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Abstract—In this article, a Web services network extractor Among them, the first one is the WS description. In [2, 5]
toolkit, WS-NEXT (WS Network EXtractor Toolkit), is presen ted.  guthors build their networks from syntactic WS while in
WS-NEXT allows extraction of interaction and dependency WS [3, 4,6, 7] they work with semantic WS. The second aspect

networks. Networks can be extracted from syntactic and senmdic . .
WS descriptions. Such network structures can be analyzed 'S the network nodes definition. In [3—6] network nodes are

using complex network tools. We provide examples of netwosk WS. In [7] nodes are parameters. In [1] networks are defined
extracted from a publicly available WS collection. Additionally, using WS, operations or parameters as nodes. The third one

we give some networks analysis results. is related to the meaning of the links between nodes. Using
Keywords-Web Services Networks, Discovery, Composition, Parameters as nodes we build dependency networks [7]. In
Complex Networks this case the link represents a WS or an operation. When
nodes are WS or operations we deal with interaction networks

|. INTRODUCTION [1,3-6]. The link represents the information flow between

A Web service (WS) is a set of related functionalitiesodes. The fourth aspect is the mode of interaction. To draw
that can be published and discovered in a WS registry alinks between nodes either all the information is provided o
invoked for remote use. Those modular applications can st part of it. We denote those two cases by full and partial
programmatically loosely coupled through the Web to forimvocation mode. In [1] networks are built with full and patt
more complex ones. Two of the most popular problems invocation mode. The last aspect is the matchirgy, how do
WS technology addressed by both industry and academia compare two nodes in the network. This depends on the
are discovery and composition. Discovery is the process WS description. In [2] equal and flexible matching are used
locating providers advertising WS that can satisfy a servifor syntactic descriptions. The authors in [3,4] use edaivee
request. Composition arises when several WS are needednd subsumption ontological concepts relationships forese
fulfill a request. The way those processes are achieved depetic descriptions. To summarize five variables can be used to
on how WS are described. For the syntactic one, discoveryn®dulate a network extraction: (1) the WS description tlaat ¢
performed against registries using keywords and compositi be syntactic or semantic, (2) the granularity which desxib
are manually defined before any submitted request. Sem#re nodes entities, (3) the model representing the nature of
tic descriptions allow automatic discovery and compositiadhe links, (4) the mode related to the available informatimn
processes. But finding the right WS to fulfill a given requedink the nodes, (5) the matching which depicts the simyarit
is not an easy task. Indeed, the WS space is extremehgasure between parameters. We propose WS-NEXT, a WS
volatile. The number of WS is continuously growing, andietwork extractor toolkit allowing to build different type
providers may change, relocate, or even remove them. In tbisWS networks from a collection of WS descriptions. The
context, we think that the WS space organization is a kextracted networks format is compatible with major tookstth
for optimizing discovery and composition. The WS space caan be used to analyze networks topological propertiegkPaj
naturally be represented under the form of networks. Suiraph, etc). The resulting networks can also be used as
kind of structures constitutes a convenient way to reptesgme-computed structures by WS discovery and composition
a collection of WS for visualization and analysis purposealgorithms.

Moreover such precomputed structures can serve as a guide
for WS discovery and composition. This article is organized as follows. Background key ele-

Some work has already been done in these directiomsents are provided in Section Il. Variables used to elaborat
Existing research concerns WS network models definition [¥jetworks taxonomy are presented in Section Ill. In Section
WS network analysis [2,3] and WS network representatid we introduce networks definitions. WS-NEXT architecture
for composition mining purposes [4-7]. In the literature wand implementation details are presented in Section V. &mp
can observe that there is many ways to represent a W&works produced by WS-NEXT are given and analyzed in
collection as a network. Different aspects must be consitler Section VI. Finally, conclusions are provided in Sectior.VI
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Il. WEB SERVICES IIl. NETWORK VARIABLES

In this section we give an accurate meaning of the previ-

A. Definition ously identified WS network variables.

According to our need, we consider a WS as an interface.
A WS interface is defined as a set of operations. An operatién Description

represents a specific functionality. It is characterizedigy set The description variable represents the WS descriptioe. typ

of input parameters notefj, and one set of output parameterﬁ.hose two types are syntactic and semantic descriptions.

notedO;. Ii. is the rgquired inf(_)rmat_ion n or_der to invoke aCorre:sponding variables values are respectively nsyadiac-
WS operatiori. O; is the provided information by the WStic and semantic In a syntactic description, each parameter

operationz'..At the WS level, the set of input parameter§Ias a name and an XML type. In a semantic description,

of a WSk is .I’“”“ = UI; and the set of output pararr'neter%ame and type are also generally specified, and an additional

Ou :.UO“ Figure 1 represents a WS numbered 1 with tW8nto|ogical concept is associated to the parameter. Quitb

operations numberetiand2, so thatl, = {a,b}, O, = {d}, concepts are domain specific and consensual terms. They give

I ={c}, Ox ={e, f}, Lun = {a,b,c}, andOuy = {d, e, f}. parameters a contextual and precise meaning. For syntactic
description the name of the parameter has to be considered,

1 while for semantic description the ontological concept mus

be used.

@ B. Granularity

‘ The granularity determines the nature of the nodes in a

network. From coarser to finer, we consider WS, operations
e or parameters as node entities. We note the corresponding
variables values aservice operationand parameter In the
ﬂ following paragraphs we will have different definitions S
and parameters. Unless stated, the definitions given for WS
also apply to operations. Indeed an operation can be viewed
Fig. 1. Schematic representation of a WS as a WS with a single operation.

C. Model

The model expresses the type of relationship between nodes.
This relationship depends on the granularity. ConsideVif)
as nodes, a relationship between two WS corresponds to the

Production WS interfaces are most'y expressed with WSD-Ln'formation flow between them. It means that the first one
a syntactic WS description |anguage [8] More recent'y, tHé able to pI‘OVide the information needed by the second one
research community followed the current semantic Web trefiti Order to invoke it. This model is callemteraction It is
by introducing semantics in WS descriptions, in order taanr illustrated by Figure 2.
them. Several initiatives for semantic description largpsa
exist among which we can distinguish purely semantic descri 1 9
tions such as OWL-S [9], from annotated WSDL descriptions
such as WSDL-S [10] and SAWSDL [11].

B. Description Languages

C. Discovery and Composition

desired output parameters,, one needs to find a W$ @
such thatl, D I, and O, C O,. Finding a WSk that
can fulfill » alone is referred to as WS discovery. When it
is impossible for a single WS to fully satisfy, one needs
to compose several W$wy, ws, ..., w,} such that for all
wl € {wy,wa,...,w,}, Iy IS required at a particular stage
in the composition and’, U O, UO,, U...U0O,, ) D O,.
This problem is referred as WS compaosition.

SN
®

When one has a requestwith input parameterd,. and e
LG

Fig. 2. Example of WS interaction
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Considering parameters as nodes, if one is an input param-Matching

eter of a WS and the other an output parameter of the Sam& g matching variable describes the similarity between pa-
WS, there exists a dependency relationship between theMineters. It is computed differently for syntactic and setica
Indeed, the production of the second parameter dependsondgscriptions_ For syntactic descriptions, matching ciasof
prqvision Of. the first one through _th('a invocation of. the W omparing two WS parameters name using similarity func-
This model is notediependencynd is illustrated by Figure 3. ions \we distinguish two cases. The first case considers two
parameters as similar if their names are exactly the sating str
It is calledequal The second case considers two parameters as
similar if their name presents a certain level of similarity
is calledflexible The level is computed by string similarity
metrics. Different similarity metrics can be used. Claakic
@ ones such as Jaro, Levenshtein, Jaro-Winckler and a sntbothe
@ metric based on Levenshtein distance between filteredgstrin
have been implemented. These metrics are denotethras
@ Winckler, Levenshteirand Smoothed For semantic descrip-
tions, matching consists in comparing ontological congept
associated to parameters. This is done by classical opgrato
(exact, plugin and subsume). Exact corresponds to a perfect
matching,i.e., both concepts belong to the same ontology and
are exactly identical. Plugin means the concept assoctated
the first parameter is strictly more specific than the othex. on
Subsume represents the fact the first concept is strictlyemor
general than the second one. We add a fourth operator called
Dependency and interaction models are different ways ff{)'n \.NhiCh allows Qrawiqg a link when there is simultgnequsl
materialize WS composition. plugin and exact S|m|I.ar|t|es betwgen two nqdes. This (Ipera}
leads to a more flexible semantic interaction represematio
The matching variables values are denotedelgict plugin,
subsumendfitin.

Fig. 3. Example of parameters dependency

D. Mode

. . IV. NETWORK DEFINITIONS
The mode represents the amount of information used to

relate two entities. Two cases must be considered. Eittier alDependency and Interaction network can be used to rep-

the information is provided or only part of this informatiorresent the WS space. Interaction networks can use either

exists. Considering the interaction model, if a WS can gtevi operations or WS as nodes. Dependency networks nodes are

all the parameters values needed to invoke another one, Rgsameters. Independently of the granularity two network

will denote this case afull interaction mode. Figure 2 is anmodels can be defined.

example of the full interaction mode. If a WS cannot provide

all the input parameters required by a second one, this mdite Dependency Network

is denoted bypartial. Such a case is illustrated by Figure 4. We define a dependency network as a directed graph whose
nodes correspond to depending parameters and links irdicat
the head parameter depends on the tail parameter (for egampl

2 3 as illustrated by Figure 3¢ depends onf) [12]. In the

context of dependency networks, each WSis formally

defined as a triplet/,x, Owk, Kwi), Where K, denotes the

set of dependencies defined by We consider each output

parameter depends on each input parameter. To build such &

“ @ network, we first create one node for each parameter present

in the whole collection. Then, links are created by congier
each WS separately: a link is added between each one of
its input parameters and each one of its output parameters.
Additionally, one parameter may be used by several WS,
either as an input or an output. Consequently we have to
Fig. 4. Example of WS partial interaction decide if two parameters are similar. This is the role of the
matching functions described in Subsection IlI-E. In theeca

of syntactic dependency networkgual matching is applied.

For a semantic descriptioexactmatching is applicable.

P
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B. Interaction Network WS-NEXT can also achieve some secondary tasks, such

We define an interaction network as a directed graph who32 t_cc:_untlng f?cc_glr rencc:sh_of pargmetgrl_s _nameﬁ, C(meg SOmé
nodes correspond to interacting WS and links indicate grEptistics on flexible matching and serializing collecson

possibility for the tail WS to act on the head WS [13]. TdB. Architecture

represent a collection of WS descriptions under the form aprchitecture of WS-NEXT and networks extraction steps
of an interaction network of WS, we first define a node tgre illustrated by Figure 6. The main parts of this tool are
represent each WS in the collection. Then, a link is drawiescribed below.
from a WS1 towards another W3 if and only if for each  \WS-NEXT Parser processes WS descriptions files one after
input parameter in,,,, a similar output parameter exists ineach other. It detects duplicates and do not parses them
Ou, . In other words, the link exists if and only if W$  twice. Meaningless empty or generically named parameters a
can provide the information requested to invoke WSIn  discarded. For semantic descriptions, correspondindamies
the interaction network, a link between two WS thereforgst be available while parsing files. The parsing step tesul
represents the possibility to compose them. The matchifiginternal objects which represent WS of the collection.
functions described in Subsection IlI-E are used to deteemi WS-NEXT Network Extractor takes as input objects (that
the similarity between two parameters. internally represent the collection), and the profiles ctele

by the user, to extract appropriate networks.

V. WS-NEXT
Parameters dependency and WS composability can be de- (SA)WSDL P Service
picted by networks. Those assumptions were the basis in de- Files Collection arser Objects

veloping WS-NEXT. Hereafter we present the functionaitie

\
\
. . |

and the architecture of WS-NEXT as well as examples of its o _
application. \
N S
A. Functionalities |
WS-NEXT allows extracting networks from a collection |
\
\

of WS descriptions files, according to the models previously
defined. Networks are extracted choosingrefile, also called
set of Traits (a trait corresponding to a network variable).

Figure 5 gives an extract of the WS networks taxonomy. Actual
networks are represented by a tree starting from the roatggo ! o
through each trait and ending by an underlying leaf. A profile 7|
example is Full Interaction of Syntactic Operation with Bbju | 4 Network
\
\
|

Ontologies Network

A Objects

\ J

Matching. At its present version, WS-NEXT is able to extract Extractor
eighteen full interaction networks, eighteen partial iat¢ion

networks and two dependency networks (called interaction i Profiles
WS-NEXT) from WSDL or SAWSDL description files.

Model: interaction — 4+ | Network
/ \ Writer
\\ ‘
Mode: full e = = = = = + - — = — — = —

/ \\ ‘ Files: Networks,

Granularity: operation . | Parameters,
Statistics, Log,

/ \ | Serialized

L . ) | Descriptions

Description: syntactic semantic

/\ / ‘ \\ Fig. 6. WS-NEXT architecture

Matching: equal flexible exact plugin fitin subsume  WS-NEXT Network Writer write networks and the internal
/ \\\ represented collection on files, in a specified output dirget
along with log and some statistics files. Networks files cionta
Metric: jaro  levenshteinsmoothed winckler metadata about the source collection and extraction profile

Log files contain eventual errors and warnings pointed out at
Fig. 5. Extract of WS networks taxonomy any step of the whole process.
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C. Implementation

As shown in Figure 7, WS-NEXT provides a graphical
user interface. It allows specifying the collection to gars
the target directory for extracted networks, informatioarfie
and description language) about the collection and theor&tw
extraction profiles to be used. WS-NEXT can also run withoi
GUI by adding arguments on the command-line, in order
be called by scripts.

Fig. 7. WS-NEXT graphical user interface

WS-NEXT is coded in Java. It is cross-platform as it only
relies on Java Runtime Environment 6. Current implemen-
tation of WS-NEXT only supports WSDL and SAWSDL
as input files format and Pajek.net as output. It is easily
extendable to any format since Java interfaces are awailabl
for both input/output layers.

VI. USeECASE OFWS-NEXT

In this section, results of network extraction of depengen:
and interaction networks are presented. A succinct arsalysi
provided. Both networks have be extracted from the SAWSDI
TC1 [14] WS descriptions collection. This collection proes
894 semantic WS descriptions written in SAWSDL, containin
one interface, one operation per interface and 2136 paessne
instances. They are distributed over 7 thematic domains- (et .
cation, medical care, food, travel, communication, econon
and weapon). It originates in the OWLS-TC2.2 collectior
which contains a part of real-world WS descriptions regikv
from public IBM UDDI registries, and semi-automatically
transformed from WSDL to OWL-S.

A. Network extraction

Figure 8 represents an extracted network. Isolated noc
have been eliminated.

Its profile is Full Interaction of Semantic Operation witt
Exact Matching. This network has a giant component. Th
globally reflects a large number of potential compositions.

A second example of a network extracted by WS-NEXT i
presented in Figure 9. It is a dependency network where is.
lated nodes are not represented. Its profile is Partialdotiem
of Semantic Parameter with Exact Matching. This network has
the same structure than the previous one. This reflects ditlat b
models retain the same information.

Fig. 8. A trimmed interaction network

Fig. 9. A trimmed dependency network
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B. Network Analysis VII. CONCLUSION

In this section, we present a use case to demonstrate th& WS network extractor is presented with one use case
utility of the extracted networks through a network anaysifor the extracted networks in the network analysis appboat
Our aim is to get an idea of the WS composability. Frordomain. The WS-NEXT development is inspired by the fact
the SAWSDL-TCL1 collection of publicly available WS de-WS composition can naturally be represented on the form
scriptions, we extract 4 different WS interaction netwo¢ks of networks. Additionally powerful tools are available for
syntactic and 3 semantic). We then take advantage of tootsmplex networks analysis. Extracted networks can be used
from the complex networks field to analyze them and detdre give a snapshot of the underlying WS space. Another
mine their properties. The results shows that all WS intesac application domain of uppermost importance is to use those
networks exhibit some of the typical characteristics obsgr networks as pre-computed structures during the discovery,

in real-world networks, such as short average distancedsstw and composition processes. Nevertheless, further rdsésrc
nodes, presence of a giant component and community straeeded to enrich WS-NEXT with the possibility of extractang
ture. These properties illustrate a highly connected space global semantic network including several semantic matghi

We additionally perform a comparative analysis of theneasures with weighting links for interaction degrees. A@no
syntactic and semantic approaches used to describe WS. @tleanced work would be to add a Web digger along with the
results show that using semantic WS descriptions showdgisting collection digger.

improve the composition process. Indeed, we observe the syn
tactic giant component was slightly larger, which might be d
to the presence of false positiveés., operations irrelevantly [
connected. Although semantic giant components contas les
links, their interconnection structure is more efficieeading [2]
to a smaller average distance between operations (in tekms o
composition) and a smaller diameter (maximal compositior[ls]
size). We can conclude that the introduction of semanticg)
in WS description allows a more accurate representation of
their potential interactions, and should consequentlyltes -
a more efficient search for composition processes, at least f
the considered collection. This observation is of uppetmos
importance as we are witnessing a rapid development i
semantic-related web technologies allowing the develapme
of semantic WS. (71
When comparing the three semantic networks, a clear
distinction appears between the loose matching functiong)
plugin and subsume, and the exact one. Loose matching
functions lead to networks with even smaller diameters ang
average distances, corresponding to a larger proportion o#
links between the domains, which in turns result in a weaker
community structure. This highlights the importance of thﬁo
selected matching function. More detailed results coringrn
this study can be found in [13]. Another use case concerninq
the analysis of dependency networks can be found in [12].[1 ]

[12]

[13]

[14]
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