dariusz Caban

#1
, Tomasz Walkowiak

#2

#
Institute of Computer Engineering, Control and Robotics,

Wroclaw University of Technology

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
1
dariusz.caban@pwr.wroc.pl

2
tomasz.walkowiak@pwr.wroc.pl

Abstract— The paper presents an approach to improving

dependability of service based information systems. The analyzed

system consists of services that use data, obtained in interaction

with other services, to produce responses. During system

exploitation, various incidents can occur due to software defects

or security attacks. The effects of these incidents can be

minimized by service relocation. There are usually multiple

choices of relocations that can be applied to bring up the failed

services. Some service locations may adversely affect the

network traffic or overload the hosts. A systematic approach is

proposed in the paper, based on the construction of a system

reconfiguration graph. Service availability is predicted by system

simulation that takes into account the consumption of

communication resources (link bandwidth) and computational

resources (host processing power). The resultant relocation

strategy can be used to limit the effects of both foreseen and

unpredictable incidents.

Keywords— Include at least 5 keywords or phrases

I. INTRODUCTION

Complex Web based information systems are rapidly

becoming a common day commodity. Given the importance

of this technology, it is essential to provide measures

improving their dependability and security. Fast service

relocation is a natural (often intuitively applied by system

administrators) and potentially very efficient technique for

improving service dependability and its resilience to the

various faults and malfunctions. There is no clear rationale on

how to apply reconfiguration in such situations, i.e. how to

construct a reconfiguration strategy to improve overall system

dependability.

A. Avizienis, J.C. Laprie and B. Randell introduced the

concept of service dependability to provide a uniform

approach to analyzing all aspects of providing a reliable

service: hardware faults, software errors, human mistakes and

even deliberate user misbehavior. Dependability is defined as

the capability of systems to deliver service that can justifiably

be trusted [1]. The visibility of faults is characterized by the

concept of fault – error – failure trichotomy.

The improvement of service dependability is the aim of a

number projects, as the Web based systems are currently

becoming the critical infrastructure of almost any business

activity. In particular, the system view adopted in the paper is

based on the rationale developed in the European Community

6th Framework Project “Dependability and Security by

Enhanced Reconfigurability DESEREC” [5].

II. SYSTEM MODEL

The analyzed class of Web systems is described on 3 levels.

On the top level, it is represented by interacting service

components. At the bottom level it is described by hosts, on

which the services are located, and by network connections

providing communication between the services. The

intermediate level describes the mapping between the other

two.

A. Services

Service components (interacting applications) are

responsible for providing responses to queries originating

either from the system clients or from other service

components. While computing the responses, service

components acquire data from other components by sending

queries to them. The system comprises of a number of such

components. The set of all services, comprising a Web system,

is denoted as W.

Communication between Web services works on top of

Internet messaging protocols. The communication

Fig. 1 System choreography – an example sequence diagram

ICIT 2011 The 5th International Conference on Information Technology

encompasses data exchange using the client-server paradigm.

The over-all description of the interaction between the service

components is determined by its choreography, i.e. the

scenarios of interactions that produce all the possible usages

of the system. A very simple choreography description is

presented in Fig.1. It describes a very common Web service

architecture based on a front-end JSP server with an EJB

application and a back-end database. The system serves static

pages (e.g. EntryPage) and information requiring computation

and database access (e.g. PerformList).

The service components interact with each other in

accordance with the choreography. As the result, there are

logical connections between service components W×W.

Interactions generate demand for the computational resources

on the nodes running the components. They also generate

demand for the communication throughput. The

communication demand is 0, if the services do not interact.

B. Local Network

The service components are deployed on a network of

computers. This underlying communication and computing

hardware is abstracted as a collection of interconnected hosts.

Fig. 2 presents a possible network that may be used to provide

the services described in Fig. 1.

The set of hosts is represented as V, whereas the set of the

available connections is described as L ⊂ V×V. Each node is

characterized by its maximum load. Similarly, each

connection is characterized by its maximum throughput

(resulting either from the installed hardware or SLA

agreements with network providers). It is assumed that the

throughput between unconnected nodes is by definition 0.

C. System Configuration

System configuration is determined by the deployment of

service components onto the hosts. This is characterized by

the subsets of services deployed at each node W(v) ⊂ W, i.e.

 []VvWvW ∈⊂= ,)(θ . (1)

A configuration ensures system operability if the services

are so deployed that the nodes are not overloaded and the

demand for communication between them is met. This is

verified by comparing the maximum loads and throughputs

against the computing and communication demands of

services on each host. The set of all possible configurations θθθθ

that meet these conditions is denoted by Θ.

Relocation of services modifies the system configuration.

Usually, it occurs as a routine procedure of system

maintenance. Particularly interesting, from the point of view

of dependability, relocation of services may be used to

mitigate the consequences of a hardware/software failure or a

security incident. It is then a method of exercising functional

redundancy existing in the system.

III. TAXONOMY OF FAULTS

There are numerous sources of faults in a complex Web

system. These encompass hardware malfunctions (transient

and persistent), software bugs, human mistakes, exploitation

of software vulnerabilities, malware proliferation, drainage

type attacks on system and its infrastructure (such as ping

flooding, DDOS). We propose a classification of the faults

that is not based on its primary source, but on the effect it has

on the system. Particularly, we consider the suitability of

service relocation as a remedy to the fault.

It should be stressed that the occurrence of a fault may

escape detection for some time. This may be the case in all the

considered classes of hardware/software faults. It is almost a

rule in case of security incidents. In all these cases the incident

containment and recovery procedures can be applied only

after detection. This also applies to the proposed relocation

techniques. For this reason the proposed taxonomy of faults,

as described in Fig. 3, is addressed to the detected faults only.

Undetected faults can proliferate through the system,

eventually causing detected propagation faults, data

inconsistencies in the system, and in some cases corrupting

some hosts.

Fig. 2 An example of system infrastructure

ICIT 2011 The 5th International Conference on Information Technology

In the considered approach, the hosts and communication

channels are the basic components of the system. Thus, all the

faults are attributed to them (and not to particular hardware or

software components). It should also be noted that the

communication faults are usually handled at the infrastructure

level (by retransmission, error correction techniques, rerouting,

etc.). They are rarely allowed to propagate to the system view

as discussed in this paper. Thus, even though they are

indicated in the taxonomy, we will not consider them as the

potential events initiating relocation.

 The faults can either affect a host or only a service running

on it. We distinguish the following classes of faults that affect

the host:

Host crash – the host cannot process services that are

located on it, these in turn do not produce any responses to

queries from the services located on other hosts.

Performance fault – the host can operate, but it cannot

provide the full computational resources, causing some

services to fail or increasing their response time above the

acceptable limits.

Host infection – caused by the proliferation of software

errors, effects of transient malfunctions, exploitation of

vulnerabilities, malware propagation. The operation of ser-

vices located on the host becomes unpredictable and

potentially dangerous to services at other nodes (service

corruption fault). Due to the potential damage that the host

may cause, it is usually isolated from the system. This is

equivalent to a crash fault with potential service corruption.

The faults that affect a single service can be classified on

the basis of their aftereffects as:

Inaccessible service – the service component becomes

incapable of responding to requests, due to exploitation of

vulnerabilities or a DOS attack. This fault can be location

dependent (location locked fault), in which case relocation

may be a fast and effective remedy. On the other hand, it may

be service locked, in which case relocation will be ineffective

and potentially dangerous to the new location. Relocation

should never be applied in this case.

Corrupted service – the service commences to produce

incorrect or inconsistent responses due to software errors or

vulnerabilities. Usually, this is a propagated fault that can be

simply eliminated by restarting the affected software. This

type of fault does not need relocation, though relocation will

be effective (since it ensures software restart). It should be

noted, though, that the effects of a corrupted service propagate

to other service components, possibly locating on other hosts.

These may also need recovery.

Propagating errors and malware may cause more persistent

effects, by corrupting the system database. This type of faults

(data inconsistencies) can be very costly to recover. Tech-

nically, though, they are also remedied by service restart from

the last valid backup point.

Fig. 3 sums up all the discussed types of faults. It should be

noted that they all lead to system failure if left unhandled.

Service relocation may preserve the system functionality in

case of the faults shaded in the diagram. Very light shading

indicates fault types for which relocation may be an over-

reaction. Normal shading indicates fault types that should be

handled by relocation. Dark shading indicates faults that may

require additional handling, besides relocation. The faults

marked with double frame should never initiate relocation.

IV. RECONFIGURATION GRAPH

Service relocation changes the system from one permissible

configuration to another. There are various situations when a

relocation may be desired, we concentrate only on recon-

figurations following a specific fault occurrence as discussed

above. The faults cause some hosts to be inaccessible or

overloaded. Reconfiguration is achieved by moving the

affected services to other nodes.

Reconfiguration is based on the analysis of the set of

admissible configurations, which are not affected by the faults

of the current system state. Any configuration in the collection

is an equivalent candidate target for reconfiguration (from the

point of view of dependability).

The reconfiguration graph [3] reflect the possible changes

in the service deployment, that tolerate the various node faults.

Set Θ is at the root of the graph. The branches leaving the root

correspond to the various faults of the nodes. They point at

subsets of Θ produced by eliminating the configurations with

Detected fault

Host fault Service component
fault

Host crash Performance fault Host infection Inaccessible
service

Corrupted service

Communication
fault

Propagated fault

Data inconsistency

Location locked
fault

Service locked
fault

Fig. 3 Proposed taxonomy of detected faults

ICIT 2011 The 5th International Conference on Information Technology

service components located on the faulty hosts. Targets of

branches leaving the nodes with these subsets, corresponding

to subsequent faults, are produced by eliminating further

affected configurations. This is continued until the elimination

produce empty sets that correspond to combinations of faults

that cannot be tolerated by any reconfiguration, i.e. leading to

system failure. An example of such a graph is shown in Fig.

4a.

The nodes of the reconfiguration graph contain sets of

configurations. As shown in [2], the choice of any one of them

is equivalent from the point of view of service dependability.

Relocation strategy is constructed by choosing just one

configuration from the set in each node of the graph (see Fig.

4b). Usually there are numerous different strategies that can

be constructed in this way. Optimal strategy is obtained by

choosing the best configuration in each node of the

reconfiguration graph, identified by performance simulation.

V. SERVICE AVAILABILITY

Dependability is an integrative concept [1] that encom-

passes: availability (readiness for correct service), reliability

(continuity of correct service), safety (absence of catastrophic

consequences), confidentiality (absence of unauthorized

disclosure of information), integrity (absence of improper

system state alterations), maintainability (ability to undergo

repairs and modifications).

The faults, considered in the paper, cause the system to fail

when they affect the system ability to generate correct

responses. This is best characterized by the service

availability, defined as the probability that the system is

operational (provides correct responses) at a specific time

instance t. In stationary conditions, most interesting from the

practical point of view, availability is time invariant,

characterized by a constant coefficient, denoted as A.

An interesting property of the service availability is derived

in the theory of ergodic processes. It is shown that availability

is asymptotically equal to the ratio of total system uptime tup

to the operation time t, i.e.

t

t
A

up

t ∞→
= lim . (2)

Assuming a uniform rate of requests, the asymptotic

assessment of availability may be further transformed:

N

N
A OK

N ∞→
= lim , (3)

where NOK is the number of requests correctly handled by

the system exposed to a stream of N requests.

This yields a common in the network community

understanding of availability as the number of properly

handled requests, expressed as a percentage of all the requests.

The two assessments are equivalent only if the request rate is

uniform and all the requests arriving during system uptime

are correctly handled.

The relocation of services improves the availability by

extending the system uptime. From this point of view every

relocation strategy, derived in Chapter IV, yields similar

availability (ratio of uptime to the operational time horizon).

System simulation is proposed for the assessment of service

availability using the metric given by equation (3). We assume

a certain frequency of service requests and determine the

number of responses that are produced in acceptable response

time. The simulator calculates the timing metrics of

request/response messages, disregarding the fine details of the

underlying communication protocols. The client sends a

service request to a system component. The component may

require further requests to be sent to other components in

v1 v2 v3

v2

v1,v2v3

v1

v3

v3

Fig. 4 An example of a reconfiguration graph (a) and one of the possible relocation strategies developed on its basis (b)

a)
b)

ICIT 2011 The 5th International Conference on Information Technology

accordance with the system choreography. After some

processing delay, each component responds to the requesting,

one by one, and finally the user receives the response. The

user request execution time is calculated as a sum of times

required for network communication and times of tasks

processing at each host. The request is correctly handled if

the responses to each request in the sequence are given within

a defined time limit (time-out parameter of each request), if

the number of tasks executed by a server simultaneously does

not exceed its limit and the host on which the request is

processed is not faulty.

The simulation based service availability assessment differs

significantly in case of the various relocation strategies. This

is mainly caused by the fact that the operational

configurations are unable to handle all the requests correctly.

This is to be expected: relocating services from a failed host

almost always overloads the system resources that are still

operational.

A large number of network simulators is available.

However, general purpose network simulators have some

disadvantages: simulation results are hard to interpret, they

require very detailed system description with numerous

parameters, they use large amount of computational resources

(memory and processing). Therefore, we developed a

proprietary simulator [6] based on the SSF kernel [4], using

PRIME implementation (http://www.primessf.net).

We use the simulator to calculate the service availability for

all the significant service deployments. Then, at each node of

the reconfiguration graph, we choose the configuration with

highest availability.

VI. CASE STUDY

Let’s consider a simple example of a service oriented

system, with choreography described by Fig. 1. It consists of 3

service components: a server based on JSP technology, an

Enterprise JavaBeans component and a relational database

service. The choreography describes various client tasks and

interactions between the components.

Initially, the service components are deployed on separate

hosts connected by a local network. This is shown in Fig. 2.

The various hosts have different processing capabilities, such

that all the three components cannot be simultaneously

deployed on Server A or Server C. Any other deployment

satisfies the resources requirement (i.e. it is a permissible

configuration). Analyzing these configurations, the

corresponding reconfiguration graph is constructed, as shown

in Fig.3a.

The results of simulating the service availability are given

in Table I, for some configurations (others were omitted for

the sake of brevity). For the purpose of simulation, the service

demand was assumed as 500 concurrent clients. This was well

within the maximum throughput of a fully operational system,

as demonstrated by the 100% availability of configuration 1

(this should be expected in a well designed system). Changes

of configuration resulted in reduced availability, though. On

the basis of the simulation results, the optimal relocation

strategy is proposed in Fig. 3b.

The results of simulation strongly depend on multiple

parameters describing hosts, communication bandwidths,

computational requirements. These simulation parameters are

available on request from the authors.

TABLE I

SIMULATION RESULTS OF SERVICE AVAILABILITY

Id. JSP

Component

Database EJB Availability

1 Server A Server C Server B 100%

2 Server A Server B Server B 26%

3 Server A Server A Server B 13%

4 Server C Server C Server B 94%

5 Server B Server C Server B 65%

6 Server A Server C Server A 70%

7 Server A Server C Server C 77%

8 Server B Server B Server B 24%

VII. CONCLUSIONS

The proposed approach to dependability oriented service

relocation is shown as a feasible tool for improving the

availability of Wed based systems. It does not replace the

techniques for improving the security and dependability of the

hosts and software. Still, it has a visible impact on the overall

service availability, providing a last resort remedy when the

normal safeguards fail.

REFERENCES

[1] A. Avizienis, J. Laprie, B. Randell, “Fundamental Concepts of
Dependability,” in Proc. 3rd IEEE Information Survivability Workshop,
Boston, Massachusetts, 2000, pp. 7-12.

[2] D. Caban, “Reconfiguration of Complex Information Systems with
Multiple Modes of Failure,” in Monographs of System Dependability,

Models and Methodology of System Dependability, Oficyna Wyd.
Politechniki Wrocławskiej, Wrocław 2010, pp. 36-47.

[3] D. Caban, W. Zamojski, “Dependability analysis of information systems
with hierarchical reconfiguration of services,” in Proc. 2nd

International Conference on Emerging Security Information, Systems

and Technologies SECURWARE, IEEE Press, 2008, pp. 350-355.
[4] D. Nicol, J. Liu, M. Liljenstam, Y. Guanhua, “Simulation of large scale

networks using SSF,” in Proc. 2003 Winter Simulation Conference,
Vol. 1, 2003, pp. 650−657.

[5] P. Pérez, B. Bruyère, “DESEREC: Dependability and Security by
Enhanced Reconfigurability,” European CIIP Newsletter, vol. 3, no. 1,
2007.

 [6] T. Walkowiak, “Information systems performance analysis using task-
level simulator,” in Proc. DepCoS - RELCOMEX 2009, IEEE Computer
Society Press, 2009, pp. 218−225.

ICIT 2011 The 5th International Conference on Information Technology

