

Using Trained Matrix Technique

For Acceptance Tests in Agility WEB Programming

Methodologies

Belal Ayyoub

Computer Engineering Department , Al-Balqa’a Applied University

 Amman-Jordan

belal_ayyoub@hotmail.com

Abstract.--A technique that uses a trained matrix to find an

acceptance testing in Web agility programming for exhaustive

testing is introduced. The system will be trained using a

Hebbian learning rules methodology. Minimizing the number of

test operations, testing time and developer efforts will be

reduced by the requirements and needs which will be specified

through customer. The model take in to consideration the

white box testing type. A full numerical solved example is

introduced.

Keywords—Hebbian rules, white box, software testing,

Agility.

I. INTRODUCTION and RELATED WORKS

Testing in agile software development should provide the

information that stakeholders need to make decisions and

steer the development into the right direction. We can

increase the value of testing most by improved intelligence

earlier. The challenges of testing in agile development have

to be solved! What information is the testing based on? What

to be tested and what are the expected results? How to make

testing, development and business collaborate? How to

involve customer and business people in testing? How to test

early so we can achieve the customer requirements in time?

Can we use a method to do that smoothly? How to match in

between exhaustive testing which take time and to be

delivered with customer satisfaction?. The ultimate goal of

function testing is to verify that the system performs its

functions as specified in the requirements and there are no

undiscovered errors left. Since proving the code correctness is

not feasible, especially for large software systems, the

practical testing is limited to a series of experiments showing

the program behavior in certain situations. Each choice of

input testing data is called a test case. If the structure of the

tested program itself is used to build a test case, this is called

a white box (or open-box) approach [1]. Several white-box

methods for automated generation of test cases are described

in literature. For example, the technique of [4] uses mutation

analysis to create test cases for unit and module testing. A

test set is considered adequate if it causes all mutated

(incorrect) versions of the program to fail. The idea of testing

programs by injecting simulated faults into the code is further

extended in [10]. Another paper [11] presents a family of

strategies for automated generation of test cases from

Boolean specifications. However, as indicated by [10],

modern software systems are too large to be tested by the

white-box approach as a single entity. White-box testing

techniques can work only at the subsystem level. In function

tests that are aimed at checking that a complex software

system meets its specification, black-box (or closed box) test

cases are much more common. The actual outputs of a black-

box test case are compared to expected outputs based on the

tester's knowledge and understanding of the system

requirements. Since the testers have time for only a limited

number of test cases, each test case should have a reasonable

probability of detecting a fault along with being non-

redundant, effective, and of a proper complexity [6]. It should

also make program failures obvious to the tester who is

supposed to know the expected outputs of the system. Thus,

selection of the tests and evaluation of their outputs are

crucial for improving the quality of tested software with less

cost. If the functional requirements are current, clear, and

complete, they can be used as a basis for designing black-box

test cases. Assuming that requirements can be re-stated as

logical relationships between inputs and outputs, test cases

can be generated automatically by such techniques as cause-

effect graphs (see [8]) and decision tables [2]. Another

method for automatic generation of test vectors from

functional relationships is described in [3]. several ways are

proposed to determine, input-output relationships in tested

software. Thus, a tester can analyze system specifications,

ICIT 2011 The 5th International Conference on Information Technology

mailto:belal_ayyoub@hotmail.com

perform structural analysis of the system’s source code, and

observe the results of system execution. While available

system specifications may be incomplete or outdated,

especially in the case of a "legacy" application, and the code

may be poorly structured, execution data seems to be the most

reliable source of information on the actual functionality of

an evolving system. In this paper, we extend the idea initially

introduced [1] that input-output analysis of execution data

can be automated by Info-Fuzzy Network methodology of

data mining [7] [9]. In [7] the proposed concept of IFN-based

testing has been demonstrated on individual discrete outputs

of a small business program. The current study evaluates the

effectiveness of the Hebbian rules in Neural networks to let

the system more intelligent (expert-system) and can be

learned by pervious cases tested methodology on a complex

application having multiple continuous outputs. This is also

deal with the question of determining the minimal number of

training cases required to. The rest of the paper is organized

as follows. Section 2 provides the methodology on the process

testing and derived required paths. Section 3 presents the

notation and definition of the proposed model.. Section 4

describes a detailed of the proposed methodology. Finally,

Section 5 summarizes the paper with initial conclusions and

directions for future research and applications.

II. METHODOLOGY

Testing is the process of executing a program with the intent

of finding errors.” [13]. Assume that there are 520 possible

different execution flows. If we execute one test per

millisecond, it would take 3.170 years to test this program.

See figure (1).

 Fig.. 1 Software testing flowchart

All tests should be traceable to customer requirements and

the uncover errors will be discovered then quickly. The

system configuration can be represented mathematically by a

graph, with nodes and representing links. see figures(1), (2).

Our system will minimize the number of ‘things in process’,

minimize the size of ‘things in process’ establish a regular

cadence deliver business value early, often and consistently,

empower the team to create software that meets the customer

needs. The ultimate objective of this paper is to give

software developers procedures to enhance their ability to

find acceptance testing –by customer- for which testability is

an important consideration. Ideally, one would like to

generate an acceptance solution algorithms that take as input

the characteristics customers requirements as well as needs

criteria, and produce as output an optimal path for solution,

this is known as acceptance testing, and it is very difficult to

achieve. However, we consider set of paths that will execute

all statements and all conditions in a program, at least once

 that is already designed then we try to derive all the test

cases, then the customer will select his steps of tests

according to his requirements then a test related path will be

chosen and get the test result , if the solution face customer

satisfaction the test path will be selected and complete the

software development. Customer partner ensure customer

gets the value they are paying for build a reference first

instead of System requirements. customer gets what he wants

and validates the expected results. Developers know the right

answer Use the simplest technology team capability ease of

use case of Refactoring Flexibility to Change test automation

empower developers to run their own tests run tests

regularly[13] . Our paper considers the customer to be

member in the testing because the expected results depend on

his satisfaction and agreement. Our aim is to minimize the

time consumed for test according to our new method

procedure. The customer choose path steps toward the

objective need to be achieved, then we can detect the suitable

solution by multiply the steps with the trained matrix, the

solution wanted path will be the result

III. NOTATION and DEFINITIOND

Now we will illustrate in this section, all parameters which

we used in our new model and we will define every item:

Si : Solution Number

Pi : Path Number

∆Wi : Weight solution

Wt : Total weight of solutions

Ta : The accepted test

IV. MATHEMATICAL MODEL

General formulation of the problem:

Analysis function Which can be derived for acceptance tests

in Extreme Programming Exhaustive testing:

loop <20x

20x20x

20x

ICIT 2011 The 5th International Conference on Information Technology

∆Wi = Si * Pi ,

 i=n

Wt =∑ ∆Wi
 i=1

The accepted test will be:

Ta = Wt * Pi

Which guarantee the solution to be assess customer visible

functionality. We will present her an important assumptions

to declare and describe the formulation of our new model.

 A: Assumption.

Figure(2):

 Fig. 2 all testing paths.

From the figure(2) we can Compute the cycloramic

complexity of the program P - V(P)[13],[14],[15].

Use it to determine how many test you have to do:

V(P) provides an upper bound of tests that must be executed

to guarantee coverage of all program statements

We start with computing V(P):

Since V(P) = 4, there are four test paths:

Path 1: 1,2,3,6,7,8

Path 2: 1,2,3,5,7,8

Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2,4…7,8

- four solution to be tested

Solution 1: [1,0,0,0]

Solution 2: [0,1,0,0]

Solution 3: [0,0,1,0]

Solution 4: [0,0,0,1]

We derive test cases to exercise these paths. And convert

each path to its matrix representation and derive the trained

matrix

We have paths as follows:

Path 1: [1,1,1,0,0,1,1,1]

Path 2: [1,1,1,0,0,0,1,1]

Path 3: [1,1,0,1,0,0,1,1]

Path 4: [1,1,0,1,0,0,1,0]

∆W1= [1,1,1,0,0,1,1,1] * =

∆W2= [1,1,1,0,0,0,1,1] * =

∆W3= [1,1,0,1,0,0,1,1] * =

∆W4= [1,1,0,1,0,0,1,0] * =

Wt =∆W1+∆W2+∆W3+∆W4

 =

During the collaboration with customer to output the features

and requirements needed a suite solution can be chosen

which will achieve the problem and customer requirements.

Assume that the customer choose the solution with feature

binary: [0, 0,1,0] then to know what is the path to be tested to

give solution, it can be derived as follows:

Chosen pattern of solution multiply by trained matrix Wt:

1

2

4

7

8

3
65

1

2

4

7

8

3
65

1

22

4

77

8

33
65

0

1

0

0

0

0

1

0

0

0

0

1

00000000

11100011

00000000

00000000

00000000

00000000

11010011

00000000

00000000

00000000

00000000

11000010

11100111

11100011

11010011

11010010

11100111

00000000

00000000

00000000

1

0

0

0

ICIT 2011 The 5th International Conference on Information Technology

 * =

By dividing the results on the maximum number and the

integer values to be taken the new results will be the matrix

value [0 0 1 0], this value represent the solution number 3

which will be under test and expected needs to the customer.

The result represents the path of solution wanted the next

step will be to be tested directly without any loose of time to

discover with uncover error with needless paths. In this

method we can minimize the Exhaustive testing and

minimize the time taken and efforts which yield to produce

the project in quick time and help in the highly iteration and

incremental analysis.

 V. CONCLUSION.

A smart method which uses a trained matrix shows that our

approach is promising especially for Exhaustive testing.

Customer to be collaborated and to be member in the testing

operation is very effective to develope testing and helping in

minimizing overall improvement time.

ACKNOWLEDGMENT.

This paper is based on work supported by Prof. Asem El-

Sheaikh and Dr.Ezz Hattab

REFERENCES.

[1] L. Mark, F. Menahem, K. Abraham, The Data Mining Approach to

Automated Software Testing Proceedings of the 21st Annual Conference on

Computer Assurance (Gaithersburg, Maryland, June2006).

 [2] B. Beizer, Software Testing Techniques. 2nd Edition, Thomson, 1990.

[3] M.R Blackburn, R.D Busser, J.S. Fontaine, Automatic Generation of Test

Vectors for SCR-Style Specifications. Proceedings of the 12th Annual

Conference on Computer Assurance (Gaithersburg, Maryland, June 1997).

 [4] R.A. DeMillo, and A.J. Offlut, Constraint-Based Automatic Test Data

Generation. IEEE Transactions on Software Engineering, 17, 9, 900-910,

1991.

 [5] M. El-Ramly, Stroulia, E., Sorenson, P. From Run-time Behavior to Usage

Scenarios: An Interaction-pattern Mining Approach. Proceedings of KDD-

2002 (Edmonton, Canada, July 2002), ACM Press, 315 – 327.

 [6] C. Kaner, J. Falk, H.Q Nguyen,. Testing Computer Software. Wiley, 1999.

 [7] M. Last and A. Kandel, Automated Test Reduction Using an Info-Fuzzy

Network. to appear in Annals of Software Engineering, Special Volume on

Computational Intelligence in Software Engineering, 2003 .

 [8] National Institute of Standards & Technology. The Economic Impacts of

Inadequate Infrastructure for Software Testing. Planning Report 02-3, May

2002.

 [9] P. J. Schroeder and B. Korel, Black-Box Test Reduction Using Input-

Output Analysis. Proc. of ISSTA '00, 173-177, 2000.

 [10] J. M Voas., and G. McGraw, Software Fault Injection: Inoculating

Programs against Errors. Wiley, 1998.

[11] E. Weyuker, T. Goradia, and Singh, A. Automatically Generating Test

Data from a Boolean Specification. IEEE Transactions on Software

Engineering, 20, 5, 353-363, 1994.

 [12] R.E 2002.Prather,. & Jr. Myers J.P., The Path Prefix Software Testing

Strategy, IEEE Transaction on Software Engineering, 761-766, SE-13, 7, 1987

[13]. B.Beizer, ,Software Testing Techniques, 2nd Edition, Van Nostrand

Reinhold, New York, NY, 1990

[14]. T.Chusho, Test Data Selection and Quality Estimation Based on the

Concept of Essential Braches for Path Testing, IEEE Transactions on

Software Engineering, 509-517, SE-13, 5, 1987

[15]. W.E., Howden, Reliability of the Path Analysis Testing Strategy, IEEE

Transactions on Software Engineering, 208-214, SE-2, 3, 1976

11100111

11100011

11010011

11010010

1

1

0

1

0

0

1

1

4

4

5

4

ICIT 2011 The 5th International Conference on Information Technology

