
System for Testing Different Kinds of Students’ Programming
Assignments

Ivan Pribela, Mirjana Ivanović and Zoran Budimac

Department of Mathematics and Informatics,
Faculty of Science, University of Novi Sad

Trg Dositeja Obradovića 4,
21000 Novi Sad, Serbia

Phone: +381 21 458 888

Fax: +381 21 6350 458

Email: {pribela, mira, zjb}@dmi.uns.ac.rs

ICIT 2011 The 5th International Conference on Information Technology

System for Testing Different Kinds of
Students’ Programming Assignments

Ivan Pribela, Mirjana Ivanović and Zoran Budimac
Department of Mathematics and Informatics,

Faculty of Science, University of Novi Sad
{pribela, mira, zjb}@dmi.uns.ac.rs

Abstract – The testing system implemented by using Apache Ant
allows students to test their assignments in a controlled manner.
The system allows instructor to run the same tests on a set of
student assignments. Results of tests are recorded in a log file
and are available to students and the instructor. The system
accepts any type of files as assignment and the instructor has a
great flexibility in specifying how and what is to be tested. The
system is independent of underlying platform and programming
language used for solutions.
Keywords – Computer supported learning, Computer assisted
testing, Programming and problem solving

I. INTRODUCTION
Most of programming courses at university level are

concentrating on practical exercises as a form of continual
assessment and examinations. Practical way of continual
assessment and evaluation offers friendlier conditions to the
student. However, in such circumstances instructors face other
problems in assessing student work.

Usually there are a great number of students (between 80
and 150) per course, one programming assignment per week
and only up to two instructors. So, it is time consuming to
check every aspect of every program written by every student.
The only possible way to obtain satisfying quality of practical
work and keep assessment efforts in reasonable level is to
introduce some kind of automatic or semiautomatic
assessment. By transferring part of the assessment process
from instructor to computer, students enjoy more objective
assessment while instructors can concentrate on more
essential parts of assessment (programming style, use of
recursion, good choice of data structures and so on).

The development of Testovid1, an automated testing
system, emerged from the mentioned need. The goal of the
system is to leverage the effort of assessing assignments
during practical exercises especially at our Department, but it
could be also included in assignment process of other
universities. Some useful suggestions for improvements of the
system were the consequence of fruitful discussions within
Workshops supported by DAAD project [5]. The system is
available to students working on their assignments in
computer labs. The testing logic and test data are prepared by
the instructors in advance and saved in appropriate files ready
for students’ usage. There are two main advantages of the
system: a) it is platform and language independent and b) it
allows great flexibility in what and how will be tested, as well
as the file type that can be submitted to testing.

Since the system is built on top of Apache Ant it is very
extensible, not dependent on programming language or

1 Testovid is part of wider submission environment called

Svetovid. Svetovid is named after the pagan Slavic god that
sees everything. The name Testovid is then chosen to
resemble Svetovid.

specific building and compilation logic. It is also modular, and
can be quickly adapted to new trends.

The testing system allows students to test their assignments
in a controlled manner with the instructor’s test data. The
instructor creates an Apache Ant [3] script to build and run the
student’s project. New scripts can be created using parts from
previously created scripts, thus simplifying the instructors
work. When a student wishes to test her assignment she runs
the system which then copies the student’s files into a
temporary directory, and the instructor’s scripts are executed
to build the project and test it. The result of each test run is
recorded in a log file for the student and the instructor.

The type and number of files that the system can accept is
not restricted. Also, there is no limit on the amount of tests
being conducted. During one run of the system multiple
aspects of the assignment can be tested.

Besides on-line testing provided for students, instructor is
offered a batch mode for testing of multiple submitted
projects. The system keeps track of results for all students and
generates a single file with all the results. Apart from that, one
detailed report for each student is generated.

The rest of the paper is organized as follows. Section 2
compares Testovid system with other systems of similar
purpose. Sections 3 and 4 discuss system usage and system
structure and organization, respectively. Section 5 gives an
overview of usage of Testovid in real learning environment.
Section 7 focuses on experiences gained using the system and
gives a short conclusion.

II. RELATED WORK
Automatic and semi-automatic assessment and testing of

student programs written in programming languages dates all
the way back to 60’s of the last century. Among the first
authors were Hollingsworth [10] and Wirth [7] and systems
were designed for assembler and Algol. During time many
systems were developed [1, 12] and they usually followed
modern concepts introduced by new operating systems and
new programming languages.

There were also successful contemporary efforts to address
problems of electronic submission and assessment.
Unfortunately, many such ventures focus on a specific
programming language or a specific platform.

The systems like [4, 6, 8, 11] focus on Java programming
language, and the system [9], focus on Scheme with a
possibility of linking to some other programming languages.
There were some attempts to create a system for testing that
will encompass wider spectrum of programming languages
developed in python [2].

There are also successful attempts of bringing automated
assessment of programming to learning management systems
(LMS). The assessment system described in [15] addresses

ICIT 2011 The 5th International Conference on Information Technology

assessment of SQL Select queries and short programming
assignments in LMS environment. The solution provides
support for multiple programming languages but is limited to
the LMS for which it was implemented and lacks support for
large programming projects.

A truly programming language independent testing system
is [14], a system built for UNIX platform, also based on
command scripts, but a little outdated and without network
support.

The main advantage of Testovid, in comparison to
mentioned systems is that it is built on Apache Ant and thus it
is modern and not dependent on programming language or
specific building and compilation logic. Furthermore, the
system can be used in a wide variety of situations and
environments, and is very extensible, modular, and can
quickly adapt to new trends.

III. USAGE OF TESTOVID IN ASSESSMENT PROCESS
Testovid system supports testing of any aspect of student

solutions written in any programming language. It is also not
limited to assessment of programming solutions; it can accept
textual files, images, and other documents.

The main motivation for developing the system and its
most common usage, however, is to check student programs
for compilation errors, code style guidelines adherence,
implementation correctness and performance. At our
Department, students have several courses which focus on
programming exercises (using Java, C#, Delphi, Modula-2,
Scheme) as a main technique for continual assessment of
practical work. During the practical exercises students work in
computer laboratories on the given assignments and instructor
assesses their practical skills. As this way of continual
assessment is very time consuming and wearying for both the
student and the instructor, students utilize Testovid to check
their solutions before submitting, and instructors to increase
reliability and speed up the assessment.

Apache Ant is a tool that can automate the application
build process, with strongest support exactly for the described
cases. The build script can perform compilation,
documentation generation, packaging, and if during the build
process there is an error the build fails. In a failed build a
detailed message describing the reason of failure is produced.
Proposed testing system, built on the Apache Ant, can capture
details of failed build and show appropriate advice to the
student in order to improve the solution.

Look at an example where the instructor wants to
automatically check if a student solution compiles
successfully. The instructor should write one configuration
file telling how many points to award for successful
compilation (Fig. 1), how to name the aspect being tested and
to give description that will be displayed to the student. In the
example (Fig. 1) the tested aspect is named “testCompile”, it
is worth one point and the description displayed to the student
is “Compilation”.

targets.all=testCompile
testCompile.name=Compilation
testCompile.score=1

Fig. 1 Configuration file for compilation testing

The list of actions to be performed during testing also has
to be set up. This is done by writing the body of an Apache
Ant target named like the tested aspect (in the example
“testCompile”). One example of the target body is shown in
Fig. 2. It tries to compile all files in the current directory (line
4) and if all went well set the advice given to the student to an
empty string (line 5). If an error occurs during compilation,
advice is set accordingly (lines 8 and 9).

 1 <target name="testCompile">
 2 <trycatch>
 3 <try>
 4 <javac srcdir="." destdir="." fork="true"

source="1.5" target="1.5"/>
 5 <property name="testCompile.advice" value=""/>
 6 </try>
 7 <catch>
 8 <property name="testCompile.advice"
 9 value="Compilation failed, check language

documentation."/>
10 </catch>
11 <finally/>
12 </trycatch>
13 </target>

Fig. 2 ANT target for the compilation test

When a student invokes the system to test student’s
solution, she will receive a message about success (Fig. 3) or
failure (Fig. 4) of testing that particular program. This
message contains information about the course and
assignment, list of all tested aspects with their friendly names
displayed, and states the amount of points awarded. If the test
was unsuccessful an advice given by the Ant target will be
displayed to the student (Fig. 4).

Course: Object oriented programming
Assignment: Inheritance assignment no 2
Student: John Smith

Test: Compilation
Success: 1 point.

-+-+-+-+-+-+-+-+-
Total: 1 point.

Fig. 3 Successful test attempt

Course: Object oriented programming
Assignment: Inheritance assignment no 2
Student: John Smith

Test: Compilation
Failure: Compilation failed, check language documentation.

-+-+-+-+-+-+-+-+-
Total: 0 points.

Fig. 4 Unsuccessful test attempt

Compilation of Java programs comes out of the box with
Apache Ant; however, any other language and compiler can
be easily supported using Ants ability to run any operating
system command (any native program).

The real power of the system comes from wide spread and
adoption of Apache Ant as build process automation tool.
Many commercial and open source tools that are targeted to
help in software build process are developed with Apache Ant
integration in mind. Tools for style checking, code coverage,

ICIT 2011 The 5th International Conference on Information Technology

software metrics, documentation generation, image processing
and other purposes are available and many more are being
developed [3].

IV. STRUCTURE AND ORGANIZATION OF TESTOVID
The system is designed and organized in such a way that it

can be executed in two modes: interactive and batch.
Interactive mode allows students to test their programs and to
be informed how close is their solution to a correct one. In this
way the system can be invoked only from computer laboratory
(Fig. 6). Batch mode is intended to be used by the instructor.
Instructor uses this mode usually after the submission
deadline.

With support already provided by Ant and the tools
targeted to supplement missing features Testovid system can
test code style, code coverage, use unit testing paradigm, and
not be limited only to Java programming language. More and
more tools are available for C#, Python, and other languages.

For example, if the instructor wanted to check code style of
student solutions, he would have to change only few lines in
the above example to use his favorite code style checking
library. The name and point allotment can be setup similarly
to the already given example, while the Ant target
implementing the test is different but only slightly. Figure 5
shows a target that tests proper usage of spaces and tabs for
indentation in Java programs. In comparison to the previous
example, line 4 is different: it uses the “style check” library to
check style adherence instead of calling the Java compiler;
besides that, only the advice is different.

 1 <target name="testStyle">
 2 <trycatch>
 3 <try>
 4 <checkstyle config="tabs_check.xml"

file="Assignment3.java"/>
 5 <property name="testStyle.advice" value=""/>
 6 </try>
 7 <catch>
 8 <property name="testStyle.advice"
 9 value="Improper indentation, use spaces not tabs."/>
10 </catch>
11 <finally/>
12 </trycatch>
13 </target>

Fig. 5 Ant target for code style adherence test

Implementation correctness of student solutions can also be
checked with minimal effort using unit testing or testing with
prepared input and output data. Apache Ant natively supports
JUnit and has the ability to run user applications with input
and output redirected to external files. With many available
performance and code coverage libraries designed for Apache
Ant, testing of these aspects of student solutions can also be
easily accommodated.

Fig. 6 Network layout of the system

Testing system may be used to test any type of program in

any language, shell scripts, make files, etc. The word
“project” will be used to refer to the student solution of
specific task or problem, in the framework of the course.

When a student concludes that her program (project) is
completed, she invokes the system through a workstation in
computer laboratory using command line. The system creates
a new temporary (scratch) directory and copies all files from
the student’s directory (Fig. 7c). In the scratch directory,
system runs the Ant script provided by the instructor to build
and test student’s project. This may do compilations, builds,
formatting, testing the project in any way or whatever is
appropriate. After that the new log file is created in
appropriate directory (Fig. 7b) and the result of the run is
recorded in it. When the test has been executed and
completed, a copy of the created log file is also given to the
student, since he cannot access the scratch directory.

Student

Student

Student

Student
Student

Instructor

Batch
testing

Interactive testing

Server

Computer lab

/

system test log

OS

OOP

temp students

OS OOP OS OOP TMP238

TMP189

TMP845

John

Steve

Bob

Mary

John

John Mary

Steve John

Bob
a) Instructors test data

each course is in its own
directory with each
assignment as a separate
subdirectory (assignment
directories not shown)

b) Log files containing test results
each course has in its own directory
with each student as a separate
subdirectory, log files are named after
assignments

d) Student directories for
storage of latest attempts

c) Temporary
directories

one for each
concurrent test
run each course has in its own

directory with each student
as a separate subdirectory

ICIT 2011 The 5th International Conference on Information Technology

Fig. 7 Directory structure on the server

A side effect of running the system interactively is
that all files, from directory where the test is run, are
also copied to a directory designated for that particular
student and that particular assignment. The files are
kept for later manual inspection by the instructor, and
only the files from the latest attempt are kept (Fig. 7d).

On the other hand, if the system is not intended to
be used interactively by students there is a possibility
for instructor to test multiple projects at once.

The batch mode can be used if students are working
on their assignments at home or if interactive test
ability is not desired or not allowed. In this case all
projects must be arranged in proper directories before
start of testing. Usually the projects will be gathered
by a separate submission system, and manually saved
under Testovid directory tree. Each project must be
saved in a directory named after the student to which it
belongs (or after a student id) and as a subdirectory of
corresponding assignment and course directories.

When invoked in batch mode the system will create
a new scratch directory for each student and copy all
files from the corresponding prearranged directory.
From within the scratch directory, system runs the Ant
script provided by the instructor to build and test the
student projects as it would be in interactive mode.
Projects are tested one at a time and results are saved
in log files (one for each student) within log
subdirectory. Also, one CSV (coma separated values)
file containing results for all students is maintained in
directory corresponding to the assignment being
assessed.

V. TESTOVID IN REAL LEARNING ENVIRONMENT
In this section a quick overview of usage of

Testovid system in a concrete learning environment is
given.

Consider, for example, a case where students are
given an assignment to implement a double ended
queue using a data structure of their choice. The
assignment is aimed to assess student skills of pointer
manipulation in “Data structures and algorithms”
course. The solution should be written in Modula-2 in
a form of implementation module that implements
given definition module.

The best choice of data structure would be a double
linked list, and a part of a typical solution is given in
Fig 8. Procedures for addition and removal of elements
from front of the list are analogue to the addition and
removal from the rear and are omitted from the
example.

PROCEDURE AddToRear(VAR R: Type;
 VAR Element: INTEGER);
 VAR Tmp: Type;
 BEGIN
 IF R = NIL THEN RETURN; END;
 Tmp:= TmpElement(Element);
 Tmp^.Prev:= R^.Prev;
 R^.Prev^.Next:= Tmp;
 R^.Prev:= Tmp;
 IF R^.Next = NIL THEN
 R^.Next:= Tmp;
 END;
 INC(R^.Size);
 END AddToRear;

PROCEDURE RemoveFromRear(VAR R: Type;

 VAR Element: INTEGER);
 VAR Tmp: Type;
 BEGIN
 IF (R = NIL) OR (R^.Next = NIL) THEN
 RETURN;
 END;
 Tmp:= R^.Prev;
 R^.Prev:= Tmp^.Prev;
 IF R^.Prev = NIL THEN
 R^.Next:= NIL;
 ELSE
 R^.Prev^.Next:= NIL;
 END;
 DEC(R^.Size);
 Element:= Tmp^.Info;
 DISPOSE(Tmp);
 END RemoveFromRear;

PROCEDURE Count(VAR R: Type): CARDINAL;
 BEGIN
 IF R = NIL THEN RETURN 0; END;
 RETURN R^.Size;
 END Count;

Fig. 8 One typical solution for double ended queue

In a typical case the teacher would pay attention to
the choice of data structure, check if all procedures
conform to the given specifications, and that the
memory and pointers are well handled. Having this in
mind, an automated test would try to add few elements
to the structure, then retrieve them back, and check if
elements are retrieved as expected. Memory and
pointer handling could be checked by comparing
available memory before and after the operations, and
by the fact that null pointer dereference will cause run
time error.

An example of test configuration for Testovid
system would be a sequence of five test aspects (Fig.
9). First aspect would test memory allocation and if
the number of elements in the structure is correct.
Second and third checks would test the usage of the
structure as a plain queue, while fourth and fifth would
test the usage of the structure as a stack. All tests are
checking memory allocation, and will fail on a null
pointer dereference or on retrieval of wrong elements.
This five checks cover conformance to the given
specifications, and memory and pointer handling for
our example assignment. Only thing left for human
inspection is the choice of data structures.

targets.all=testElementCount,testQueue1,testQueue2,t

estStack1,testStack2
testElementCount.name=Element count
testElementCount.score=1
testQueue1.name= Add to front, remove from rear
testQueue1.score=1
testQueue2.name= Add to rear, remove from front
testQueue2.score=1
testStack1.name= Add to front, remove from front
testStack1.score=1
testStack2.name= Add to rear, remove from rear
testStack2.score=1

Fig. 9 Specifications of test aspects

The implementation of all five test targets is very
similar (Fig. 10). Each test target depends on a
compilation target (Fig. 10, line 7), and after
compilation tries to run corresponding program
module (Fig. 10, line 11). The program module is
responsible for performing the test logic; calling
student procedures (Fig. 11, lines 8 and 11) and
monitoring memory usage (Fig. 11, lines 16, 20, 21
and 22), since Apache Ant can have no insight in
memory usage of native processes. At the end, the
advice is produced and written to a file named

ICIT 2011 The 5th International Conference on Information Technology

“advice.adv” (Fig. 11, lines 12, 20, 21 and 22) using a
helper procedure.

 1 <target name="testCompile">
 2 <exec dir="." executable="tsc" timeout="50000"

failonerror="no">
 3 <arg line="*.mod /m /zq"/>
 4 </exec>
 5 </target>
 6
 7 <target name="testQueue1" depends="testCompile">
 8 <trycatch>
 9 <try>
10 <delete file="advice.adv"/>
11 <exec dir="." executable="test02.exe"

timeout="50000" failonerror="yes"/>
12 </try>
13 <catch/>
14 <finally>
15 <property file="advice.adv"

prefix="testQueue1."/>
16 </finally>
17 </trycatch>
18 <property name="testQueue1.advice"

value="${crash.advice}"/>
19 </target>

Fig. 10 Implementation of test aspects

The helper procedure “Check.Condition” checks its
first parameter and if it is false writes the advice (its
second parameter) and terminates the program. After
termination, Ant target loads the advice from the file
(Fig. 10, line 15). If the program crashed (due to a bad
pointer dereference), the file would not have been
written, and advice will not be loaded from the file,
but set appropriately (Fig. 10, line 18).

 1 MODULE Test02;
 2 IMPORT ...
 3 PROCEDURE Check(VAR R: Dequeue.Type);
 4 VAR i, pom: CARDINAL;
 5 BEGIN
 6 pom:= 0;
 7 FOR i:= 0 TO 500 DO
 8 Dequeue.AddToFront(R, i);
 9 END;
10 FOR i:= 0 TO 500 DO
11 Dequeue.RemoveFromRear(R, pom);
12 Check.Condition(pom = i, "Wrong element

removed from dequeue.");
13 END;
14 END Check;
15 BEGIN
16 HeapSize:= HeapTotalAvail(NearHeap);
17 R:= Dequeue.New();
18 Check(R);
19 Dequeue.Destroy(R);
20 Check.Condition(
21 HeapSize = HeapTotalAvail(NearHeap),
22 "Memory leak, check deallocation usage.");
23 END Test02.

Fig. 11 Module performing the tests

Testing of a student solution with a missing
DEALLOCATE call for removing elements from the
rear and a broken addition to the rear will produce the
output shown in Fig. 12. Third and Fifth test aspects
are failing because of the broken procedure, and
second is failing since memory has not been released.

Course: Data structures and algorithms
Assignment: Double ended queue
Student: John Smith

Test: Element count
Success: 1 point.

Test: Queue: Add to front, remove from rear
Failure: Memory leak, check ALLOCATE DEALLOCATE

usage.

Test: Queue: Add to rear, remove from front
Failure: Wrong element removed from dequeue.

Test: Stack: Add to front, remove from front
Success: 1 point.

Test: Stack: Add to rear, remove from rear

Failure: Wrong element removed from dequeue.

-+-+-+-+-+-+-+-+-

Total: 2 points.

Fig. 12 Partially successful test attempt

With this test configuration acting as a filter for
screening aspects that are tedious and cumbersome to
inspect manually, the only aspect that is left to the
teacher is the more philosophical question of the
choice of the data structure.

VI. CONCLUSION
The presented system has been designed to be part

of an existing submission environment [13] with a
goal to provide benefits of great degree of automated
testing, for both the student and the instructor. It
provides a solid base for automating assessment of
student programs.

At our Department, we constantly needed such kind
of tool because, there are great number of courses at
Computer science directions, in which continual
assessment of practical work is organized during the
whole semester. Apart from that, another motivation
was to obtain objective, efficient and timely way of
assessment of programming solutions in circumstances
when there are many students per an instructor.

The system has been used as help in assessing
students’ solutions for several courses on different
years of study at Computers Science directions:
“Introduction to programming”, “Object-oriented
programming”, “Data structures and algorithms” and
“Operating systems”. For these courses students had
written their solutions in Modula-2 and Java
programming languages. They endorsed providing
some test data to help them submit assignment only
when they are satisfied with their results.

Another aspect that was discovered during the use
of this system is the tendency of students to create
solutions that will pass the test, and not to develop
universal solutions for the given problem. Because of
this phenomenon the system is used only as
assessment aid and not as a fully automated testing
system. The instructor is the one that is making the
final decision and assessing other aspects of student
solutions (style, design issues), the system acts as a
“filter” that checks cumbersome and time consuming
properties.

To use the system, the instructor must invest time
to design test data and write ant scripts. If student
programs are intended to be tested, the data must be
created anyway and, frequently, command scripts can
be adapted from other assignments and courses with
little modification. Consequently, the only opened
issue is the creation of a pool of commonly used
scripts. In time, when the pool grows large enough, it
will be the base for easy creation of test scripts.

The system has been used as a help in assessing
student solutions for only few years (from school year
2006/07 until now) and in spite of such short period of
usage we have obtained satisfactory results. Students’
satisfaction was, more or less, the same as in
completely manual manner of assessment, which is by
our opinion excellent outcome of the system. On the

ICIT 2011 The 5th International Conference on Information Technology

other hand, instructors significantly shorten time
necessary for assessment of great number of students’
solutions, and as a consequence they managed their
work and duties in more efficient and more
systematized way. Of course, we need to have
exploitation of the system for several more years,
which will give us better and more precise feedback
results of efficiency and usefulness.

REFERENCES
[1] (2003) E-Learning ite. [Online]. Available:

[3]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

 Framework webs
http://www.elframework.org/projects/asap, 2003.

[2] M. Amelung, M. Piotrowski, D. Roesner, “EduComponents:
Experiences in E-Assessment in Computer Science
Education”, Proceedings of the Eleventh Annual Conference
on Innovation and Technology in Computer Science
Education ITiCSE’06, June 26–28, 2006, Bologna, Italy, pp.
88-92.
(2010) The Apache Ant project. [Online]. Available:
http://ant.apache.org/

[4] J. Bull, “Supporting Computer-based Assessment”, Teaching
and Learning Directorate, University of Luton, 1999, pp. 14.

[5] (2000-2010) DAAD project, “Software Engineering:
Computer Science Education and Research Cooperation”.
[Online]. Available: http://www2.informatik.hu-
berlin.de/swt/intkoop/daad/
J. Dempster, “Web-based assessment software: Fit for
purpose or squeeze to fit?”, Interactions Online Journal, vol.
2, no. 3, 1998.
G. Forsythe, N. Wirth, “Automatic grading programs”,
Comm. of ACM, vol. 8, no. 5, May 1965, pp. 275-278.

[8] T. Hawkes, “An Experiment in Computer-Assisted
Assessment”, Interactions Online Journal, vol. 2, no. 3, 1998.

[9] J. Hext, J. Winings, “An automatic grading scheme for simple
programming exercises”, Comm. of ACM, vol. 12, no. 5,
 May 1969, pp. 272-275.
J. Hollingsworth, “Automatic graders for programming
classes”, Comm. of ACM, vol. 3, no. 10, October 1960, pp.
528-529.
M. S. Joy and M. Luck, “The BOSS System for On-line
Submission and Assessment of Computing Assignments”,
Computer Based Assessment (Volume 2): Case studies in
Science & Computing, ed. Dan Charman and Andrew Elmes,
SEED Publications, University of Plymouth, 1998, pp. 39-44.
U. von Matt, “Kassandra: The automatic grading system”,
ACM SIGCUE Outlook, vol. 22, no. 1, January 1994, pp. 26-
40
I. Pribela, N. Ibrajter, M. Ivanović, “Svetovid – Special
Submission Environment for Students Assessment”,
Proceedings of the second Balkan Conference in
Informathics, Ohrid, FYR Macedonia, November 17-19,
2005.
K. Reek, “The TRY system -or- how to avoid testing student
programs”, Proceedings of the twentieth SIGCSE technical
symposium on Computer science education, 1989, ACM
Press New York, NY, USA, pp. 112-116.
I. Botički, I. Budišćak, N. Hoić-Božić, “Module for online
assessment in AHyCo learning management system”, Novi
Sad Journal of Mathematics, vol. 38, no. 2, 2008, pp. 123-
139.

ICIT 2011 The 5th International Conference on Information Technology

