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Abstract— The Serpent cipher finished second in the AES contest 

and although it was not chosen as the winner it was widely 

praised for excellent cryptographic strength and efficiency. 

Nowadays main attention is turned towards the Rijndael 

algorithm (the AES standard) but the Serpent method still 

deserves due consideration as a viable alternative. This paper 

investigates possible hardware implementations of the cipher in 

Field Programmable Gate Array (FPGA) devices. The paper 

stresses solutions that follow pure data-path approach: structure 

of the hardware is organized along the way of propagation of 

data being processed from the plain text to cipher text, without 

modifications that would re-use hardware for iterative 

repetitions of some transformations in order to reduce total 

design size and resource occupancy. Although the iterative 

organization is natural for round-based ciphers and is used in 

vast majority of projects presented in literature, here we aim 

specifically at combinatorial and pipelined architectures in order 

to illustrate interesting new potential that can be exploited 

especially in case of this cipher in programmable FPGA 

environment. The target implementation platform is Spartan-3E 

family from Xilinx, probably the most popular devices in low-

cost applications at present time. 

 

Keywords— Serpent cipher, cryptography processor, FPGA, 

hardware implementation 

I. INTRODUCTION 

Ciphers are used in many applications of contemporary IT 

systems and they play the crucial role in preserving their 

security, safety and reliability. In this work we discuss low-

cost FPGA implementations of the Serpent ([2]) cipher. Based 

on the original results that are presented here one can 

investigate the potential of the method and evaluate expenses 

at which the superior efficiency can be achieved. 

Today, after many years of official use of the ciphers that 

were developed for the AES contest, there are numerous 

hardware implementations of the algorithms that use both 

mask- and field-programmable gate arrays ([5], [6], [9], [11], 

[12], [14]). Most of the solutions described in the literature are 

highly customized for specific device architectures and / or 

operating environments. Their excellent performance 

parameters were possible thanks to elaborate optimizations, 

often including manual fine-tuning during mapping, layout 

and routing stages of FPGA implementation. Hardware 

platforms for these projects demanded the fastest, largest and 

also most expensive chip families in the FPGA world. 

Such “top-notch specialization” approach was natural in the 

early years of AES conception, but today the situation has 

changed thanks to ever-growing capacity of programmable 

devices. First of all, the cipher units became just one of the 

modules in the system-on-the chip implemented in a popular, 

often low-cost, FPGA. In designs of this kind the AES 

optimization cannot dominate the whole project. Secondly, in 

common equipment designed for personal use the encoding / 

decoding throughput parameters does not need to reach multi-

Gbps values; numbers in the range of single Gbps are 

sufficient for popular transmission channels like High-Speed 

USB or mass-storage devices. In this situation not the 

performance of the unit (generally understood almost always 

as high data throughput) but its flexibility and fast, fully 

automatic implementation become a highly valued features 

that smoothes the progress of the design and reduces time-to-

market. In this paper problem of effective Serpent 

implementation is considered taking these new aspects into 

account. 

II. THE SERPENT CIPHER 

An easy way to comply with the conference paper 

formatting requirements is to use this document as a template 

and simply type your text into it. 

A. Organization of the Algorithm 

Serpent ([2]) is a symmetric block cipher that belongs to a 

class of substitution-permutation networks (SPN). It was 

developed by Ross Anderson (University of Cambridge 

Computer Laboratory), Eli Biham (Technion Israeli Institute 

of Technology), and Lars Knudsen (University of Bergen, 

Norway). In the version that was submitted for AES contest 

the method operates on 128 bit blocks of data using in the 

processes a 256 bit external key. The transformation flow is 

divided into 32 uniform rounds repeated over the data block 

with each round consisting of (nearly identical) sequence of 

elementary operations. Each round requires its special 128-bit 

round key; since the last round needs two keys, total of 33 

different round keys are required and these are generated from 

the external key in a separate key schedule. 

Fig. 1 represents data transformations that constitute the 

encryption process. Let P be a 128b plaintext, Bi – a data 

block that enters the i-th round Ri, Ki – the round key, C – 

encoded ciphertext. Before the plaintext block enters the 

procedure a special bit reordering – so called Initial 
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Permutation IP – is performed. The plaintext P after 

permutation gives block B0, which is the input to the first 

round. The output of the first round (R0) is B1, the output of 

the second round (R1) is B2, the output of round i is Bi+1, and 

so on, until the output of the last round is received as B32. 

Then the Final Permutation FP (which is an inverse of IP) is 

applied to give the ciphertext C. 

Inside the 32 rounds the actual encoding is carried out. The 

first 31 ones (0…30) are identical and the last one (31) is 

slightly modified. As the first transformation in each round, 

the block Bi is XOR-ed with the round key Ki that is supplied 

by the key schedule. The resulting vector is then passed 

through Substitution Boxes. The algorithm defines 8 different 

S-Boxes numbered 0 … 7 with each round Ri using S-Box 

number i mod 8. The vector created by S-Boxes undergoes 

Linear Transformation LT giving block Bi+1 that is the input to 

the next round. In the last round R31 the linear transformation 

is replaced with XOR operation with the last key K32 

(therefore two keys are required in this round). 

The whole data path from the plaintext P to the ciphertext 

C can be formally described by a sequence of the following 

equations: 

 B0 :=   IP( P ) (1) 

 Bi+1 :=   LT( SBoxi mod 8( Bi ⊕ Ki ) ),       i = 0 … 30 (2) 

 B32 :=   SBox7 ( B31 ⊕ K31 ) ⊕ K32 (3) 

 C :=   FP( B32 )  (4) 

B. Elementary Transformations 

The three elementary operations that make up the rounds 

are: key mixing, bit substitution and linear transformation. Of 

these three, the first one is just an 128-bit 2-input XOR 

operation, but the latter are more evolved and require more 

complex implementations that must be designed according to 

specification.  

Like in Rijndael, static substitution boxes perform the non-

linear transformation of the data block in every round. Unlike 

the AES winner which applies repeatedly the same one 8x8 

substitution, the Serpent defines 8 different 4x4 S-boxes (i.e. 

mappings of 4 bits into 4 bits) with each round using just one 

S-box. As a result each S-box is used in precisely four rounds, 

and in each of these it is used 32 times in parallel to transform 

the whole 128-bit block. In the initial version of the algorithm 

the authors adopted the S-boxes from DES in order to ensure a 

high level of public confidence that no secret trapdoor was 

inserted in them. Later, after public investigation of properties 

of DES S-boxes that was inspired by new advances in 

differential and linear cryptanalysis, a new (and better) ones 

were proposed with even stronger immunity to attacks. Again, 

to  keep high level of public confidence their contents was 

generated by a special numerical routine which was explicitly 

clarified and justified. 

As far as the linear transformation that concludes the 

rounds is concerned, initially simple rotations of the 32-bit 

subwords were proposed. In order to ensure maximal 

avalanche effect, the idea was to choose these rotations in a 

way that guaranteed maximal effect in the fewest number of 

rounds. However, as the avalanche was still slow, the authors 

had to move to more complex transformations and found the 

XOR operation sufficiently effective: each output bit of the LT 

is the exclusive-or of specific (from 3 to 7) input bits. More 

complex operations like words addition were also investigated 

but their cost was too high in both hardware and software 

implementations and therefore they were dropped ([2]). 

C. The Key Schedule 

The task of the key schedule is to generate 33 round keys Ki 

from the external key K that is supplied by the user. The key K 

can be of almost any length but when the proposal for AES 

standard was formulated it was fixed at 128, 192 or 256 bits 

with special expansion procedure that is to be applied to keys 
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Fig. 1 Data processing during Serpent encryption in iterative representation. 
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with less than 256 bits. The procedure maps short keys to the 

full length by appending one “1” bit to the MSB end, followed 

by as many “0” bits as required to make up 256 bits. This 

routine maps every short key to a full-length key with no two 

short keys being equivalent and ensures that the key schedule 

receives as an input external key that is exactly 256 bits long. 

The schedule first creates a set of 32-bit prekeys wi. The 

starting 8 prekeys numbered from –1 to –8 are simply filled 

with bits of the external (user) key K: 

 {w–1, w–2, … w–8} := K (5) 

and then another 132 prekeys w0…w131 are generated by the 

following affine recurrence: 

 wi:=(wi–1⊕wi–3⊕wi–5⊕wi–8⊕φ⊕i) <<< 11 (6) 

where <<< denotes rotation and φ is the fractional part of 

the golden ratio ( ) 215 +  (represented as 32-bit vector 

0x9E3779B9 in hexadecimal notation). The underlying 

polynomial x
8
 + x

7
 + x

5
 + x

3
 + 1 is primitive, which together 

with the addition of the round index guarantees an even 

distribution of key bits throughout the rounds and eliminates 

weak and related keys. 

The round keys are now calculated from the prekeys using 

the same set of 8 substitution boxes that are defined for the 

cipher path. The general rule is that the key Ki is computed 

from a group of four prekeys w4i, w4i+1, w4i+2 and w4i+3 that 

undergoes bit substitution and reordering: 

 K0 :=   IP( SBox3( w0, w1, w2, w3 ) )  

 K1 :=   IP( SBox2( w4, w5, w6, w7 ) )  

  … (7) 

 K31 :=   IP( SBox4( w124, w125, w126, w127 ) 

 K32 :=   IP( SBox3( w128, w129, w130, w131 ) 

To avoid repetitive use of the same substitution as later in 

the round, during computation of Ki the schedule uses S-boxes 

number (3 – i) mod 8. 

III. HARDWARE IMPLEMENTATION 

Apart from simplicity of elementary operations, ease of 

hardware implementation of the Serpent algorithm comes 

from the fact that its processing flow is composed of (almost) 

identical rounds that are repeatedly executed over a given 

block of data. This leads to many potential processing 

schemes that blend different flavors of combinational, 

pipelined and iterative architectures ([5], [10], [13], [14]). 

Fig. 2 graphically represents cipher transformations 

equivalent to equations (2) (cipher path) and (6)—(7) (key 

schedule). As it can be seen, data dependency is more 

complex in case of key computations since key for round Ri is 

generated form prekeys of the two preceding rounds, Ri-1 and 

Ri-2. 

A. Combinational Architecture 

In this organization hardware structure closely follows flow 

of the data that is being encoded. All 32 rounds of the cipher 

are implemented as separate hardware modules and create 

a continuous combinational path from the inputs (user key K 

and plain text P) to the output (cipher text C). The complete 

unit operates as a combinational module that transforms 128 + 

256 = 384 input bits (data + key) into 128 output bits (cipher) 

with some propagation delay.  
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Fig 2. Data paths in single round of the Serpent cipher. The contents of the first prekey words w–1 … w–8 needed in rounds R0 and R1 are 

taken from the external key K. In the last round R31 additional key mixing with K32 is performed instead of the linear transformation LT. 
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The hardware implementing one round is organized along 

identical paths as those in Fig. 2, that summarized data 

transformations within the round: computation of the keys 

relies on 32-bit prekey words wi while the data path 

transforms 128-bit vectors Bi. The RTL code that describes 

this organization identifies the required number of internal bit 

vectors and defines combinational modules that are 

represented by solid ovals on the diagram: the substitution 

boxes (8 versions) and the linear transformation component 

(one version for all rounds). There are no flip-flops used in 

this solution. 

B. Cipher-Only Pipelined Architecture 

General idea of pipelining is to introduce evenly spaced 

extra registers in the middle of the combinational circuit in 

such a way that several blocks of data can be processed at the 

same time during one clock cycle. In the architecture 

presented above the natural points of placing the pipeline 

registers are signals Bi that cross boundaries of cipher rounds; 

this transforms each round into one pipeline stage. In technical 

terms such organization can be interpreted as 32-stage outer 

loop pipelining ([5]). Valid output appears 32 clock cycles 

after input and the unit requires 32×128 = 4096 flip-flops for 

pipeline registers. 

The problem with this approach is that the key schedule 

path remains combinational and this fact slows down changes 

of the external key during operation: loading a new key 

invalidates the pipeline contents for 32 clock ticks until new 

data fill all the stages. This may exclude this architecture from 

environments with frequent key changes but if the key 

remains constant most of the time it is the optimal 

organization in terms of both speed and size. 

C. Fully Pipelined Architecture 

To synchronize computation of the round keys with 

operation of the cipher path the key schedule must be 

pipelined in an equivalent way. This task is additionally 

complicated by more complex data dependencies in the path; 

detailed presentation of the proposed solution and discussion 

of its specific features can be found in [15]. 

Describing briefly, simple estimation based on Fig. 2 would 

suggest introducing just 33 × 128 = 4224 flip-flops for storage 

of the key bits in all rounds, but in order to guarantee proper 

synchronization of the both paths (cipher + key) as well as to 

achieve optimal timings final solution needs to be more 

complicated. First of all, since the keys are computed from wi 

words these also must be stored in another 4224 flip-flops and 

this number must be doubled to keep wi contents for two clock 

ticks (the key Ki depends on prekeys form the two preceding 

rounds, Ri-1 and Ri-2). Such a high flip-flop utilization usually 

is not a problem in case of FPGA hardware, since there is 

sufficient amount of registers in programmable blocks along 

data paths that remains unused in combinational circuits. As 

the implementation has shown, this is true also in the case of 

this project and the automatic implementation tool has had no 

special problems dealing with design layout and routing even 

after introducing over 16000 flip-flops. 

Furthermore, the last cipher round needed additional 

modification. Because it uses two keys – K31 and K32 – to 

follow the structure of key schedule it also must be split into 

two stages: the first one contains key mixing with bit 

substitution and the second one performs only key mixing. 

This increases total length of the pipeline to 33 stages. Finally, 

to achieve optimal timing key computation and actual data 

encoding can be done in parallel provided that the cipher 

pipeline is delayed for one clock cycle so that the round Ri is 

computed one cycle later after the key Ki. As a result total 

number of pipeline stages increased from 33 to 34 but, at the 

same time, minimum clock period could be reduced by nearly 

1/3. 

D. Deciphering Units 

In Serpent the only way to decipher an encoded block is to 

execute the same set of 32 rounds in reversed order with 

elementary operations replaced by their inversed versions. The 

specification contains definition of inverse substitution boxes 

as well as an inverse linear transformation. From hardware 

point of view the nature of both operations remains unchanged: 

the inverse S-boxes are just 4-input Boolean functions and the 

inverse LT is computed by a XOR network, although a more 

complex one (the underlying polynomials have higher degree 

thus require more gates in implementation). 

As the same set of 33 round keys must be generated from 

the external key, the key schedule remains identical but now 

the keys are used in reversed order (K32 first, K0 last) so they 

must be pre-computed and available before the actual 

deciphering can be started. This requirement makes any key 

schedule pipelining unreasonable in decoding; of the 

architectures considered above only the first two ones 

(combinational and cipher-only pipelined) were used for 

construction. A diagrams analogous to Fig. 2 representing 

decoding paths is not included to save space but its structure 

can easily be deduced. 

IV. IMPLEMENTATIONS 

All the considered architectures were implemented in 

Xilinx XC3S1600E-5 device using the Xilinx Synthesis Tool 

(XST) and ISE Design Studio ([15]) and the results are 

summarized in Table 1. The implementation was fully 

automatic and the optimization was set to “speed” with 

appropriate constrains specified in UCF file being the only 

optimization goals. In all cases the design consisted of the full 

cipher path and the key schedule unit, i.e. it constituted the 

complete encoding or decoding unit. All the architectures fit 

the Spartan-3E chip, with combinatorial one taking only 68% 

of the array and fully pipelined organizations occupying all 

logical blocks, yet using not more than 81% of available 

LUTs and 58% of flip-flops. This fact indicates that more 

dense packing is still possible if extra space for another 

components co-existing in the same chip would be required. 

The simplest combinational architecture is not only the 

smallest one but also offers the minimal latency of 150 ns, 

although this leads to throughput below 1Gbps. With regard to 

throughput criterion alone, the cipher-only pipelined 
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organization is the winner as it offers the highest frequency of 

operation. It must be remembered, though, that this design 

performs poorly in applications were frequent changes of the 

external key must be supported. If this condition must be met 

the fully pipelined architectures should be selected.  

As expected, deciphering unit has slightly worse timing 

parameters that its encoding counterpart due to somewhat 

more complex implementation of the inverse linear 

transformation. 

V. CONCLUSIONS 

A.  Serpent vs. AES (Rijndael) in FPGA Implementations 

Compared to 8x8 S-boxes required in Rijndael, the fact that 

Serpent uses 4×4 substitutions, i.e. combinational functions of 

4 input variables, greatly simplifies their implementation in 

FPGA device. As the elementary parts available in the logic 

cells of the Spartan-3E array that are used for synthesis of any 

combinational function – the Look-Up Tables (LUT) – have 4 

inputs, each output bit of the S-box can be computed by 

exactly one LUT, i.e. by the minimal amount of resources. 

Transformation of the whole block requires 128 LUTs in 

every round and the entire path with 32 rounds needs 4096 

LUTs. 

An equivalent realization of Rijndael S-boxes would need 

much more resources. Being an 8-input function, every output 

bit would now require 2
8
 / 16 = 16 LUTs for storing the 

substitution function alone plus some additional LUTs for 

multiplexing their outputs (in terms of ROM organization: for 

address decoding). Even without the extra multiplexing logic 

this would require 128 x 16 = 2048 LUTs in each round and 

20480 LUTs in the entire 10-round cipher. The difference is 

so big that it practically prohibits implementation of Rijndael 

substitution function in LUT elements; instead, larger 

synchronous Block RAM modules must be used but they, 

consequently, make purely combinational (asynchronous) 

operation of the module impossible ([5], [13], [14]). 

Feasibility of combinational implementation seems to be one 

of the most interesting differences between FPGA 

implementations of Serpent and Rijndael and therefore it was 

explored in this paper. 

B.  Final Remarks 

The Serpent cipher remains overshadowed by the winner of 

the AES selection procedure – the Rijndael algorithm – but 

nevertheless it should not be forgotten since it offers better 

security. At the time of AES selection its extra cost coming 

from larger number of rounds (33 vs. 10 in Rijndael) was 

important but today this cost difference has been reduced by 

the progress in capacity and capabilities of programmable 

devices, as the results presented in this text show. 

Additionally, relative simplicity of its substitution boxes 

creates new options for hardware implementations that are not 

available in case of the Rijndael. 

In general Serpent is well suited to fully automatic FPGA 

synthesis and implementation: the software tools can deal with 

its regular, round-based structure quite efficiently despite the 

size of the whole design, producing acceptable results without 

user intervention involving hand optimizations of layout or 

routing. Finally, although this paper is intentionally 

concentrated on combinational and pipelined organizations, if 

hardware size is critical the algorithm can be equally well 

implemented in iterative architectures. 

TABLE I 

DIFFERENT ARCHITECTURES OF SERPENT MODULE IMPLEMENTED IN XC3S1600E DEVICE ([15]) 
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Slices (of 14752) 9 999 11 748 11 897 11 926 14 750 

LUTs (of 29504) 18 756 22 184 22 680 22 960 24 331 

Flip-flops (of 29504) 0 0 4 224 4 096 16 768 

tmin [ns] 150 162 6.5 6.7 7.3 

fmax [MHz] 6.7 6.2 154 149 137 

Throughput [Mbps] 854 791 19 692 19 116 17 534 

Pipeline stages 1 1 32 32 34 

Latency [ns] 150 162 208 214 248 

Mbps per slice 0.085 0.067 1.66 1.60 1.19 

Critical path delay: logic 
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