
1

A Transformation Approach of Mobile Activity
Diagram Towards Nested Petri Net

Guerrouf Faycal, Allaoua Chaoui, Al-dahoud Ali

Abstract—UML is the de facto standard language for modeling
object oriented software systems. Mobile activity diagram is an
extension of the standard UML activity diagram that deals with
the requirement to model, specify, and visualize mobile agent
based systems. However, it inherits its lack of formal notation
for analysis and verification purpose. In this paper we propose
an approach for transforming mobile activity diagrams to nested
petri nets models. The meta-modeling tool AToM3 is used to
create meta-models for mobile activity diagram and nested petri
net. A graph grammar is proposed for automatic transformation.
An auctioning system example illustrates our approach.

Index Terms—UML, Mobile Activity Diagram, Nested Petri
Net, Meta-modelling, Graph Grammars, Graph Transformations,
AToM3.

I. INTRODUCTION

MOBILE agents are autonomous entity. They can move
from a host to other hosts, and communicate together

in a network of heterogeneous computer systems [1]. They are
used in many domain such us electronic commerce, informa-
tion retrieval, remote device monitoring, workflow applications
and groupware [1], [2]. There special features had made the
need to a new modeling tools and techniques.

The Unified Modeling Language (UML) [3] is considered
nowadays as a standard software modeling language [4]. It
includes thirteen diagram categorized in structural and behav-
ioral diagrams. The first set are used to model the structure of
a system, and the second set are used to model the dynamic of
a system [3]. Activity diagram is one of the five diagrams to
model the dynamic aspects of systems. The activity diagram is
typically used to describe the activities performed in a general
process workflow, though it can also be used to describe other
activity flows, such as a use case or a detailed control flow [5].
Mobile UML activity diagram is an extension of the standard
UML activity diagram that deals with the requirement to
model, specify, and visualize mobile agent based system. The
extension is specified in UML itself, using the UML extension
mechanism like stereotypes and tagged values. Therefore,
mobile activity diagram inherits the lack of UML in formal
notation for analysis and verification purpose.

Petri nets are formal and graphical modeling language [6].
They are a very powerful tool for analysis and verification.

Guerrouf Faycal is with the Department of Computer Science, Faculty
of Engineering, University El Hadj Lakhdar Batna, Algeria, e-mail: fguer-
rouf@yahoo.fr.

Allaoua Chaoui is with the Department of Computer Science, Faculty of En-
gineering, University Mentouri Constantine, Algeria, e-mail: a_chaoui2001@
yahoo.com.

Al-dahoud Ali is with the Department of Computer Science, Faculty
of Science and IT, AL-Zaytoonah University of Jordan, Jordan, e-mail:
aldahoud@alzaytoonah.edu.jo.

Nested petri net [7] extend petri net to model mobile agents.
They are a height level petri net in which tokens can be Petri
nets themselves.

The perfect modeling tool is the one that combine both the
intuitive and graphical notations of mobile activity diagram
and the formal power of nested petri net. The modeler uses
the mobile activity diagram formalism to model the system
which is automatically analyzed and verified in a transparent
way using its equivalent model in nested petri net formalism.

In this paper, we propose a graph transformation approach
and tools based on the combined use of meta-modeling and
graph transformation grammars. First, we propose a meta-
model for mobile activity diagram, and nested petri net. Then
the AToM3 tool is used to generate a visual modeling tool to
process models in mobile activity diagram and nested petri net
formalism. Finally, we propose a graph grammar to perform
the transformation.

This paper is organized as follows: in section II we overview
some related works. in section III We review the most relevant
notions to our approach. in section IV we describe our
approach, we start by defining the meta-models for mobile
activity diagram and nested petri net, those two last are used
by AToM3 [8] to generate a tools. then we propose a graph
grammar to perform the transformation. in section V we
present a case study to illustrate our approach. in section VI
we concludes the paper .

II. RELATED WORK

AToM3 [8] is a powerful tool combining the meta-
modeling, multi-paradigm and graph transformation. Many
works had been realized using AToM3. They are similar
from the point of view of the process pursued to achieve the
transformation. In which, a meta-model for the source graph
being transformed and a meta-model for the destination graph
are defined. Given these meta-models, tools are generated
using AToM3. Then a graph grammar is described in term of
source and destination models to perform the transformation.

In [9], the authors have presented an approach that automat-
ically generates a Maude specification from ECATNets [10]
models. an ECATNets meta-model had been proposed with the
meta-modeling tool AToM3, to automatically generate a vi-
sual modeling tool to process models in ECATNets formalism,
then a graph grammar had been defined to translate the models
created in the generated tool to a Maude specification. In
[11] the authors proposed a graph grammar to transform non-
deterministic finite state automata (NFA) to their equivalent
deterministic finite state automata (DFA). In [12] the authors

ICIT 2011 The 5th International Conference on Information Technology

mailto:fguerrouf@yahoo.fr
mailto:fguerrouf@yahoo.fr
mailto:a_chaoui2001@ yahoo.com
mailto:a_chaoui2001@ yahoo.com
mailto:aldahoud@zuj.edu.jo


2

proposed a transformation of sequence diagrams, to statecharts
diagram. In [13] the authors had defined meta-models for both
syntax and semantics of Statecharts (without hierarchy) and
petri nets. The authors also proposed a graph grammar for the
transformation between statecharts and petri nets. Other works
could be found in [8].

III. BACKGROUND

This section briefly introduces the mobile activity diagram,
nested petri net, and AToM3

A. Mobile Activity Diagram

Activity diagram allow to specify how the system will
accomplish its goals. It show high-level actions chained to-
gether to represent a process occurring in the modeled system
[14]. Mobile activity diagram [15] is an extension to ordinary
activity diagram used to model the dynamic behavior of mobile
agents. Specific features of mobile agents, which model, are
mobility, cloning, messaging between agents. The mobile
activity diagram basically uses activity partition to model these
features [15]. An activity partition is a kind of activity group
for identifying actions that have some characteristic in com-
mon [3]. It may be multidimensional hierarchical partitions.
A vertical dimension with the stereotype <<Host>> and pa-
rameter as its unique name (address) represents a location and
another orthogonal dimension with the stereotype <<agent>>
represents an agent. The mobility of agents between location
is represented by a particular activity which is “Go” action
[15]. The Figure 1 show an example of multidimensional
partition modeling an agent “Agent1”, which moves from
location “host1” to “host2” by using the “Go” action.

<<agent>>

agent1:Classifier

<<Host>> host1 <<Host>> host2

Go do task

Figure 1. “Go” action

The cloning feature is modeled by an invocation activity as
shown in Figure 2 This activity allows an agent to clone it
first, then to send the cloned agent to another host. For lack
of space, the reader is referred to [15]

Clone

Figure 2. Clone action

B. Nested Petri Nets

Nested petri nets [16] are a high level petri net models that
are convenient for modeling hierarchical multi agent systems.

Element (token) in nested petri net may be a petri net witch
may have also a petri nets as their tokens. Therefore the
number of levels in nested petri net is not limited. A two level
nested Petri net consists of a set of ordinary Petri nets defining
the structure of a net tokens and a system net. A system net is a
high level predicate transition net with a limited arc expression
language and without transition guards [7]. The behavior of
nested petri net is described by four kinds of steps [7], [16].

• A transfer step is a step in a system net which can “move”
,”generate”, or “remove” its elements, but doesn’t change
their inner states.

• An element autonomous step affects only the inner state
in one element.

• Horizontal synchronization step is the simultaneous firing
of two element nets, located in the same place of a system
net.

• Vertical synchronization step is the simultaneous firing of
a system net together with its elements, involved in this
firing.

Figure 3 shows an example of a nested petri net.

Figure 3. Example of a nested petri net

C. Graph Grammar and AToM3

AToM3 (A Tool for Multi-Formalism and Meta-Modeling)
[8]. It was developed at the modeling, simulation and design
Lab in the School of Computer Science of McGill Univer-
sity. It is written in python [17]. Its main purpose is the
meta-modeling and model transformation [8]. In AToM3,
formalisms and models are described as graphs. From a
meta-model, AToM3 generates a tool to process (create and
edit) models described in the specified formalism [11]. Graph
transformation consists of applying a rule to a graph and
iterating this process. Each rule has graphs in their left and
right hand sides (LHS and RHS). In order to apply a rule to a
graph (called host graph) a matching has to be found between
the LHS of the rule and a part of the host graph. If such
a matching is found, the elements in the host graph can be
substituted by the elements in the RHS [18]. Rules can have
applicability condition, as well as action to be performed when
the rule is applied. In AToM3 rules are ordered according to
a user-assigned priority, and are checked from higher to lower
priority [19].

IV. OUR APPROACH

The transformation is performed between a source graph
which is the mobile activity diagram and a destination graph
which is the nested petri net formalism. To reach this goal we
pursue the following steps:

ICIT 2011 The 5th International Conference on Information Technology



3

1) Define the meta-model for mobile activity diagram, then
use AToM3 to generate a tool for our given meta-model.

2) Repeat the same step for nested petri net.
3) Define the graph grammar to perform the transformation.

A. Meta-model of Mobile Activity Diagram

The UML document specification has defined many differ-
ent levels of activities: i) fundamental ii) basic iii) intermediate
iv) complete v) structured vi) complete structured vii) extra
structured. each level adds its own constructs addressing a
particular area [3]. The most suited to convert into Petri net
models are fundamental, basic and intermediate activities [20].
To define our meta-model, we had combined these three levels
and took in consideration The new stereotype introduced by
the extension. Our proposed meta-model for mobile activity
diagram consists of 09 classes and 08 associations as shown
in Figure 4

Attributes:
- kind :: Enum
- name :: String

Actions:
> ChangeIcon

Multiplicities:
- To ctrlFlow_AC: 0 to N
- From ctrlFlow_CA: 0 to N
- From objFlow_OA: 0 to N
- To objFlow_AO: 0 to N
- To ctrlFlow_AA: 0 to N
- From ctrlFlow_AA: 0 to N
- To Exception: 0 to N

Action

Attributes:
- kind :: Enum

Actions:
> ChangeIcon

Multiplicities:
- From ctrlFlow_AC: 0 to N
- To ctrlFlow_CA: 0 to N
- From ctrlFlow_CA: 0 to N

ControlNode

Attributes:
- name :: String

Multiplicities:
- To objFlow_OA: 0 to N
- From objFlow_AO: 0 to N

ObjectNode

Attributes:
- name :: String

Multiplicities:
- From Exception: 0 to N

ExceptionHandler

Multiplicities:
- From PartitionContains: 0 to N

ActivityNode

Attributes:
- name :: String

Multiplicities:
- To ActivityContains: 0 to N

Activity

Attributes:
- kind :: Enum
- name :: String

Actions:
> ChangeIcon

Multiplicities:
- From ActivityContains: 0 to N
- To PartitionContains: 0 to N

ActivityPartition

Attributes:

AcceptEventRecieve
Attributes:

SendEventAction

ctrlFlow_AC

Multiplicities:
- To ControlNode: 0 to N
- From Action: 0 to N

ctrlFlow_CA

Multiplicities:
- To Action: 0 to N
- From ControlNode: 0 to N
- To ControlNode: 0 to N

objFlow_OA

Multiplicities:
- To Action: 0 to N
- From ObjectNode: 0 to N

objFlow_AO

Multiplicities:
- To ObjectNode: 0 to N
- From Action: 0 to N

ctrlFlow_AA

Multiplicities:
- To Action: 0 to N
- From Action: 0 to N

Exception

Multiplicities:
- To ExceptionHandler: 0 to N
- From Action: 0 to N

ActivityContains

Multiplicities:
- To ActivityPartition: 0 to N
- From Activity: 0 to N

PartitionContains

Multiplicities:
- To ActivityNode: 0 to N
- From ActivityPartition: 0 to N

Figure 4. Meta-model of mobile activity diagram

We had defined a graphical appearance for the classes ac-
cording to their standard specification in [3] and the definition
of the extension in [15].

Given our meta-model, we have used AToM3 to generate a
modeling tool. It can be used to process models in the mobile
activity diagram formalism. The generated tool is illustrated
with an example in Figure 5.

B. Meta-model of Nested Petri Nets

Our meta-model consists of 7 classes and 8 associations as
shown in Figure 6. It is mainly formed of classes that define
the element nets and others define the system nets. The class
“EN” represents an element net. It is an ordinary petri net, the
classes “EPlace”, “ETransition” are their places and transition

Figure 5. Generated tool for mobile activity diagram

respectively. The class “SN” represents the system net, the
classes “SPlace”, “STransition” are their places and transition
respectively.

Attributes:
- Name :: String
- mark :: Integer

Multiplicities:
- To EP2ETr: 0 to N
- From ET2EP: 0 to N
- From ENContain: 0 to N

EPlace
Attributes:
- Lab :: String
- note :: String

Multiplicities:
- From EP2ETr: 0 to N
- To ET2EP: 0 to N
- From ENContain: 0 to N

ETransition

Attributes:
- Name :: String
- mark :: List

Multiplicities:
- To SP2STr: 0 to N
- From STr2SP: 0 to N
- From SNContain: 0 to N

SPlace

Attributes:
- Lab :: String

Multiplicities:
- From SP2STr: 0 to N
- To STr2SP: 0 to N
- From SNContain: 0 to N

STransition

Attributes:
- Name :: String

Multiplicities:
- To SNContain: 0 to N
- From NPNContain: 0 to N
- To use: 0 to N

SN

Attributes:
- Name :: String

Multiplicities:
- To ENContain: 0 to N
- From NPNContain: 0 to N
- From use: 0 to N

EN

Attributes:
- Name :: String

Multiplicities:
- To NPNContain: 0 to N

NPN

EP2ETr
Attributes:
- load :: Integer

Multiplicities:
- To ETransition: 0 to N
- From EPlace: 0 to N

ET2EP
Attributes:
- load :: Integer

Multiplicities:
- To EPlace: 0 to N
- From ETransition: 0 to N

SP2STr
Attributes:
- Expr :: String

Multiplicities:
- To STransition: 0 to N
- From SPlace: 0 to N

STr2SP
Attributes:
- Expr :: String

Multiplicities:
- To SPlace: 0 to N
- From STransition: 0 to N

SNContain

Multiplicities:
- To SPlace: 0 to N
- From SN: 0 to N
- To STransition: 0 to N

ENContain

Multiplicities:
- To ETransition: 0 to N
- From EN: 0 to N
- To EPlace: 0 to N

NPNContain

Multiplicities:
- To EN: 0 to N
- From NPN: 0 to N
- To SN: 0 to N

use

Multiplicities:
- To EN: 0 to N
- From SN: 0 to N

Figure 6. Meta-model of nested petri net

Based on this meta-model, AToM3 generates a tool to
model the nested petri net graphically as illustrated in Figure 7.

C. Graph Grammar: Converting Mobile Activity Diagrams
into Nested Petri Nets models

Our graph grammar is composed of sixty one rules catego-
rized in 04 categories:

• Rules to create the system net.
• Rules to synchronize between the element nets and the

system net.
• Rules to create the element nets.
• Rules for cleaning the result of transformation.

The idea of the transformation in our grammar is that:
• Every activity partition of kind host represents a place in

the system net, and every activity partition of kind agent
represent an element net.

• Every mobile action in the mobile activity diagram rep-
resent a vertical synchronization in the nested petri net,

ICIT 2011 The 5th International Conference on Information Technology



4

Figure 7. Generated tool for nested petri net

because it does move an agent from one host represented
by a place in the system net to other host represented by
another place in the system net.

• Every clone action represent a transfer step in the nested
petri net.

We were inspired by [20] to map the rest of the entities in the
mobile activity diagram to the nested petri net formalism.

1) rule1 SystemNetCreate (priority 1) : This is the first
rule applied in the grammar. It creates the system net of the
nested petri net with a default name “system net”. This partial
system net is formed of one initial place and transition; their
names are respectively “S_init”, “T_init” (Figure 8). The place
has one token of type black dot because it is considered as a
current state. For each nested petri net, there’s a single system
net. This constraint is interpreted by a condition to check if
the rule is not executed before.

empty

(a) LHS

T_init

S_init
1

<COPIED>

(b) RHS

Figure 8. rule1 SystemNetCreate

2) rule2 Host2SPlace (priority 2): This rule allows us to
transform a simple activity partition of kind “Host” to a place
in the system net and has the name of this activity partition
(Figure 9). Each place represents a possible location in which
the agents could evolve. The number of tokens on all places
transformed is 0 because they are not considered as a current
state.

3) rule3 SPlace2Init_1 (priority 3) : The initial transition
represents the starting point of the system in which no element
net (agent) does exist yet in the system. The firing of this

<<host>>

<ANY>

(a) LHS

<SPECIFIED>

<COPIED>

<<host>>

<COPIED>

(b) RHS

Figure 9. rule2 Host2SPlace

transition creates the entire element net that could exist at
the first run of the system and puts them into their places.
Therefor we apply this rule (Figure 10) to identify the places
of the system net that should be connected with the initial
transition. Each activity partition of kind “host” containing an
initial activity node corresponds to a place in the system net
that meets the condition for being connected with the initial
transition. It creates an arc between the identified place and
the initial transition. The expression of the created arc will
be the concatenation of the letters “i_” and the name of the
element net.

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

<<Agent>>

<ANY>

<<host>>

<ANY>

<ANY>

(a) LHS

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<<Agent>>

<COPIED>

<<host>>

<COPIED>

<COPIED>

<SPECIFIED>

(b) RHS

Figure 10. rule3 SPlace2Init_1

4) rule6 Go2VerticalSync_2 (priority 6) : Every mobile
action (Go action) is mapped into a vertical synchronization
in the nested petri net. Thus this rule (Figure 11) allows us to:

• Search for “Go” action and create a transition with the
name “Go” in the element net involved in the synchro-
nization.

• Create a transition between the places in the system net
corresponding to the source and destination of the mobile
action. The expression arc created in the system net will
carry the name of the agent had performed the “Go”
action.

• Give an adjacent name to the tow transition so they will
be synchronized vertically.

5) rule9 ElementNetCreate (priority 9) : This rule (Fig-
ure 12) allows us to transform an activity partition of kind
“agent” on the mobile activity diagram to an element net.
The name of the created element net is the same name of
the agent. This Rule allows us also to transform the initial
activity node contained in that activity partition to the initial

ICIT 2011 The 5th International Conference on Information Technology



5

<ANY>

<ANY>

<ANY>

<ANY>

Go <ANY>

<<Agent>>

<ANY>

<<host>>

<ANY>
<<host>>

<ANY>

(a) LHS

<SPECIFIED>

<SPECIFIED>Go

<COPIED>

<COPIED>

<COPIED>

<COPIED>

Go <COPIED>

<<Agent>>

<<host>>

<COPIED>

<<host>>

<COPIED>

<SPECIFIED>

(b) RHS

Figure 11. rule6 Go2VerticalSync_2

place of the created element net. The name of the initial place
is the concatenation of the letters “p0_” and the name of the
agent. The number of the tokens is 1 because it is considered
as a current state. The element nets created are used by the
system net as tokens.

<ANY>

<<Agent>>

<ANY>

(a) LHS

<SPECIFIED>

<COPIED><<Agent>>

<COPIED>

<SPECIFIED>
1

(b) RHS

Figure 12. rule5 ElementNetCreate

V. CASE STUDY:

In order to demonstrate our approach we will use the
example presented in [15]. This case study consists of two
agents; an Auctioneer agent, who is stationary, and a bidder
mobile agent. The auctioneer agent resides at seller’s host.
The Bidder mobile agent will circulate round potential bidders
while gathering bids.

For the lack of space and clarity of the example we will
omit the ordinary actions and control and keep the rest. The
Figure 13 illustrate the mobile activity diagram model of the
example.

After applying the grammar, we have obtained the final
nested petri net shown in Figure 14. We can see that we
have two elements net that represent the auctioneer agent
and the bidder agent. We have also four places that represent
the different location in the modeled system. The auctioneer

Figure 13. Auction system model

agent has no adjacent labels with the system net because he
is a stationary agent, unlike the bidder agent which has an
adjacent labels with the system net. For example of vertical
synchronization we have the adjacent labels T2 in the system
net, and TT2 in the element net (bidder) because the bidder
move from the host “bidder1” to the host “bidder2”.

Figure 14. The resulting nested petri net model

VI. CONCLUSIONS

In this paper we have proposed an approach based on com-
bining meta-modeling and graph grammars for transforming
mobile activity diagrams into nested petri nets models. The
approach tends to take the advantage of the mobile activity
diagram and cover its lack of formal notation by offering
an equivalent nested petri net for analysis and verification
purpose.

We have used AToM3 to create meta-models for both
mobile activity diagram and nested petri net, from which
AToM3 generated tools. The mobile activity diagram tool
could be used to create model for a given mobile agent based
system, and be transformed into nested petri net using our
graph grammar created also with AToM3. Our approach has
been illustrated by an example.

ICIT 2011 The 5th International Conference on Information Technology



6

REFERENCES

[1] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding
code mobility,” IEEE Transactions on Software Engineering,
vol. 24, no. 5, pp. 342–361, Feb. 03 1998. [On-
line]. Available: http://citeseer.ist.psu.edu/182286.html;http://www.cs.
ucsb.edu/~vigna/pub/fuggetta_picco_vigna_understanding.ps.gz

[2] M. Oshima and D. B. Lange, “Seven good reasons for mobile agents,”
Communications of the ACM, vol. 42, March 1999.

[3] O. M. Group, “Unified modeling language superstructure,” 2004,
version 2.0. [Online]. Available: http://www.omg.org/cgi-bin/doc?ptc/
2004-10-02

[4] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, The (2nd Edition) (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2005.

[5] H.-E. Eriksson, M. Penker, and D. Fado, UML 2 Toolkit. New York,
NY, USA: John Wiley & Sons, Inc., 2003.

[6] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.

[7] I. A. Lomazova, “Nested petri nets – a formalism for specification and
verification of multi-agent distributed systems,” FUNDINF: Fundamenta
Informatica, vol. 43, pp. 195–214, 2000.

[8] “Atom3 home page,” 17 January 2008. [Online]. Available: http:
//atom3.cs.mcgill.ca/

[9] E. Kerkouche and A. Chaoui., “A graphical tool support to process
and simulate ecatnets models based on meta-modelling and graph
grammars.” INFOCOMP Journal of Computer Science, vol. 8, no. 4,
pp. 37–44, 2009.

[10] M. B. M. Maouche, M. Soualmi, and M. Boukebeche, “Protocol
specification using ecatnets,” Networking and Distributed Computing,
pp. 7–35, 1993.

[11] J. de Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism
and meta-modelling,” in FASE, ser. Lecture Notes in Computer Science,
R.-D. Kutsche and H. Weber, Eds., vol. 2306. Springer, 2002, pp.
174–188. [Online]. Available: http://link.springer.de/link/service/series/
0558/bibs/2306/23060174.htm

[12] X. Sun and H. Vangheluwe, “A model-driven approach to scenario-based
requirements engineering,” 2007.

[13] J. de Lara and H. Vangheluwe, “Computer aided multi-paradigm
modelling to process petri-nets and statecharts,” in ICGT, ser. Lecture
Notes in Computer Science, A. Corradini, H. Ehrig, H.-J. Kreowski,
and G. Rozenberg, Eds., vol. 2505. Springer, 2002, pp. 239–253.
[Online]. Available: http://link.springer.de/link/service/series/0558/bibs/
2505/25050239.htm

[14] K. Hamilton and R. Miles, Learning UML 2.0. O’Reilly, April 2006.
[15] M. Kang, L. Wang, and K. Taguchi, “Modelling mobile

agent applications in UML2.0 activity diagrams,” Apr. 21
2004. [Online]. Available: http://citeseer.ist.psu.edu/668251.html;http:
//www.auml.org/auml/supplements/UML2-AD.pdf

[16] I. A. Lomazova, “Nested petri nets: Multi-level and recursive systems,”
Fundam. Inform, vol. 47, no. 3-4, pp. 283–293, 2001.

[17] “Python programming language.” [Online]. Available: http://www.
python.org/

[18] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski,
S. Kuske, D. Plump, A. Schürr, and G. Taentzer, “Graph transformation
for specification and programming,” Science of Computer Programming,
vol. 34, no. 1, pp. 1–54, Apr. 1999. [Online]. Available: http:
//www.elsevier.com/cas/tree/store/scico/sub/1999/34/1/559.pdf

[19] E. Guerra and J. de Lara, “A framework for the verification of UML
models. examples using petri nets,” pp. 325–334, 2003.

[20] T. S. Staines, “Intuitive mapping of UML 2 activity diagrams
into fundamental modeling concept petri net diagrams and colored
petri nets,” pp. 191–200, 2008. [Online]. Available: http://doi.
ieeecomputersociety.org/10.1109/ECBS.2008.12

ICIT 2011 The 5th International Conference on Information Technology

http://citeseer.ist.psu.edu/182286.html; http://www.cs.ucsb.edu/~vigna/pub/fuggetta_picco_vigna_understanding.ps.gz
http://citeseer.ist.psu.edu/182286.html; http://www.cs.ucsb.edu/~vigna/pub/fuggetta_picco_vigna_understanding.ps.gz
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://atom3.cs.mcgill.ca/
http://atom3.cs.mcgill.ca/
http://link.springer.de/link/service/series/0558/bibs/2306/23060174.htm
http://link.springer.de/link/service/series/0558/bibs/2306/23060174.htm
http://link.springer.de/link/service/series/0558/bibs/2505/25050239.htm
http://link.springer.de/link/service/series/0558/bibs/2505/25050239.htm
http://citeseer.ist.psu.edu/668251.html; http://www.auml.org/auml/supplements/UML2-AD.pdf
http://citeseer.ist.psu.edu/668251.html; http://www.auml.org/auml/supplements/UML2-AD.pdf
http://www.python.org/
http://www.python.org/
http://www.elsevier.com/cas/tree/store/scico/sub/1999/34/1/559.pdf
http://www.elsevier.com/cas/tree/store/scico/sub/1999/34/1/559.pdf
http://doi.ieeecomputersociety.org/10.1109/ECBS.2008.12
http://doi.ieeecomputersociety.org/10.1109/ECBS.2008.12

	I Introduction
	II Related Work
	III Background
	III-A Mobile Activity Diagram
	III-B Nested Petri Nets 
	III-C Graph Grammar and AToM3

	IV Our Approach 
	IV-A Meta-model of Mobile Activity Diagram
	IV-B Meta-model of Nested Petri Nets 
	IV-C Graph Grammar: Converting Mobile Activity Diagrams into Nested Petri Nets models 
	IV-C1 rule1 SystemNetCreate (priority 1) 
	IV-C2 rule2 Host2SPlace (priority 2)
	IV-C3 rule3 SPlace2Init_1 (priority 3) 
	IV-C4 rule6 Go2VerticalSync_2 (priority 6) 
	IV-C5 rule9 ElementNetCreate (priority 9) 


	V Case Study:
	VI Conclusions
	References

