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Abstract—Using Kleene algebra and its properties. We
will find the shortest path which links two given vertices in
a directed (finite) graph. Also, we will give an algorithm to
solve this problem by using the typed Kleene algebra.
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I. Introduction

THE shortest path problem consists of finding a path
between two vertices such that the sum of the weights

of its constituent edges is minimized. Many important al-
gorithms have been used to solve this problem; Dijkstra’s
algorithm solves the single-pair, single-source, and single-
destination shortest path problems [2]. Bellman-Ford algo-
rithm solves the single source problem if edge weights may
be negative [12]. Floyd-Warshall algorithm solves all pairs
shortest paths [2], [12]. Johnson’s algorithm solves all pairs
shortest paths, and may be faster than Floyd-Warshall on
sparse graphs [2], [12], [17]. Perturbation theory finds (at
worst) the locally shortest path. In this paper, we will use
Kleene algebra to solve this problem.

In the following we will present some notions needed for
the rest of the paper.

(1) Definition.

1. A partial order is a binary relation ”≤” over a set
S which is reflexive, antisymmetric, and transitive,
that is, for all a, b, and c ∈ S, we have

• a≤ a (reflexivity);

• if a≤ b and b≤ a then a = b (antisymmetric);

• if a≤ b and b≤ c then a≤ c (transitivity).

2. A set with a partial order is called a partially or-
dered set (also called a poset).

3. Let (A,≤) and (B,≤) be two partially ordered
sets. A Galois connection between these posets con-
sists of two functions: F : A→B and G : B→A, such
that for all a in A and b in B, we have F (a)≤ b if and
only if a≤G(b).

Now we will give the definition of directed graph [2].

(2) Definition. A directed graph G = (V,B) consists of
a set V of vertices and a set B of ordered pairs of vertices,
called edges. And the adjacency matrix of G is a means
of representing which vertices of a graph are adjacent to
which other vertices.

II. Kleene algebra

Kleene algebra is an algebraic structure that captures
axiomatically the properties of a natural class of struc-
tures arising in logic and computer science. It is named
after Stephen Cole Kleene (1909− 1994), who among his
many other achievements invented finite automate and reg-
ular expressions, structures of fundamental importance in
computer science. Kleene algebra is the algebraic theory
of these objects, although it has many other natural and
useful interpretations.

Kleene algebras arise in various guises in many contexts;
relational algebra [1], [3], [4], semantics, logic of programs
[5], [6], automata, formal language theory [7], [8], the design
and analysis of algorithms [9], [10], [11], [12].

(3) Definition. A Kleene algebra is a structure
K =(K,+, ·,∗,0,1) where the following axioms satisfied

• (a+ b) + c = a+ (b+ c)
• a+ a = a
• a+ b = b+ a
• a+ 0 = a
• a.0 = 0.a = 0
• (ab)c = a(bc)
• a1 = 1a = a
• a(b+ c) = ab+ ac
• (a+ b) · c = ac+ bc.

(K1) 1 +xx∗ ≤ x∗

(K2) 1 +x∗x ≤ x∗

(K3) b+ ax ≤ x then a∗b≤ x

(K4) b+xa ≤ x then ba∗ ≤ x.

where a≤ b iff a+ b = b is called the natural partial order
of Kleene algebra.

(4) Definition. A Kleene algebra K is called star-
continuous [16] if it satisfies the axiom

xy∗z = supn≥0xy
nz,

for any x, y, z ∈ K ; where y0 = 1, yn+1 = yyn and the
supremum is with respect to the natural order.

(5) Example. (Typed Kleene algebra). Let Σ∗ denote
the set of finite-length strings over a finite alphabet Σ, in-
cluding the null string ε. The set Σ∗ forms a Kleene algebra
under the following constants and operations on subsets of
Σ∗
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1. A+B=A∪B,
2. A.B=A ./ B={x • z • y | x • z ∈A, z • y ∈B} ,

(where • is concatenation)
3. 0=∅,
4. 1={ε} ,
5. A∗=

⋃
n≥0A

n =
{x1...xn | n≥ 0 and xi ∈A,1≤ i≤ n} .

Thus the operation (·), applied to two sets of strings A
and B, products the set of all strings obtained by concate-
nating a string from A with a string from B, in the order.
Thus A∗ is the union of all powers of A, equivalently, A∗

consists of all strings obtained by concatenating together
any finite collection of string from A in any order. Any
subset of the full power set of Σ∗ containing ∅ and {ε}
and closed under the operations of (∪), (·), and (∗) is a
Kleene algebra.

A subidentity of a Kleene algebra is an element x with
x≤ 1. We call a Kleene algebra pre-typed if all its subiden-
tities are idempotent, i.e., x ≤ 1 =⇒ x • x = x. We call
a pretyped Kleene algebra typed if its a boolean algebra
and the restriction operations distribute through arbitrary
meets of subtypes, i.e., if we have for all families (xj)j∈J
of subidentites and all a ∈ S that

(
⋂
j∈J

xj) · a =
⋂
j∈J

xj · a and a · (
⋂
j∈J

xj) =
⋂
j∈J

a · xj .

In a typed Kleene algebra we can define, for a ∈ S, the
domain 〈a and co-domain a〉 via the Galois connections (y
ranges over subidentities only)

〈a ≤ y⇐⇒a≤ y · 1,
a〉 ≤ y⇐⇒a≤ 1 · y.

Now, we take unusual model that turns out to be useful
in the shortest path algorithms in graphs. This algebra
is called the tropical algebra, also known as the ”min,+
algebra”. For more details see [17].

(6) Example. (The tropical algebra). Let R= R+∪{∞}
is the set of nonnegative reals with an additional infinite el-
ement∞. This model forms a Kleene algebra under the fol-
lowing constants and operations on subsets of R+ ∪{∞} :

1. a+ b=min{a,b} ,
2. a · b=a+R b,

(where +R means the addition in reals)
3. a∗=1 = 0R,
4. 0=∞,
5. 1=0R.

The elements 1 and 0 of a Kleene algebra can play the
roles of the truth values ”true” and ”false”. Expressions
that yield one of these values are therefore also called as-
sertions. The assertion 0 means not only ”false”, but also
”undefined”. Negation is defined by ∼ 0 = 1, and ∼ 1 = 0.
Then for an assertion b and an element c we have

b · c = c · b =

{
c if b = 1,
0 if b = 0.

The conjunction of assertions a,b is their infimum a∩ b or,
equivalently, their product a · b; their disjunction is their
sum a+ b. We write a∧ b for a∩ b and a∨ b for a+ b.

Using this, we can construct a conditional:

if b then c else d fi=b · c ∪ ∼ b · d

for assertions b and elements c, d. Note that the condi-
tional is monotonic only in d and e. So, recursions over
the condition b need not be well-defined. A property we
are going to use in the sequel is

if b then d else if c then d else e fi fi =if b∨ c then d else e fi(1)

For assertions b,c and elements d,e.

A. Matrices Over a Kleene Algebra

Under the natural definitions of the Kleene algebra oper-
ators +, ·,∗ ,0 and 1, the familyM(n,K) of n×n matrices
over a Kleene algebra K again forms a Kleene algebra. This
is a standard result proved for various classes of algebras
in [13], [14].

Define (+) and (·) onM(n,K) to be the usual operations
of matrix addition and multiplication, respectively, Zn the
n×n zero matrix, and In the n×n identity matrix. The
partial order (≤) is defined onM(n,K) by A≤B⇐⇒A+
B = B.

The structure
(M(n,K) ,+, ·,Zn, In) is an idempotent semiring.
The definition of E∗ for E ∈M (n,K) comes from [8],

[13], [15]. We first consider the case n = 2. This construc-
tion will later be applied inductively.

Let

E =

(
a b
c d

)
let f = a+ bd∗c and define

E∗ =

(
f∗ f∗bd∗

d∗cf∗ d∗+ d∗cf∗bd∗

)
The matrix E∗ defined above satisfies the Kleene algebra

axioms (Def. 3).
If K is star-continuous (Def. 4), then so is M(n,K) for

n≥ 1.
This Proposition states that the star-continuity passes

from the Kleene algebra K to M(n,K) and this is exactly
the key fact that we use in the following application.

B. All Pair-Shortest Paths Problem

[11]
Given a directed graph G which has n vertices 1, ...,n and

each edge is labelled by a positive real number called the
weight of the edge. From G, we create a complete graph
[12] (still denoted by G) such that the vertex i is connected
with j (in this order) by an edge labelled with the same
number if i and j are adjacent in G (in this order again),
and by an edge labelled by the symbol ∞ otherwise. So,
the edges of the new graph G are labelled by an element
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of R+ ∪ {∞}. In the set R = R+ ∪ {∞}, we define the
operations as in Example 6.

The adjacency matrix B of the previous graph G is an
element of the Kleene algebra M(n,K) and the ijth entry
of Bk is exactly the number of paths of length k which
links i with j and composed by less than or equal to k
edges.This result can be used to determine the length of
the shortest path between i and j. By the proposition A,

B∗ = supR {Bk | k ∈N}= inf{Bk | k ∈N}.
So the ijth entry of B∗ is exactly the length of the short-

est path which links i to j.

(7) Example. The adjacency matrix of the following
graph is

 

B =


2 ∞ 2 ∞
3 ∞ ∞ ∞
∞ 1 ∞ 2
4 ∞ ∞ 3

 =

(
B1 B2

B3 B4

)
.

We have B∗4 =

(
0 2
∞ 0

)
,F=B1 +B2B

∗
4B3 =

(
2 3
3 ∞

)
and F ∗ =

(
0 3
3 0

)
.

Therefore, with a bit of calculation we find

B∗ =

(
F ∗ F ∗B2B

∗
4

B∗4B3F
∗ B∗4 +B∗4B3F

∗B2B
∗
4

)

=


0 3 2 4
3 0 5 7
4 1 0 2
4 7 6 0

 .

So, we can read on this matrix that the shortest path
from the vertex b to the vertex d is of length (B∗)bd = 7,
it passes through a and after c.

In the following, we give an algorithm to solve the short-
est path problem by using the typed Kleene algebra.

C. Shortest Connecting Path

Assume that (S,Σ, ·,0,1) is a typed Kleene algebra. We
define the general operation E by E(W )(f, g) = g(f(w))
where
• w ⊆ S is a fixed element of S.

• f : S −→ P(M) is a disjunctive abstraction function
with some set M of ”valuations”, where a function
f from a Kleene algebra into a lattice is disjunctive,
if it distributes through +, i.e., satisfies f(x + y) =
f(x)∪ f(y),

• g : P(M)−→P(M) is a selection satisfying the prop-
erties

(1) g(K) ⊆ K,

(2) g(K ∪L) = g(g(K)∪ g(L))

(weak distributivity),
for K,L⊆M.

Motivated by the graph theoretical applications, we now
postulate the following conditions about f and g :

1. 〈c≤ a〉 ⇒
g(f(a · c)) = g(f(a · c) + f(a ·u · c)),

2. (a ·u)〉 ≤ a〉 ⇒
g(f(a · c)) = g(f(a · c) + f(a ·u · c)),

with a,c,u ∈ S. These two conditions are used to obtain
two termination cases of the algorithm. For more details
see [17].

We have the following basic algorithm:

F (f,g)(a,b,c) = if〈c≤ a〉 ∨ (a · b)〉 ≤ a〉
then g(f(a · c))

else g(f(a · c)) +F (f,g)(a+ a · b,b,c))fi
(2)

We define

shortestpaths(a,c)=F (id,minpaths)(a,c), (3)

with

minpaths(a)=let ml = min(
⋃
x∈a
‖x‖)

in
⋃
x∈a

if ‖x‖ = ml then x else ∅.

Here pathmin length select from a set of words the ones
with the least number of letters. Therefore, we have the
following algorithm for computing the shortest path be-
tween a set S and the node y:

shortestpaths(S,y)
= {definition in Equ. 3}
F (id,minpaths)(S,y)

= {Equ. 2}
if 〈y ⊆ S〉 ∨ (S ./ R)〉 ⊆ S〉

then minpaths(S ./ y)
else minpaths(S ./ y∪shortestpaths(S∪S ./ R,y))fi

= {Equ. 1}
if y ∈ S〉

then minpaths(S ./ y)
else if (S ./ R)〉 ⊆ S〉

then minpaths(S ./ y)
else min paths(S ./ y ∪ shortestpaths(S ∪ S ./

R,y))fi fi
= {y /∈ S〉 ⇒ S ./ y = ∅}

ICIT 2011 The 5th International Conference on Information Technology



4

if y ∈ S〉
then minpaths(S ./ y)

else if (S ./ R)〉 ⊆ S〉
then minpaths(∅)
else minpaths(shortestpaths(S ∪S ./ R,y))fi fi

= {definition and idempotence of minpaths}
if y ∈ S〉

then minpaths(S ./ y)
else if (S ./ R)〉 ⊆ S〉

then ∅
else shortestpaths(S ∪S ./ R,y))fi fi.
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