
Implementing Serpent Cipher in Field Programmable

Gate Arrays
Jaroslaw Sugier

Wroclaw University of Technology

Institute of Computer Engineering, Control and Robotics

ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland

jaroslaw.sugier@pwr.wroc.pl

Abstract— The Serpent cipher finished second in the AES contest

and although it was not chosen as the winner it was widely

praised for excellent cryptographic strength and efficiency.

Nowadays main attention is turned towards the Rijndael

algorithm (the AES standard) but the Serpent method still

deserves due consideration as a viable alternative. This paper

investigates possible hardware implementations of the cipher in

Field Programmable Gate Array (FPGA) devices. The paper

stresses solutions that follow pure data-path approach: structure

of the hardware is organized along the way of propagation of

data being processed from the plain text to cipher text, without

modifications that would re-use hardware for iterative

repetitions of some transformations in order to reduce total

design size and resource occupancy. Although the iterative

organization is natural for round-based ciphers and is used in

vast majority of projects presented in literature, here we aim

specifically at combinatorial and pipelined architectures in order

to illustrate interesting new potential that can be exploited

especially in case of this cipher in programmable FPGA

environment. The target implementation platform is Spartan-3E

family from Xilinx, probably the most popular devices in low-

cost applications at present time.

Keywords— Serpent cipher, cryptography processor, FPGA,

hardware implementation

I. INTRODUCTION

Ciphers are used in many applications of contemporary IT

systems and they play the crucial role in preserving their

security, safety and reliability. In this work we discuss low-

cost FPGA implementations of the Serpent ([2]) cipher. Based

on the original results that are presented here one can

investigate the potential of the method and evaluate expenses

at which the superior efficiency can be achieved.

Today, after many years of official use of the ciphers that

were developed for the AES contest, there are numerous

hardware implementations of the algorithms that use both

mask- and field-programmable gate arrays ([5], [6], [9], [11],

[12], [14]). Most of the solutions described in the literature are

highly customized for specific device architectures and / or

operating environments. Their excellent performance

parameters were possible thanks to elaborate optimizations,

often including manual fine-tuning during mapping, layout

and routing stages of FPGA implementation. Hardware

platforms for these projects demanded the fastest, largest and

also most expensive chip families in the FPGA world.

Such “top-notch specialization” approach was natural in the

early years of AES conception, but today the situation has

changed thanks to ever-growing capacity of programmable

devices. First of all, the cipher units became just one of the

modules in the system-on-the chip implemented in a popular,

often low-cost, FPGA. In designs of this kind the AES

optimization cannot dominate the whole project. Secondly, in

common equipment designed for personal use the encoding /

decoding throughput parameters does not need to reach multi-

Gbps values; numbers in the range of single Gbps are

sufficient for popular transmission channels like High-Speed

USB or mass-storage devices. In this situation not the

performance of the unit (generally understood almost always

as high data throughput) but its flexibility and fast, fully

automatic implementation become a highly valued features

that smoothes the progress of the design and reduces time-to-

market. In this paper problem of effective Serpent

implementation is considered taking these new aspects into

account.

II. THE SERPENT CIPHER

An easy way to comply with the conference paper

formatting requirements is to use this document as a template

and simply type your text into it.

A. Organization of the Algorithm

Serpent ([2]) is a symmetric block cipher that belongs to a

class of substitution-permutation networks (SPN). It was

developed by Ross Anderson (University of Cambridge

Computer Laboratory), Eli Biham (Technion Israeli Institute

of Technology), and Lars Knudsen (University of Bergen,

Norway). In the version that was submitted for AES contest

the method operates on 128 bit blocks of data using in the

processes a 256 bit external key. The transformation flow is

divided into 32 uniform rounds repeated over the data block

with each round consisting of (nearly identical) sequence of

elementary operations. Each round requires its special 128-bit

round key; since the last round needs two keys, total of 33

different round keys are required and these are generated from

the external key in a separate key schedule.

Fig. 1 represents data transformations that constitute the

encryption process. Let P be a 128b plaintext, Bi – a data

block that enters the i-th round Ri, Ki – the round key, C –

encoded ciphertext. Before the plaintext block enters the

procedure a special bit reordering – so called Initial

ICIT 2011 The 5th International Conference on Information Technology

Permutation IP – is performed. The plaintext P after

permutation gives block B0, which is the input to the first

round. The output of the first round (R0) is B1, the output of

the second round (R1) is B2, the output of round i is Bi+1, and

so on, until the output of the last round is received as B32.

Then the Final Permutation FP (which is an inverse of IP) is

applied to give the ciphertext C.

Inside the 32 rounds the actual encoding is carried out. The

first 31 ones (0…30) are identical and the last one (31) is

slightly modified. As the first transformation in each round,

the block Bi is XOR-ed with the round key Ki that is supplied

by the key schedule. The resulting vector is then passed

through Substitution Boxes. The algorithm defines 8 different

S-Boxes numbered 0 … 7 with each round Ri using S-Box

number i mod 8. The vector created by S-Boxes undergoes

Linear Transformation LT giving block Bi+1 that is the input to

the next round. In the last round R31 the linear transformation

is replaced with XOR operation with the last key K32

(therefore two keys are required in this round).

The whole data path from the plaintext P to the ciphertext

C can be formally described by a sequence of the following

equations:

 B0 := IP(P) (1)

 Bi+1 := LT(SBoxi mod 8(Bi ⊕ Ki)), i = 0 … 30 (2)

 B32 := SBox7 (B31 ⊕ K31) ⊕ K32 (3)

 C := FP(B32) (4)

B. Elementary Transformations

The three elementary operations that make up the rounds

are: key mixing, bit substitution and linear transformation. Of

these three, the first one is just an 128-bit 2-input XOR

operation, but the latter are more evolved and require more

complex implementations that must be designed according to

specification.

Like in Rijndael, static substitution boxes perform the non-

linear transformation of the data block in every round. Unlike

the AES winner which applies repeatedly the same one 8x8

substitution, the Serpent defines 8 different 4x4 S-boxes (i.e.

mappings of 4 bits into 4 bits) with each round using just one

S-box. As a result each S-box is used in precisely four rounds,

and in each of these it is used 32 times in parallel to transform

the whole 128-bit block. In the initial version of the algorithm

the authors adopted the S-boxes from DES in order to ensure a

high level of public confidence that no secret trapdoor was

inserted in them. Later, after public investigation of properties

of DES S-boxes that was inspired by new advances in

differential and linear cryptanalysis, a new (and better) ones

were proposed with even stronger immunity to attacks. Again,

to keep high level of public confidence their contents was

generated by a special numerical routine which was explicitly

clarified and justified.

As far as the linear transformation that concludes the

rounds is concerned, initially simple rotations of the 32-bit

subwords were proposed. In order to ensure maximal

avalanche effect, the idea was to choose these rotations in a

way that guaranteed maximal effect in the fewest number of

rounds. However, as the avalanche was still slow, the authors

had to move to more complex transformations and found the

XOR operation sufficiently effective: each output bit of the LT

is the exclusive-or of specific (from 3 to 7) input bits. More

complex operations like words addition were also investigated

but their cost was too high in both hardware and software

implementations and therefore they were dropped ([2]).

C. The Key Schedule

The task of the key schedule is to generate 33 round keys Ki

from the external key K that is supplied by the user. The key K

can be of almost any length but when the proposal for AES

standard was formulated it was fixed at 128, 192 or 256 bits

with special expansion procedure that is to be applied to keys

i = 31?

Plaintext P

Initial Permutation IP

Round Key Ki

S-Box i mod 8

Data Block Bi

Linear Transform. LT Round Key K32

Final Permutation FP

Ciphertext C

i < 31?

i := 0

All signals and

data paths are128b

i := i + 1

Fig. 1 Data processing during Serpent encryption in iterative representation.

ICIT 2011 The 5th International Conference on Information Technology

with less than 256 bits. The procedure maps short keys to the

full length by appending one “1” bit to the MSB end, followed

by as many “0” bits as required to make up 256 bits. This

routine maps every short key to a full-length key with no two

short keys being equivalent and ensures that the key schedule

receives as an input external key that is exactly 256 bits long.

The schedule first creates a set of 32-bit prekeys wi. The

starting 8 prekeys numbered from –1 to –8 are simply filled

with bits of the external (user) key K:

 {w–1, w–2, … w–8} := K (5)

and then another 132 prekeys w0…w131 are generated by the

following affine recurrence:

 wi:=(wi–1⊕wi–3⊕wi–5⊕wi–8⊕φ⊕i) <<< 11 (6)

where <<< denotes rotation and φ is the fractional part of

the golden ratio () 215 + (represented as 32-bit vector

0x9E3779B9 in hexadecimal notation). The underlying

polynomial x
8
 + x

7
 + x

5
 + x

3
 + 1 is primitive, which together

with the addition of the round index guarantees an even

distribution of key bits throughout the rounds and eliminates

weak and related keys.

The round keys are now calculated from the prekeys using

the same set of 8 substitution boxes that are defined for the

cipher path. The general rule is that the key Ki is computed

from a group of four prekeys w4i, w4i+1, w4i+2 and w4i+3 that

undergoes bit substitution and reordering:

 K0 := IP(SBox3(w0, w1, w2, w3))

 K1 := IP(SBox2(w4, w5, w6, w7))

 … (7)

 K31 := IP(SBox4(w124, w125, w126, w127)

 K32 := IP(SBox3(w128, w129, w130, w131)

To avoid repetitive use of the same substitution as later in

the round, during computation of Ki the schedule uses S-boxes

number (3 – i) mod 8.

III. HARDWARE IMPLEMENTATION

Apart from simplicity of elementary operations, ease of

hardware implementation of the Serpent algorithm comes

from the fact that its processing flow is composed of (almost)

identical rounds that are repeatedly executed over a given

block of data. This leads to many potential processing

schemes that blend different flavors of combinational,

pipelined and iterative architectures ([5], [10], [13], [14]).

Fig. 2 graphically represents cipher transformations

equivalent to equations (2) (cipher path) and (6)—(7) (key

schedule). As it can be seen, data dependency is more

complex in case of key computations since key for round Ri is

generated form prekeys of the two preceding rounds, Ri-1 and

Ri-2.

A. Combinational Architecture

In this organization hardware structure closely follows flow

of the data that is being encoded. All 32 rounds of the cipher

are implemented as separate hardware modules and create

a continuous combinational path from the inputs (user key K

and plain text P) to the output (cipher text C). The complete

unit operates as a combinational module that transforms 128 +

256 = 384 input bits (data + key) into 128 output bits (cipher)

with some propagation delay.

w4i

w4i+2

w4i+3

w4i+1
Ki

3
2
 ×

 S
B

o
x

Bi

32 × SBox

LT

R
o

u
n

d
 R

i
w4i–1

w4i–2

w4i–3

w4i–4

w4i–5

w4i–6

w4i–7

w4i–8

R
i

–
 1

R

i
–
 2

32b 128b

 Key schedule Cipher path

Bi+1

Fig 2. Data paths in single round of the Serpent cipher. The contents of the first prekey words w–1 … w–8 needed in rounds R0 and R1 are

taken from the external key K. In the last round R31 additional key mixing with K32 is performed instead of the linear transformation LT.

ICIT 2011 The 5th International Conference on Information Technology

The hardware implementing one round is organized along

identical paths as those in Fig. 2, that summarized data

transformations within the round: computation of the keys

relies on 32-bit prekey words wi while the data path

transforms 128-bit vectors Bi. The RTL code that describes

this organization identifies the required number of internal bit

vectors and defines combinational modules that are

represented by solid ovals on the diagram: the substitution

boxes (8 versions) and the linear transformation component

(one version for all rounds). There are no flip-flops used in

this solution.

B. Cipher-Only Pipelined Architecture

General idea of pipelining is to introduce evenly spaced

extra registers in the middle of the combinational circuit in

such a way that several blocks of data can be processed at the

same time during one clock cycle. In the architecture

presented above the natural points of placing the pipeline

registers are signals Bi that cross boundaries of cipher rounds;

this transforms each round into one pipeline stage. In technical

terms such organization can be interpreted as 32-stage outer

loop pipelining ([5]). Valid output appears 32 clock cycles

after input and the unit requires 32×128 = 4096 flip-flops for

pipeline registers.

The problem with this approach is that the key schedule

path remains combinational and this fact slows down changes

of the external key during operation: loading a new key

invalidates the pipeline contents for 32 clock ticks until new

data fill all the stages. This may exclude this architecture from

environments with frequent key changes but if the key

remains constant most of the time it is the optimal

organization in terms of both speed and size.

C. Fully Pipelined Architecture

To synchronize computation of the round keys with

operation of the cipher path the key schedule must be

pipelined in an equivalent way. This task is additionally

complicated by more complex data dependencies in the path;

detailed presentation of the proposed solution and discussion

of its specific features can be found in [15].

Describing briefly, simple estimation based on Fig. 2 would

suggest introducing just 33 × 128 = 4224 flip-flops for storage

of the key bits in all rounds, but in order to guarantee proper

synchronization of the both paths (cipher + key) as well as to

achieve optimal timings final solution needs to be more

complicated. First of all, since the keys are computed from wi

words these also must be stored in another 4224 flip-flops and

this number must be doubled to keep wi contents for two clock

ticks (the key Ki depends on prekeys form the two preceding

rounds, Ri-1 and Ri-2). Such a high flip-flop utilization usually

is not a problem in case of FPGA hardware, since there is

sufficient amount of registers in programmable blocks along

data paths that remains unused in combinational circuits. As

the implementation has shown, this is true also in the case of

this project and the automatic implementation tool has had no

special problems dealing with design layout and routing even

after introducing over 16000 flip-flops.

Furthermore, the last cipher round needed additional

modification. Because it uses two keys – K31 and K32 – to

follow the structure of key schedule it also must be split into

two stages: the first one contains key mixing with bit

substitution and the second one performs only key mixing.

This increases total length of the pipeline to 33 stages. Finally,

to achieve optimal timing key computation and actual data

encoding can be done in parallel provided that the cipher

pipeline is delayed for one clock cycle so that the round Ri is

computed one cycle later after the key Ki. As a result total

number of pipeline stages increased from 33 to 34 but, at the

same time, minimum clock period could be reduced by nearly

1/3.

D. Deciphering Units

In Serpent the only way to decipher an encoded block is to

execute the same set of 32 rounds in reversed order with

elementary operations replaced by their inversed versions. The

specification contains definition of inverse substitution boxes

as well as an inverse linear transformation. From hardware

point of view the nature of both operations remains unchanged:

the inverse S-boxes are just 4-input Boolean functions and the

inverse LT is computed by a XOR network, although a more

complex one (the underlying polynomials have higher degree

thus require more gates in implementation).

As the same set of 33 round keys must be generated from

the external key, the key schedule remains identical but now

the keys are used in reversed order (K32 first, K0 last) so they

must be pre-computed and available before the actual

deciphering can be started. This requirement makes any key

schedule pipelining unreasonable in decoding; of the

architectures considered above only the first two ones

(combinational and cipher-only pipelined) were used for

construction. A diagrams analogous to Fig. 2 representing

decoding paths is not included to save space but its structure

can easily be deduced.

IV. IMPLEMENTATIONS

All the considered architectures were implemented in

Xilinx XC3S1600E-5 device using the Xilinx Synthesis Tool

(XST) and ISE Design Studio ([15]) and the results are

summarized in Table 1. The implementation was fully

automatic and the optimization was set to “speed” with

appropriate constrains specified in UCF file being the only

optimization goals. In all cases the design consisted of the full

cipher path and the key schedule unit, i.e. it constituted the

complete encoding or decoding unit. All the architectures fit

the Spartan-3E chip, with combinatorial one taking only 68%

of the array and fully pipelined organizations occupying all

logical blocks, yet using not more than 81% of available

LUTs and 58% of flip-flops. This fact indicates that more

dense packing is still possible if extra space for another

components co-existing in the same chip would be required.

The simplest combinational architecture is not only the

smallest one but also offers the minimal latency of 150 ns,

although this leads to throughput below 1Gbps. With regard to

throughput criterion alone, the cipher-only pipelined

ICIT 2011 The 5th International Conference on Information Technology

organization is the winner as it offers the highest frequency of

operation. It must be remembered, though, that this design

performs poorly in applications were frequent changes of the

external key must be supported. If this condition must be met

the fully pipelined architectures should be selected.

As expected, deciphering unit has slightly worse timing

parameters that its encoding counterpart due to somewhat

more complex implementation of the inverse linear

transformation.

V. CONCLUSIONS

A. Serpent vs. AES (Rijndael) in FPGA Implementations

Compared to 8x8 S-boxes required in Rijndael, the fact that

Serpent uses 4×4 substitutions, i.e. combinational functions of

4 input variables, greatly simplifies their implementation in

FPGA device. As the elementary parts available in the logic

cells of the Spartan-3E array that are used for synthesis of any

combinational function – the Look-Up Tables (LUT) – have 4

inputs, each output bit of the S-box can be computed by

exactly one LUT, i.e. by the minimal amount of resources.

Transformation of the whole block requires 128 LUTs in

every round and the entire path with 32 rounds needs 4096

LUTs.

An equivalent realization of Rijndael S-boxes would need

much more resources. Being an 8-input function, every output

bit would now require 2
8
 / 16 = 16 LUTs for storing the

substitution function alone plus some additional LUTs for

multiplexing their outputs (in terms of ROM organization: for

address decoding). Even without the extra multiplexing logic

this would require 128 x 16 = 2048 LUTs in each round and

20480 LUTs in the entire 10-round cipher. The difference is

so big that it practically prohibits implementation of Rijndael

substitution function in LUT elements; instead, larger

synchronous Block RAM modules must be used but they,

consequently, make purely combinational (asynchronous)

operation of the module impossible ([5], [13], [14]).

Feasibility of combinational implementation seems to be one

of the most interesting differences between FPGA

implementations of Serpent and Rijndael and therefore it was

explored in this paper.

B. Final Remarks

The Serpent cipher remains overshadowed by the winner of

the AES selection procedure – the Rijndael algorithm – but

nevertheless it should not be forgotten since it offers better

security. At the time of AES selection its extra cost coming

from larger number of rounds (33 vs. 10 in Rijndael) was

important but today this cost difference has been reduced by

the progress in capacity and capabilities of programmable

devices, as the results presented in this text show.

Additionally, relative simplicity of its substitution boxes

creates new options for hardware implementations that are not

available in case of the Rijndael.

In general Serpent is well suited to fully automatic FPGA

synthesis and implementation: the software tools can deal with

its regular, round-based structure quite efficiently despite the

size of the whole design, producing acceptable results without

user intervention involving hand optimizations of layout or

routing. Finally, although this paper is intentionally

concentrated on combinational and pipelined organizations, if

hardware size is critical the algorithm can be equally well

implemented in iterative architectures.

TABLE I

DIFFERENT ARCHITECTURES OF SERPENT MODULE IMPLEMENTED IN XC3S1600E DEVICE ([15])

Architecture:

C
o

m
b

in
a

ti
o

n
a

l

C
o

m
b

in
a

to
ri

a
l

(d
ec

ip
h

er
in

g
)

C
ip

h
er

-o
n

ly

p
ip

el
in

ed

C
ip

h
er

-o
n

ly

p
ip

el
in

ed
 (

d
ec

.)

F
u

ll
y
 p

ip
el

in
ed

Slices (of 14752) 9 999 11 748 11 897 11 926 14 750

LUTs (of 29504) 18 756 22 184 22 680 22 960 24 331

Flip-flops (of 29504) 0 0 4 224 4 096 16 768

tmin [ns] 150 162 6.5 6.7 7.3

fmax [MHz] 6.7 6.2 154 149 137

Throughput [Mbps] 854 791 19 692 19 116 17 534

Pipeline stages 1 1 32 32 34

Latency [ns] 150 162 208 214 248

Mbps per slice 0.085 0.067 1.66 1.60 1.19

Critical path delay: logic

 route

44.7%

55.3%

49.3%

50.7%

47.4%

52.6%

49.5%

50.5%

43.5%

56.5%

ICIT 2011 The 5th International Conference on Information Technology

REFERENCES

[1] RSA Laboratories, DES Challenges, http:// www.rsa.com, pp. 1997–99.

[2] R. Anderson, E. Biham, L. Knudsen, “Serpent: A Proposal for the

Advanced Encryption Standard”, The First Advanced Encryption

Standard (AES) Candidate Conference, Ventura, California, August

20–22, 1998 (http://www.cl.cam.ac.uk/~rja14/serpent.html), 1998.

[3] R. Anderson, E. Biham, L. Knudsen, “The Case for Serpent”, The

Third Advanced Encryption Standard Candidate Conference, April 13–

14, 2000, New York, USA (proceedings available from http:

//csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm), 2000.

[4] R. Anderson, E. Biham, L. Knudsen, “Serpent and Smartcards”, Smart

Card Research and Applications, Proc. 3rd International Conference

CARDIS '98, Louvain-la-Neuve, Belgium, September 14–16, 1998.

Lecture Notes in Computer Science, Volume 1820, Springer, 2000.

[5] K. Gaj, P. Chodowiec, “Comparison of the hardware performance of

the AES candidates using reconfigurable hardware”, The Third

Advanced Encryption Standard Candidate Conference, April 13–14,

2000, New York, USA (proceedings available from

http://csrc.nist.gov/encryption/aes/ round2/conf3/aes3conf.htm), 2000.

[6] P. Mroczkowski, “Implementation of the block cipher Rijndael using

Altera FPGA”, Military University of Technology, Warsaw, 2000.

[7] D. A. Osvik, “Speeding up Serpent”, The Third Advanced Encryption

Standard Candidate Conference, April 13–14, 2000, New York, USA

(proceedings available from http://csrc.nist.gov/

encryption/aes/round2/conf3/aes3conf.htm), 2000.

[8] National Institute of Standards and Technology, “Specification for the

Advanced Encryption Standard (AES)”, Federal Information

Processing Standards Publication 197, November 26, 2001

(http://www.csrc.nist.gov), 2001.

[9] J. Lazaro, A. Astarloa, J. Arias, U. Bidarte, C. Cuadrado, “High

Throughput Serpent Encryption Implementation”, Field Programmable

Logic and Application, Lecture Notes in Computer Science, Volume

3203, Springer, 2004.

[10] P. P. Chu, RTL Hardware Design Using VHDL, John Wiley & Sons,

New Jersey, 2006.

[11] M. Liberatori, F. Otero, J. C. Bonadero, J. Castineira, “AES-128

Cipher. High Speed, Low Cost FPGA Implementation”, Proc. Third

Southern Conference on Programmable Logic, Mar del Plata,

Argentina, IEEE Comp. Soc. Press, 2007.

[12] M. Wójcik, “Effective implementation of Serpent algorithm”,

dissertation for M.Sc. degree, Faculty of Electronics and Information

Technology, Warsaw University of Technology, 2007.

[13] Ł. Krukowski, J. Sugier, “Designing AES cryptographic unit for

automatic implementation in low-cost FPGA devices”, Int. J. Critical

Computer Based Systems, Vol. 1, Nos. 1/2/3, 2010, pp. 104–116.

[14] K. Piwko, “Hardware implementation of cryptographic algorithms in

programmable logic devices”, dissertation for M.Sc. degree, Wrocław

University of Technology, Faculty of Electronics, 2010.

[15] J. Sugier, “Low-cost hardware implementation of Serpent cipher in

programmable devices”, Monographs on System Dependability Vol. 3:

Technical Approach to Dependability, Oficyna Wydawnicza

Politechiki Wrocławskiej, Wrocław, 2010.

ICIT 2011 The 5th International Conference on Information Technology

