
Workflow Wrapper for Unstructured Workflows 
Boris Milašinović, Krešimir Fertalj 

Faculty of Electrical Engineering and Computing, University of Zagreb  

Unska 3, 10000 Zagreb, Croatia 

boris.milasinovic@fer.hr 

kresimir.fertalj@fer.hr 

 
Abstract— Modelling workflow for prerequisite relations 

produces well-defined and well-formed workflow that contains 

only and-splits and and-joins. Such workflow often cannot be 

transformed to a structured workflow. Workaround based on 

elements cloning produces similar structured workflow that 

corresponds to original workflow, but requests design of a 

workflow wrapper that does necessary adjustments in the 

runtime. This paper presents key elements of an implementation 

of such workflow wrapper using Windows Workflow Foundation 

and describes the data structure for storing data about clones 

and methods to properly handle clones in the runtime. Moreover, 

presented solution use web services and as such extends the 

number of supported client platforms. 

 

Keywords— workflow management, workflow wrapper, 

unstructured workflows. Windows Workflow Foundation 
 

I. INTRODUCTION 

Decoupling the system components is essential to keep a 

system flexible enough to handle unnecessary changes during 

development and maintenance. It usually means using multi 

layer architecture where at least three layers should exist: 

presentation layer, business layer and data layer. As noted in 

the guidelines for designing the business layer of an 

application [12] one of the tasks would be to separate 

workflow component inside business layer. Recognizing 

business process, implementing it successfully and enabling 

further changes are crucial for automating company’s 

operations and here lies the importance of the workflow 

component. Workflow separates when and in which order to 

do from how it should be done and ease maintenance of the 

system. Moreover, graphical representation of the workflow 

makes business process easier to understand to wider 

spectrum of people.  

A. Workflow Appliance and Diversity 

Although traditionally related to enterprise systems, 

workflow management finds its usage in various types of 

applications, especially in those where some prerequisite 

relations has to be modelled. Some appliance of prerequisite 

relations between workflow elements can be found in merging 

dependencies between UML components [6], in modelling 

course prerequisites in learning management systems [3], [10], 

[16], in modelling relationships between workflow sub-

components of a learning management system [22] or in 

modelling workflow-based data integration for e-learning 

systems [21].  

Decision to use workflow component is just one piece of 

business process modelling puzzle. Choosing appropriate 

workflow management software is not an easy task. As noted 

in [1] in year 2000 existed more than 30 proprietary workflow 

management systems and the number increased during the 

years with the numerous open source systems. Despite 

WfMC’s [20] efforts to standardize the systems and ensure 

interoperability, different approaches and company policies 

produced several standards. In [8] standard workflow patterns 

had been defined and survey has been done that shown that 

most of the systems support just basic workflow patterns. 

Further problem is that even those basic patterns are not 

enough to model simple prerequisite relations as it will be 

shown in the next sections.  

For sake of presentation in this article authors decided to 

use Windows Workflow Foundation [19] (in further text WF) 

as it is integral part of .NET framework, it is interoperable 

with other systems using web services and it supports 

persistence. When dealing with workflows it is assumed that 

workflow component defines and coordinates long running, 

multistep business processes. Persistence service is needed to 

save the state of the idled workflow and to restore it again 

when interaction with workflow is needed. In this way, 

memory resources are saved and data loss is avoided in case 

of host restart. Moreover, using WF it is possible to start a 

workflow from one type of application (e.g. web application) 

and continue it from another type of application (e.g. windows 

application).   

B. Usage Restrictions 

While using workflows the authors encountered two main 

problems that have to be solved – expanding use of workflows 

in heterogeneous environment (especially in those including 

mobile applications) and modelling unstructured workflows. 

Formal definition of structured workflow is given in [7] where 

is stated that many workflow management systems allow only 

structured workflows. As it will be shown in the next chapter 

this limitation can be significant obstacle when modelling 

prerequisite relationships.  

Both problems are further elaborated in the next chapter, 

followed by the proposed solution in the third chapter. The 

proposed solution consists of writing a workflow wrapper that 

will either act as a proxy to applications that will otherwise be 

unable to use created workflows and also as a separate layer 

that handles complexity of the proposed workaround for 

unstructured workflows.  

 

ICIT 2011  The 5th International Conference on Information Technology 



II. MAIN PROBLEMS 

A. Limitation based on client platform 

As system can consist of heterogeneous clients and 

components, defining the layer boundaries and successfully 

communicating between them is necessary to have the 

functional system. In such scenario exposing workflows and 

content delivery as a web service is essential to extend the 

scope of usage. Similar principle was used in some e-learning 

systems [18], [4]. In this way, better separation of layers is 

enabled and set of possible client’s platforms has been 

extended [17]. Workflows created using WF and exposed as 

Windows Communication Foundation (WCF) service are 

theoretically available to all types of clients that can use 

SOAP protocol to consume a web service. Practical problem 

occurs with long running workflows where persistence service 

has to be used. For such situations clients must support 

context binding that creates context channel for 

communication between client and workflow service. Context 

channel manages the unique conversation identifiers for the 

interactions. Conversation identifier enables recognition of a 

particular workflow element that needs to receive the 

particular message as shown in Fig. 1. The problem with the 

context binding is that it is not supported on all types of client 

platforms. An example of a client that cannot use such context 

binding directly is a mobile application. A workaround 

consists of creating a new web service that will act as a proxy 

for those clients. This is done as described in chapter III as a 

part of a proposed workflow wrapper. 

 

 

Fig. 1 Conversation management using workflow instance and conversation 

identifier [14] 

B. Unstructured workflows 

Prerequisite relations between elements can be graphically 

presented with directed arcs between vertices. Direction of an 

arc defines dependency of target vertex on source vertex. If 

the graph is connected and have only one source and one sink 

vertex, graph can be mapped to well-formed workflow but not 

necessary to structured workflow. In [7] authors define 

workflow as a well-behaved if it can never lead to deadlock 

nor it can result in multiple active instances of the same 

activity. Another research [5] defines well-formed workflows, 

relate them to well-behaved workflows and define 

prerequisites that well-formed workflow must have in order to 

be structured. Tools for transforming a process model into a 

corresponding structured model [15] and for translating an 

unstructured workflow to a structured BPEL model [9], [2] 

automate the transformation, but not all models can have their 

structural pair. Moreover, in [11] it has been shown that 

workflow containing only and-splits [20] is always well-

behaved but does not have a structured mapping if it does not 

meet certain requirements. Those requirements are, intuitively 

expressing, that each and-split is paired with corresponding 

and-join. In [13] it is shown that already simple prerequisite 

modelling produces graphs that cannot have structured 

mapping and provided workaround for that. Workaround 

consists of element cloning (duplication) with adjustment in 

the runtime that would ensure that clones behave as single 

element and that no data duplication occurs. 

B

G

C D

A

FE

                    

B

G

C1 D

A

FE

C2

 
Fig. 2 Unstructured workflow and resulting structured workflow 

Before describing how these runtime adjustments should be 

implemented, the idea from [13] is briefly described using two 

graphs from Fig. 2. The left graph corresponds to an 

unstructured workflow. If vertex C is cloned into two 

instances C1 and C2, and if C1 is prerequisite for E and C2 is 

prerequisite for F that would lead to structured workflow 

model presented by the right graph. The right graph is 

equivalent to a structured workflow that can easily be 

transformed into a WF-model (or any other concrete workflow 

model). In the runtime it has to be assured that C1 and C2 are 

shown as a single instance of C. [13] has described how to 

find elements that have to be cloned but did not specify how 

runtime adjustments have to be done. Although clone 

handling can be done anywhere, writing workflow wrapper 

hides duplication problems from other layers in the system 

and exposes only unique instances to other layers of the 

application. 

Wrapper 

database

Mobile

applicationWeb application Standalone

application

WF-workflows

Workflow Wrapper

Web services

Notification

 
Fig. 3 Architecture diagram of a workflow wrapper and involved components 

 

ICIT 2011  The 5th International Conference on Information Technology 



III. WORKFLOW WRAPPER 

Fig. 3 shows the architecture diagram that cover scenarios 

in which workflow wrapper can be used. Workflow wrapper 

will act as a proxy for clients that cannot support WF directly 

and it will encapsulate complexity of proper handling of 

element clones. Specially adapted content delivery and 

notifications about newly started elements for clients that are 

not always connected (such as mobile clients) are done by 

writing custom plugins for a particular client. Data about 

clients, running workflows and plugins are stored in wrapper 

configuration database. (Note: Development of those plugins 

is out of the scope of this paper.) 
 

A. Wrapper Internal Structure 

Internal structure of the workflow wrapper consists of 

several configuration files that define WCF binding 

configurations and the database that contains four tables 

shown in Fig. 4. Purpose of the database is to store and 

retrieve data about elements and workflows. When new 

instance of a workflow is started, workflow instance identifier 

is assigned to user and saved to WorkflowInstance table. 

Context of the workflow instance is saved to 

WorkflowInstanceContext. When new element is started 

workflow instance identifier and element identifier (in a 

particular workflow) are paired with newly created element’s 

global unique identifier and its conversation identifier is 

stored in ConversationId table. Conversation identifier of any 

later started clone of an existing element is also stored in the 

ConversationId table, but new global unique identifier for that 

element is not created and inserted in Element table. Data in 

tables WorkflowInstanceContext and ConversationId are used 

to reconstruct channel context and deliver message to 

appropriate element in the workflow.  

Communication between system components is regulated 

with WCF communication contract shown in Table I. 

Workflow wrapper implements all of these methods, but of a 

particular interest are two methods: ElementStarted and 

ElementFinished. 

  

 

Fig. 4 Workflow wrapper database 

 

TABLE I 

COMMUNICATION CONTRACT METHODS 

public interface IWFCommunicationContract{ 
 [OperationContract] Dictionary<string, string> GetMyWorkflows(string username);
 [OperationContract] string StartWorkflow(string WorkflowName); 
        [OperationContract] string CancelWorkflow(string WorkflowName); 
        [OperationContract] void ElementStarted(string ElementId, string WorkflowInstanceId,  
                                                string ConversationId); 
        [OperationContract] void ElementFinished(string ElementGuid); 
        [OperationContract] void CancelElement(string ElementId); 
 [OperationContract] void TimeElapsed(string ElementId); 
        [OperationContract] List<string> GetWFStatus(string WorkflowInstanceId); 
        [OperationContract] byte[] GetWFStatusImage(string WorkflowInstanceId); 
} 

ICIT 2011  The 5th International Conference on Information Technology 



 

B. Single element conversion 

Each element from the prerequisite model can be 

represented with two WF-activities as shown in Fig. 5.  (Note: 

Figure has been simplified for the sake of presentation. 

Concrete implementation may also contain additional 

activities if element cannot be started until some specific time 

or must be finished before some specific time) 

 

 

Fig. 5 Custom WF-activity for each element 

 

The first activity is of type SendActivity bound to method 

ElementStarted from the communication contract. The 

purpose of this activity is to notify external system (in this 

case workflow wrapper) that particular element is activated. 

As it does not carry any specific semantic meaning it is on the 

external system to interpret what it means and undertake 

further actions as running plugins for notifications and/or 

content delivery. When an element is finished, client will call 

method ElementFinished on workflow wrapper web service. 

After that, workflow wrapper will call the same method on all 

element clones and that calls will activate the second activity 

from Fig. 5 – activity of type ReceiveActivity bound to method 

ElementFinished. As all elements have these two activities, 

recognizing correct ReceiveActivitiy that should be activated 

on incoming request is determined using the unique 

conversation identifiers. 

C. Workflow wrapper’s main algorithms 

In addition to extending number of supported platforms, 

workflow wrapper purpose is to hide complexity of handling 

elements clones. This is done by implementing methods 

ElementStarted (of type SendActivity) and ElementFinished 

(of type ReceiveActivity). Pseudo code for the implementation 

of these two methods in the workflow wrapper is shown in 

Table II. When custom WF-activity from Fig. 5 starts, it calls 

ElementStarted method on the workflow wrapper and sends 

element identifier, current workflow instance identifier and 

conversation identifier of ReceiveActivity that follows 

immediately after itself. Workflow wrapper then looks up in 

table ElementId searching if this element has been already 

started which would mean that it is a clone of an existing 

element. If started element is not a clone, workflow wrapper 

creates new global unique identifier for this element and loads 

notification and action module (contained in the appropriate 

plugins). In either way, it saves received conversation 

identifier as it will be used in ElementFinished method. 

When ElementFinished method is called, workflow 

wrapper loads data stored for received element global 

identifier. Data contains workflow instance identifier, 

workflow instance context and data about all clones of the 

element bound to this global identifier. For each conversation 

identifier, wrapper will call corresponding ReceiveActivity in 

the workflow instance and in this way, all clones will be 

finished. 

  

 

TABLE II 
PSEUDO CODE OF ELEMENTFINISHED AND ELEMENTSTARTED IMPLEMENTATION 

ElementStarted(elementId, wfInstanceId, conversationId) 

 elementGuid := GetFirstGuid(elementId, wfInstanceId) 

 if elementGuid is not defined then 

  elementGuid := InsertElement(elementid, wfInstanceId) 

  InvokeNotificationModule(elementId, wfInstanceId, elementGuid) 

  InvokeActionModule(elementId, wfInstanceId, elementGuid) 

 SaveConversationId(elementGuid, conversationId) 

 

 

ElementFinished(elementGuid) 

 wfInstanceId := GetWorkflowInstanceId(elementGuid) 

 context := LoadContextData(wfInstanceId) 

 workflowName := GetWorkflowName(wfInstanceId) 

 binding := GetBindingTypeAndEndpoint(workflowName) 

 channelFactory := CreateWCFChannelFactory(binding) 

 C := GetConversationIds(binding) 

 for each conversationId in C do 

  NotifyWorkflow(context, conversationId, channelFactory) 

ICIT 2011  The 5th International Conference on Information Technology 



IV. CONCLUSION 

Modelling workflow for prerequisite relations produces 

well-defined and well-formed workflow that often cannot be 

transformed to a structured workflow. Due to this, either some 

modifications to the model has to be introduced or custom 

workflow management software has to be written. Solution 

with cloning elements and designing workflow wrapper for 

handling clones represents a compromise in order to use 

existing workflow management software with minimal 

development of custom software. Moreover, as most of the 

workflow management software limit the number of the 

clients based on clients platform, presented workflow wrapper 

that use web services for communication extends the number 

of supported client platforms. Extensibility of a system is 

achieved using two types of plugins: plugin that will notify 

disconnected users that new element has been started, and 

plugin for invoking concrete action (content delivery or even 

start of a new workflow) for the started element. In this way 

workflow just models relationship between elements without 

further tight coupling with element semantic. 

REFERENCES 

[1] W. van der Aalst and K. van Hee, Workflow management. Models, 

Methods and Systems, MIT Press, Cambridge, Massachusetts, USA, 
2004. 

[2] W. van der Aalst, and K. Lassen, ―Translating Unstructured Workflow 

Processes to Readable BPEL: Theory and Implementation,‖  
Information and Software Technology, vol. 50, no. 3, pp 131-159, 2008 

[3] M. Cesarini, M. Monga, and R. Tedesco, ―Carrying on the e-Learning 

process with a Workflow Management Engine,‖ in Proc. ACM Symp. 
Applied Computing, Nicosia, Cyprus, 2004, pp 940-945. 

[4] K. Fertalj, N. Hoić-Božić, and H. Jerković, ―The Integration of 

Learning Object Repositories and Learning Management Systems,‖ 
Computer Science and Information Systems, vol. 7, no. 3, pp 387-407, 

2010. 

[5] R. Hausser, M. Friess, J. M. Küster, and J. Vanhatalo, ―Combining 
Analysis of Unstructured Workflows with Transformation to 

Structured Workflows,‖ in Proc. 10th IEEE Int. Enterprise Distributed 

Object Computing Conference, Hong Kong, China, 2006, pp 129-140. 
[6] Y. B. Hlaoui, and L. J. B. Ayed, ―An Interactive Composition of UML-

AD for the Modelling of Workflow Applications,‖ Ubiquitous 

Computing and Communication Journal, vol. 4, no. 3, pp. 599-608,  
2009. 

[7] B. Kiepuszewski, A ter Hofstede, and C. Bussler, ―On Structured 
Workflow Modelling,‖ Lecture Notes in Computer Science, vol. 1789, 

pp. 431-445, 2000. 

[8] B. Kiepuszewski, ―Expressiveness and Suitability of Languages for 

Control Flow Modelling in Workflows,‖ Ph.D. dissertation, 

Queensland University of Technology, Brisbane, Australia, 2003. 

[9] K. Lassen, and W. van der Aalst, ―WorkflowNet2BPEL4WS: A Tool 
for Translating Unstructured Workflow Processes to Readable BPEL,‖ 

Lecture Notes in Computer Science, vol. 4275, pp. 127-144, 2006. 

[10] L. Lin, C. Ho, W. Sadiq, and M. E. Orlowska, ―Using Workflow 
Technology to Manage Flexible e-Learning Services,‖ Educational 

Technology & Society, vol. 5, no. 4, pp. 116-123, 2002. 

[11] R. Liu, and A. Kumar, ―An analysis and taxonomy of unstructured 
workflows,‖ Lecture Notes in Computer Science, vol. 3649, pp. 268-

284, 2005. 

[12] Microsoft Patterns & Practices Team, Microsoft Application 
Architecture Guide (Patterns and Practices), 2nd ed., Microsoft Press, 

Redmond, USA, 2009. 

[13] B. Milašinović, and K. Fertalj, ―Using partially defined workflows for 
course modelling in a learning management system,‖ The 4th Int. Conf. 

Information Technology (ICIT-2009), Amman, Jordan, 2009. 

[14] M. Milner. (2008) Workflow Services. MSDN Magazine, Launch Issue 
[Online] Available: http://msdn.microsoft.com/en-

us/magazine/cc164251.aspx#S5 

[15] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas, ―Structuring 

Acyclic Process Models,‖ Lecture Notes in Computer Science, vol. 

6336, pp. 276-293, 2010. 

[16] S. Sadiq, W. Sadiq, and M. Orlowska, ―Workflow Driven e-Learning – 
Beyond Collaborative Environments,‖ International NAISO Congress 

on Networked Learning in a Global Environment, Challenges and 

Solutions for Virtual Education. Berlin, Germany, 2002. 
[17] T. Vantroys, and J. Rouillard, ―Workflow and Mobile Devices in Open 

Distance Learning,‖ in Proc. IEEE Int. Conf. Advanced Learning 

Technologies, Kazan, Russia, 2002, pp. 123-127. 
[18] G. Vossen, and P. Westerkamp, ―E-learning as a Web service 

(extended abstract)‖, in Proc. 7th Int. Conf. Database Engineering and 

Applications, Hong Kong, China, 2003, pp. 242-249. 
[19] (2010) Windows Workflow Foundation website. [Online]. Available: 

http://msdn.microsoft.com/en-us/netframework/aa663328.aspx 
[20] (2010) Workflow Management Coalition website. Terminology & 

Glossary: Document Number WFMC-TC-1011 - Document Status - 

Issue 3.0 [Online]. Available: http://www.wfmc.org/Download-
document/WFMC-TC-1011-Ver-3-Terminology-and-Glossary-

English.html 

[21] S. Xi, and J. Yong, ―New Data Integration Workflow Design for e-

Learning,‖ Lecture Notes in Computer Science, vol. 4402, pp 699-707, 

2007. 

[22] J. Yong, ―Workflow-based e-learning platform,‖ in Proc. 9th Int. Conf. 
Computer Supported Cooperative Work in Design, Coventry, UK, 

2005, vol. 2, pp. 1002-1007. 

 

ICIT 2011  The 5th International Conference on Information Technology 


