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Abstract—Common cryptographic methods, especially Public
Key Crypto Systems, PKCS based on difficulty to factor large in-
tegers or to compute the discrete logarithm, commonly deployed
today will not resist attacks using quantum computers once
these are operational. However, there are alternatives like hash
based digital signature schemes, lattice based cryptography, or
multivariate-quadratic-equations public-key cryptography. Here,
we present ways to judiciously implement code based cryptogra-
phy exemplified by the McEliece PKCS based on Goppa Codes.
We will show how the open source computer algebra system
SAGE can guide the implementation of the PKCS say on FPGAs.

Index Terms—Cryptography, Quantum Computer, Goppa-
code, McEliece public key crypto system, FPGA

I. INTRODUCTION

Today’s prominent examples of public key crypto systems,
PKCSs are RSA1, Diffie-Hellman(-Merkle)2, ElGamal3, el-
liptic curve cryptography, ECC or the Buchmann-Williams
key exchange. Using quantum computers, QCs these common
PKCSs all are broken [1] once QCs become operational. The
reason is that Shor’s seminal algorithm [13] solves the integer
factoring problem and the discrete logarithm problem on QCs
very efficiently.

However, alternatives like McEliece PKCS, the Goldreich-
Goldwasser-Halevi, GGH lattice analogue to McEliece, lattice
based crypto systems, hash based digital signature schemes or
multivariate PKCSs are believed to be QC resistant because
they are not (jet) QC-broken [1].

Hence, it is only provident to replace existing PKCSs by
QC resistant PKCSs. Right now we aim at implementing
the McEliece PKCS on FPGAs. Here, we propose a dual
version programming scheme, i.e. to assess implementation
variants first using the open source System for Algebraic and
Geometric Experimentation, SAGE [11] and to test the VHDL
code by comparing its results with SAGEs results. Right now,
we restrict ourselves to the SAGE version.

1R.Rivest, A.Shamir, L.Adleman (1978): A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems; Communications of the ACM 21
(2): 120 - 126

2W.Diffie, M.E.Hellman (1976): New Directions in Cryptography; IEEE
Transactions on Information Theory IT-22 (6): 644 654

3 T. ElGamal (1985): A Public-Key Crypto System and a Signature Scheme
Based on Discrete Logarithms; IEEE Transactions Information Theory, IT-31,
4, pp469 – 472

II. GOPPA CODES

The McEliece PKCS [6] is based on some error correcting
code, e.g. a Goppa Code which can be defined as alternant
generalized Reed-Solomon code. Now, let F = GF2,
Φ = GF(2m) and g(x) ∈ Φ[x] be the Goppa polynomial
of degree t and let L = {λ1, . . . , λN} ⊂ GF(qm) the
code locators with g(λi) 6= 0 for i = 1, 2, . . . , n. Then
the linear subspace CGoppa(L, g) = {(c1, . . . , cn) ∈ GFn2 :∑n
i=1

ci
x−λi

= 0 mod g(x)} is a (classic, binary, linear)
[n, k, d] Goppa code with k ≥ n − mt. The canonical
parity matrix of the generalized Reed-Solomon code is
HgRS =

(
α(j−1)(i−1))deg g−1,n

i=1, j=1
diag( 1

g(α1)
, 1
g(α2)

, . . . , 1
g(αn)

).
Selecting a base of Φ and representing each entry of HgRS
as a column vector in Fm results in the parity matrix
HGoppa of CGoppa with some corresponding generator matrix
GGoppa = ker(HGoppa).

A. encoding

Encoding is the easy part. In order to introduce the Python-
based programming in SAGE, here we are rather explicit.
We initialize our finite fields F = GF2 and Φ = GF(2m),

F.<x> = GF(2); Phi.<x> = GF(2∧m));

choose the code locators L = {λi : i = 1, . . . , N} ⊂ Φ,
e.g. powers of variable x for some constant N

codelocators = [x∧i for i in range(N)];

specify a suitable Goppa polynomial g, e.g. by defining a
function for some suitable constant K (in Python, indentation
replaces begin-end brackets, and # starts a comment)
def goppapolynomial(F,z):

# return a Goppa polynomial in z over field F

X = PolynomialRing(F,repr(z)).gen();

return X∧(N-K)+X+1;

check whether the Goppa polynomial is irreducible,
g = goppapolynomial(Phi,z);

if g.is_irreducible():

print ’g(z) =’,g,’is irreducible’;

check that the code locators are not zeroes of g,
for i in range(N):

if g(codelocators[i])==Phi(0):

print ’alarm: g(alpha_’+str(i)+’)=0’;
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and set up the parity matrix HgRS (Python is a formatting
language, so a backslash indicates the continuation of a
statement on the next line),
H_gRS = matrix([[codelocators[j]∧(i) for j in \

range(N)] for i in range(N-K)]);
H_gRS = H_gRS*diagonal_matrix([ \

1/g(codelocators[i]) for i in range(N)]);

From HgRS we construct HGoppa

H_Goppa = matrix(F,m*H_gRS.nrows(),H_gRS.ncols());

for i in range(H_gRS.nrows()):

for j in range(H_gRS.ncols()):

be = bin(eval(H_gRS[i,j].int_repr()))[2:];

be = ’0’*(m-len(be))+be; be = list(be);

H_Goppa[m*i:m*(i+1),j]=vector(map(int,be));

and compute a generator matrix GGoppa as right kernel of
HGoppa.
Krnl = H_Goppa.right_kernel();

G_Goppa = Krnl.basis_matrix();

Now we can specify the function encode which encodes
information words u to code words c = uGGoppa

def encode(u):

return u*G_Goppa;

B. decoding

There are several relevant decoding algorithms, a variant
based on the extended Euclidean algorithm, the Berlekamp-
Massey and the Patterson algorithm. First, in the representation
of [10] let us present the Berlekamp4-Massey5 algorithm
which computes a N -recurrence of b(x).

Input: polynomial b(x) ∈ F[x], 0 < N ∈ N
Output: pair of polynomials

(
σN (x), ωN (x)

)
over F

σ−1(x) = 0;σo(x) = 1;
ω−1(x) = −x−1;ωo(x) = 0;
µ = −1; δ−1 = 1;
for(i = 0; i < N ; i+ +){

δi = coefficient of xi in σi(x)b(x);
σi+1(x) = σi(x)− (δi/δµ)xi−µσµ(x);
ωi+1(x) = ωi(x)− (δi/δµ)xi−µωµ(x);
if δi 6= 0 && 2 ord(σi, ωi) ≤ 1 then µ = i;

}

For given input b, the algorithm computes the N -recurrence
(σn, ωn) over F with smallest recurrence order. Applied to
a syndrome b the algorithm returns the pair of error locator
polynomial σ(x) and error evaluator polynomial ω(x). In case
of a binary code we need not compute the error evaluator
polynomial. We can translate the algorithm more or less
literally to SAGE keeping in mind that arrays in SAGE as
in C, C++, JAVA etc. are numbered starting with index 0. For
the sake of clarity, our implementation uses actual polynomials
ωi and σi instead of maintaining just two triples σnew, σold,
σmu and ωnew, ωold, ωmu of polynomials which are updated in

4 Elwyn R. Berlekamp: Algebraic Coding Theory; Aegan Park Press 1984,
Section 7.4

5 James L. Massey: Shift-Register Synthesis and BCH Decoding; IEEE
Trans. Inform. Theory. Vol. IT-15, Nr. 1, 1969, 122-127

each loop.
We use F = GF2, Phi = Φ = GF(2m) and PR where PR is
the ring of polynomials over Φ in some variable, say z.
PR = PolynomialRing(Phi,’z’);

Moreover, here we skip declaring and initializing the scalar
variables bigN, mu and flag (the latter in a way representing
the rational function 1/z so that the exception that ω−1 is not a
polynomial is covered), the vectors of polynomials sigma and
omega as well as the vector delta of elements in GF(2m)

def decode(y):

s = H_gRS*y.transpose();

if s==matrix(Phi,H_gRS.nrows(),1):

return y;

b = PR([s[_,0] for _ in range(s.nrows())]);

# init σ−1 and σ0 as well as ω−1 and ω0

sigma[-1+1] = PR(0); sigma[0+1] = PR(1);

flag = 2*bigN; # exponent flags rational 1/z

omega[-1+1] = z∧(flag); omega[0+1] = PR(0);

# init mu and delta

mu = -1; delta[-1+1] = 1;

for i in range(bigN):

delta[i+1] = (sigma[i+1]*b).coeffs()[i];

sigma[i+1+1] = sigma[i+1](z)-z∧(i-mu)* \
(delta[i+1]/delta[mu+1])*sigma[mu+1](z);

if (omega[mu+1].degree()==flag):

omega[i+1+1] = omega[i+1](z)- \
(delta[i+1]/delta[mu+1])*z∧(i-mu-1);

else:

omega[i+1+1] =omega[i+1](z)-z∧(i-mu)*\
(delta[i+1]/delta[mu+1])*omega[mu+1](z);

ord = max(sigma[i+1].degree(), \
1+omega[i+1].degree());

if (delta[i+1]<>0)and(2*rord<=i):

mu = i;

ELP = sigma[bigN+1]; # ErrorLocatorPolynomial

ee = vector(F,[0 for _ in range(n)]);

for i in range(N):

if (ELP(x∧i)==Phi(0)): # an error occured

ee[mod(N-i,N)] += 1; # in position N-i

c_y = y+ee; return c_y;

The Berlekamp-Massey algorithm decodes any generalized
Reed-Solomon code over some GF(pm), not necessarily bi-
nary.

In contrast, the Patterson algorithm decodes only binary
Goppa codes. It computes the syndrome s(z) of a received
word and then solves the key equation σ(z)s(z) ≡ ω(z) mod
G(z) with ω(z) = σ′(z) by heavily exploiting the requirement
that the code is binary. Then, the error locator polynomial
can be split in even and odd powers of z such that σ(z) =
a2(z) + z b2(z), because Φ = GF(2m) has characteristic 2 so
that in general (α+β)2 = α2+β2 for α, β ∈ Φ. And then the
formal derivative gives ω(z) = b(z) so that the key equation
becomes

s(z)
(
a2(z) + z b2(z)

)
≡ b2(z) mod g(z).

The Patterson algorithm [7] can then be described as follows,
[3]. Initialize w(z) such that w2(z) ≡ z mod g(z), cp. [4].
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Let T (z) be the g(z)-inverse of the syndrome represented as
the polynomial s(z) and let R(z) ≡

√
T (z) + z mod g(z) be

the g(z)-square root of T (z)+z, i.e. R2(z) ≡ (T (z)+z) mod
g(z). Then σ(z) = a2(z) + z b2(z) with a(z) + b(z)R(z) ≡
0 mod g(z) solves the key equation for (suitable) polynomials
a(z) and b(z) representing even and odd parts of σ(z). Here
is why:

a(z) + b(z)R(z) ≡ 0 mod g(z)

⇒ a2(z) + b2(z)R2(z) ≡ 0 mod g(z)

⇒ a2(z) + b2(z)(T (z) + z) ≡ 0 mod g(z)

⇒ a2(z) + z b2 ≡ b2(z)T (z) mod g(z)

⇒ s(z)
(
a2(z) + z b2

)
= s(z)σ(z) ≡ b2(z) mod g(z).

Then, Pattersons algorithm looks like [3]:

Input: syndrome s(z) ∈ F [z], 0 < N ∈ N
Output: polynomial σ(z) over F
initialize w(z) with w2(z) ≡ z mod g(z);
set T (z) = 1/s(z) mod g(z)
if (T (z) = z) set σ(z) = z
else { compute R(z) =

√
T (z) + z, and to do so:

split T (z) + z in even and odd parts T0 and T1
such that T (z) + z = T 2

0 (z) + z T 2
1 (z);

for R(z) = T0(z) + w(z)T1(z)
we then have R2(z) ≡ (T (z) + z) mod g(z);
by the extended Euclidean algorithm compute
a(z) and b(z) with a(z) ≡ b(z)R(z) mod g(z);
set σ(z) = a2(z) + z b2(z);

}

The distinction of cases T (z) = z and T (z) 6= z of [3] is –
at least in SAGE – not necessary. Let us now implement each
step of the algorithm separately.
To initialize w(z) we observe that the constant term of the
irreducible Goppa polynomial g(z) does not vanish. Therefore,
gcd
(
g(z), z

)
= 1 so that there is a polynomial w(z) with

w2(z) ≡ z mod g(z). Just split g(z) = g20(z) + z g21(z) into
even and odd parts g0(z) and g1(z) respectively and take
w(z) = g0(z)g−11 (z) mod g(z) where g−11 (z) is the g(z)-
inverse of g1(z), [4]. As above, we represent the syndrome
s as polynomial s(z) ∈ Φ[z]/g(z) with Φ = GF(2m).

The SAGE method list gives the list of the coefficients
of some polynomial p(z). So we can easily compute (the
coefficients of) its even part po(z) and odd part p1(z) by
making the square root of the coefficients of p ∈ Φ the
coefficients of po and p1, alternately. The following function
split solves this task generically.

def split(p):

# split polynomial p over F into even part po

# and odd part p1 such that p(z) = p20(z) + z p21(z)

Phi = p.parent()

p0 = Phi([sqrt(c) for c in p.list()[0::2]]);

p1 = Phi([sqrt(c) for c in p.list()[1::2]]);

return (p0,p1);

Now, for initialization call g0g1 = split(g) to get g0
and g1 with g(z) = g20(z) + z g21(z) and let SAGE compute

g0g1[0]/g0g1[1] to initialize w(z) by g0/g1. By recog-
nizing the fact go, g1, s ∈ Φ[z]/g(z), SAGE computes w and
T as the g-inverse of g1 and the syndrome s respectively.
g0g1 = split(g); w = g0g1[0]/g0g1[1]; T = 1/s;

Next, SAGE computes R(z) = T0(z) + w(z)T1(z) by
T0T1 = split(T+z); R = T0T1[0]+w*T0T1[1]

At last, the extended Euclidean algorithm provides a solu-
tion

(
a(z), b(z)

)
= g(z)

(
u(z), v(z)

)
to the equation u(z) ·

1 + v(z)R(z) = gcd
(
1, R(z)

)
= 1 or a(z) ≡ b(z)R(z) mod

g(z). Then, SAGE computes this solution and the error locator
polynomial σ(z) by
(d,u,v) = xgcd(1,R); # where d = gcd(1,R) = 1

a = g*u; b = g*v; sigma = a∧2+z*b∧2;

C. testing and assessing our implementation so far

We test our encoding and decoding functions – using the
Euclidean or Berlekamp-Massey or Patterson algorithm – by
encoding randomly generated information words u to code
words c, by adding random errors e of Hamming weight t,
by specifying received words y = c + e, by decoding y to a
code word cy and by comparing cy with the original c.
u = vector(F,[randint(0,1) for _ in range(k)]);

c = encode(u); e = vector(F,n); # e = zero vector

for trial in range(t):

j = randint(0,n-1); e[j] += 1;

y = c+e; c_y = decode(y);

if (c_y == c):

print ’corrected received word == sent word’;

else:

print ’alarm: c_y =’,c_y,’<>’,c,’= c’;

Solving the linear equation uGGoppa = cy determines the
sent information word u.

III. THE MCELIECE PKCS

In order to define the McEliece PKCS choose three binary
matrices

• G, the k× n generator matrix of a [n, k, 2t+ 1]-Goppa-
Code, i.e. n = 2m, k = n−mt

• S, a random non-singular k × k scrambler matrix
• P, a random n× n permutation matrix

Then the triple (S,G,P) is a private key with corresponding
public key Ĝ = SGP with t′ ≤ t.

The plain text is partitioned into bit-blocks u of length k.
Each block is Goppa coded to c = uĜ c of length n is charged
with t′ ≤ t 1-bit-errors, i.e. modified to y = c + e with error
vector e.

Using the private key, the receiver decodes yP−1 = cP−1+
eP−1 = uSG + eP−1 per fast Goppa decoding to uS and
per uSS−1 to u.

Because decoding of linear codes is NP-complete [12] this
PKCS is believed to be secure. Typical parameters in the
original paper [6] were n = 1024, k = 524, t = 50; later
improvements [2] used e.g. n = 2960, k = 2288, t = 56. The
very long keys, e.g. in case of [2] 520047 bits, were at that
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time a drawback which dwindles away with the progress in
computer technology today.

As in the case of say RSA, parameters also for the McEliece
PKCS have to be chosen carefully [2].

Reference [3] illustrates exemplary issues when imple-
menting the McEliece PKCS both on a low-cost 8-bit AVR
microprocessor and on a Xilinx Spartan-3AN FPGA.

Here, we illustrate how easily SAGE can generate a pair of
a private and corresponding public key. For any k, we generate
a non-singular binary k× k scrambler matrix S by generating
some binary k×k matrix and modifying elements until it gets
non-singular.
S = matrix(GF(2),k, \

[random()<.5 for _ in range(k∧2)]);
while (rank(S)<k):

S[floor(k*random()),floor(k*random())] +=1;

The algorithm terminates because the probability of gener-
ating a non-singular matrix at random is greater than 1

4 [5].
For any n, we generate a n × n permutation matrix P at

random.
rng = range(n); P = matrix(GF(2),n);

for i in range(n):

p = floor(len(rng)*random());

P[i,rng[p]]=1; rng=rng[:p]+rng[p+1:];

Then, the public key is just Gpub = SGGoppaP.
G_pub = S*G_Goppa*P;

IV. CONCLUSION AND OUTLOOK

We illustrated how easily the McEliece PKCS can be
implemented using SAGE. So it is near at hand to use the
SAGE implementation for testing the VHDL implementation
in the obvious two version test approach.

Moreover, the SAGE implementation allows us to assess
different decoding algorithms – algorithms which solve the
key equations – by their employability in VHDL, i.e. space
and time requirements. Right now, we investigate

• whether to do inversion in GF(2m) by table look up or
by recursion [8] (a SAGE version is presented in [9])

• whether to compute square roots in GF(2m) – as well
as in GF(2m)[z]/g(z) – by an algorithm [4] or by table
look up

• whether to transform to and from normal bases in order
to profit from the simple arithmetic using normal bases

is more beneficial in terms of space and/or in terms of time.
According to expectation, each alternative is easily imple-
mented in SAGE.

If the blocks are not chained then block-wise data paral-
lelism can be exploited. Linear feedback shift registers are
suitable for the matrix operations. A (very) deep pipeline for
the decoding algorithm will increase latency but speed up
the decryption accordingly, i.e. proportional to the number of
stages, given enough hardware to prevent structure hazards. Of
course, the SAGE implementation cannot answer this type of
design questions which are inherent to the target FPGA which

puts the SAGEs help to implement the McEliece PKCS into
perspective.
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