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Abstract—Mlyoelectric control has been an important area of
investigation by researchers during the past forty years. An important
role has been played by myoelecric signals in prosthetic control, since
it targets the amputees who lost their body limb either in an accident
or inthe war. Remarkable advances were achieved with the number
of movements to be classified with a high accuracy. This paper
presents Independent Component Analysis (ICA) as a pre-processing
technique for myoelectric control. Three different window lengths
were investigated in the current study (64 ms, 128 ms and 256 ms).
Two classification schemes were applied based on Time Domain-Auto
Regression (TDAR) features with Uncorrelated Linear Discriminant
Analysis (ULDA) and Principle Component Analysis (PCA) for
dimensionality reduction, and Linear Discriminant Analysis (LDA)
classification. The ICA pre-processing technique increased the
classification accuracy for different window lengths used from 88% to
93%. The results suggested that FastlCA consistently improves the
performance across all window lengths and classification schemes.
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I. INTRODUCTION
It has been reported that EMG recorded from the amputee forearm
muscles after hand amputation are similar to EMG of healthy subjects
[1, 2]. Therefore, there is still an EMG signal when the amputee
intends to perform a movement. This fact has inspired researchers to
develop myoelectric signal processing algorithms for the control of a
prosthetic hand [3].
Myoelctric signal is the measurement of the electrical activity of the
closely spaced muscles from the surface of the forearm in which the
muscles are responsible for finger and hand movements located in the
anterior (flexor) and posterior (extensor) compartments [4]. The
signals from deep sources are filtered by a tissue filter function (low
pass) between the deep muscles and the surface electrodes [5].
An important role has been played by myoelecric signals in
rehabilitation because of its non invasive nature as well as ease of
recording from the surface. In addition to its role in prosthetic control,
it plays an important role in functional electric stimulation and
assistive device control such as exoskeleton devices [6].
The general stages for pattern recognition based myoelectric control
are signal conditioning, feature extraction, dimensionality reduction,
and classification. To reduce classification errors, researchers added
a pre-processing step to the myoelectric control stage. Hargrove et. al
[5] proposed a PCA tuning technique as a pre-processor for their 11

class myoelectric control system. Significant reductions in the error
values were obtained for different window lengths after application
of PCA tuning. However, PCA tuning increased the dimensionality
of the input by a factor, which equals to the total number of motion
classes to be classified. To overcome this problem, a sequential
backward selection algorithm was added to the pre-processing step to
reduce the number of channels obtained with PCA tuning.
Independent component analysis (ICA) or Blind Source Separation
(BSS) is powerful statistical method applied to the field of
biomedical signal processing for identification of statistically
independent signal sources, based on the assumption of linear mixing.
ICA has been widely applied for source extraction to isolate brain
activity related to specific brain functions and artifact removal from
Electroencephalogram (EEG), and Magnetoencephalogram (MEG)
data [7].

For the EMG signals, Ganish et. al [8] compared the performance of
different BSS algorithms for isometric hand gesture identification
using 4 channel surface EMG (SEMG). The Temporal Decorrelation
Source Separation (TDSEP) technique was the best performer for an
analysis window of 1s duration. Nevertheless, the 1 sec analysis
window is not suitable for myoelectric control since the analysis
window length should not exceed the optimal controller delay, which
is within the range of (50-400 ms) [9].

This work presents an ICA based pre-processing technique for source
extraction from EMG measurements as an additive step to the pattern
recognition based myoelectric control such that the most relevant
information is extracted. This will in turn increase classification
accuracy for different window lengths that proposed.

Il. INDEPENDENT COMPONENT ANALYSIS

An easy Independent component analysis (ICA) is a computational,
statistical technique applied to reveal hidden factors that underlie sets
of incidental signals and measurements [10]. It assumes that the
measured signals are an approximately linear combination of the
independent sources with no delay between the signals. For the
original sources, the assumption is that they have a non-Gaussian
distribution and their number is the same or less than the number of
measurements.

The assumption for the noise is that it is statistically independent
from the source signals of interest, and it is this property which
enables artifact removal from biomedical signals such as EEG and
MEG [7]. However, ICA doesn’t retrieve the order of the
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independent components or
independent components [8].
ICA has been shown to extract underlying sources when traditional
methods such as factor analysis and PCA have failed [10].

ICA is somehow related to factor analysis and principal component
analysis where ICA is a more powerful technique than the earlier
mentioned techniques. Nevertheless, it is proven able to find the
underlying sources when traditional methods fail [10].

The process of source separation and source estimation with ICA is
shown in fig. 1. The ICA assumption is that process of mixing is
linear which can be expressed as

the exact amplitude and sign of the
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where x = [x1(t), Xo(t), ..., Xa(t)] are measured signals , s =[sy(t),
Sy(t), ..., Sn(t)] are the original sources and A is the mixing matrix.

To separate the measured signals from the original sources, the ICA
algorithm will search for the un-mixing matrix W where the
measured signals can be linearly translated to compute Independent
components such that:
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Figure 1. The block diagram of blind source separation, S; (t) is the nth
original source, X, (t) is the measured signal and Sy(t) is the estimated source

METHODOLOGY

The general block diagram of our proposed system is shown in fig. 2
with the added ICA pre-processing step for myoelectric control.

The EMG data sets used in the current work were acquired originally
by Hargrove et. al [11]. Sixteen bipolar surface EMG electrodes were
mounted around the upper part of the forearm around the
circumference as shown in Fig. 3.

The subjects were asked to perform ten combinations of wrist
movements and hand grips, namely, forearm pronation, forearm
supination, wrist flexion, wrist extension, radial deviation, ulnar
deviation, key grip, chuck grip, hand open, and rest state. The 10
class wrist movements and handgrips are shown in Fig 4.

The sEMG signals were collected from 6 participants. Each trial
consisted of performing a medium force isometric contraction of the
nine movements for duration of 5 seconds followed by a rest period.
The recordings consisted of 5 trials for each subject. The signals were
sampled at 1024 Hz sampling frequency and band pass filtered (10-
500) Hz. For additional details, refer to [11].

To reduce computational complexity, the authors decided to choose
the first 5 channels shown in red in Fig.3 to perform the analysis. In
addition, L. Hargrove showed that a reasonable classification
accuracy range (91-97%) could be achieved with the use of 4 EMG
electrodes only [11].
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Figure 2. Block diagram of the myoelectric control system
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Figure 3. Surface electrodes locations on human forearm on a cross-section of
the upper forearm
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Figure 4. Ten classes of wrist movements and handgrips
A.  Pre-processing with FastICA

There are many developed ICA algorithms in the literature, such as,
second-order blind identification (SOBI) [12], TDSEP[13], FastICA
[14] and information maximization algorithm(Infomax) [15].

The authors decided to use FastICA for the pre-processing step
because it is relatively simple, has very fast convergence as well as
the possibility to estimate the ICs one by one or all at the same time
and no step-size parameters are required to be chosen. In addition,
the histogram of the EMG data showed that their distribution is super
Gaussian which matchs FastICA assumption about the non-
gaussianity.

FastICA is a fixed point ICA algorithm that employs higher order
statistics to recover independent sources. It tries to decompose the
signals based on their non-gaussianity. It is a fast fixed-point iterative
algorithm which searches projections that maximize the non-
gaussianity of components by their kurtosis [16].

The simplest cost function for an algorithm based on the kurtosis, J
(W), is defined as [17]

W) = 1 lkuri(y)| = - Skurt(y)  (3)

where y is an estimated component and  is the sign of the kurtosis

[17].
This cost function can be minimised using the standard gradient
descent approach, which leads to:

Wk +1) = W(K) — u 2

=w(k) +
ow W (k)
(k) o (y(k))x(k)

(4)

where p(K) is the learning rate and ¢ (y (k)) depends on the second,
third and fourth order moments of y [17]. Since this algorithm
extracts one source at a time, a deflationary process must be followed
to exclude the extracted source from the remaining mixtures. This
kind of gradient descent approach enables a fast adaptation in a non-
stationary environment. However, its convergence can be slow and
depends on a good choice of the learning rate sequence [16].

B. Classification schemes

Two classification schemes with three different window lengths
(64ms, 128ms and 256ms) were used in this study. The window
overlap for the three different window lengths was 32 ms.

The first classification scheme consisted of feature extraction
performed by Time Domain-Auto Regression (TDAR) features with
PCA for dimensionality reduction. Hudgins et. al [18] showed that
TDAR features achieved the highest performance for their experiment.
TDAR features consisted of sixth-order AR models, Root Mean
Square Value (RMS), Zero Crossings (ZC), Integral Absolute Value
(IAV) and Slop Sign Changes (SCC).

For the second scheme, the same feature extraction as in scheme one
was used with uLDA dimensionality reduction [19]. The feature sets
for both schemes consisted of 50 features (10 features by 5 channels).
Afterwards, with PCA and uLDA dimensionality reduction, the
feature set size was reduced to 40 features.

Classification was performed with an LDA classifier for both
classification schemes since the problem of training iteratively could
be avoided with the use of LDA giving a low chance of under and
over training [3].

IV. RESULTS AND DISCUSSION

The classification errors for both schemes proposed are shown in fig.
5 and fig. 6. Error bars show the standard deviation across 6 subjects.
Fig. 5 displays the classification error for three different window
lengths (64ms, 128 and 256 ms) of ICA per-processor for
classification scheme 1 (ULDA used for dimensionality reduction).
While fig. 6 shows the same results in fig. 5 for classification scheme
two (PCA used for dimensionality reduction).

From fig. 5 and fig. 6, ICA improves the classification accuracy for
all windows and classification schemes proposed. This represents
relative improvements for the first classification scheme of 32%, 44%,
and 47 % for window length of 64, 128, and 256 ms respectively. For
the second one, the relative improvements were 33%, 44%, and 50%
for the 64, 128, and 256 ms windows, respectively.

The error reduction rate for classification schemes 1 was 4 % whereas
for the for the second scheme, the error reduction rates was 5%, for
three different window lengths.
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Figure 5. Classification errors with and without ICA pre-processing across 6
subjects for classification scheme 1. Standard deviation of the inter-subject
variability is shown with error bars
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Figure 6. Classification errors with and without ICA pre-processing across 6
subjects for classification scheme 2. Standard deviation of the inter-subject
variability is shown with error bars

Table 1 shows the confusion matrix for subject 2 using 256 ms data
analysis windows for classification scheme 2 (PCA algorithm for
dimensionality reduction). The values in white (left columns shows
the classification accuracies without ICA pre-processing while the
accuracies in grey (right column) displays the classification
accuracies with ICA pre-processing.

The accuracies for wrist extension and radial deviation were (76.25%
and 72.81%) respectively. After pre-processing with ICA, the
accuracies increased to 99% for both movements.

It is remarkable that FastICA consistently improves the performance
across all window lengths and classification schemes. In addition,
better classification accuracy was achieved with ICA pre-processing
technique.

V. CONCLUSION

The addition of ICA as a pre-processing step to the myoelectric
control block diagram was proposed. Five channel EMG signals for
ten hand movements were tested with two classification schemes for
with three different window lengths.

The classification schemes consisted of feature extraction performed
by Time Domain-Auto Regression (TDAR) features with PCA for
dimensionality reduction for the first classification scheme and uLDA
for the second one. LDA used as a classifier for both schemes.

The ICA pre-processing technique increased the classification
accuracy by 5 % for different window lengths used from 88% to 93%.
The results suggested that FastiCA consistently improves the
performance across all window lengths and classification schemes.
Additional data collection from more subjects to take in to account
the inter-subject variability on a large scale is being done to test them

with ICA.
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Table 1. confusion matrix in percentages for subject 1 with classification scheme 2 (with and without FastICA) for a 256ms analysis window

Output class

Pronation Supination Flexion Extension Radial dev Ulnar dev. Key Chunk Open Rest

Pronation 97.2 99.1 0.62 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 0
Supination 2.81 0.31 95.9 98 0.62 0.62 0 0 0 0 0 0 0 0 0 0 0 0 0.62 0.62

Flexion 0 0 0.94 0 89 99.4 0 0 0 0 9 0.31 0 0 0.3 0.3 0 0 0.62 0

Extension 0 0 0 0 0.31 0 76.25 99 23.12 0.93 0.31 0 0 0 0 0 0 0 0 0

Radial dev. 0 0 0 0 0 0 26.9 0.31 72.81 99 0 0 0 0 0.3 0.62 0 0 0 0

Ulnar dev. 0 (0] 0.31 0 2.812 0 0.3 0.31 0.3 0 95 99.37 0 0 0 0.3 0 0 1.25 0
Key 0.62 (0] 0 0 0 0 0 0 0 0 0 0.31 91.8 96.9 1.56 0.62 1.56 0.62 4.37 1.56

Chunk 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.31 97.18 99.4 0.93 0.31 1.56 0
Open 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0.3 99.3 99 0.3 0.6
Rest 3.14 0 0.3 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0.9 0 95.3 100
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