
Extended Model Driven Architecture
to B Method

Ammar Aljer#1, Philippe Devienne*2

#Faculty of Electrical and Electronic Engineering
Aleppo University, Aleppo, Syria

1ammar.aljer@lifl.fr
*Lille Computer Science Laboratory (LIFL),

University of Science and Technology of Lille (USTL), Lille, France
2philippe.devienne@lifl.fr

Abstract— Model Driven Architecture (MDA) design approach
proposes to separate design into two stages: implementation
independent stage then an implementation-dependent one. This
improves the reusability, the reliability, the standability, the
maintainability, etc. Here we show how MDA can be augmented
using a formal refinement approach: B method. Doing so enables
to gradually refine the development from the abstract
specification to the executing implementation; furthermore it
permits to prove the coherence between components in low levels
even if they are implemented in different technologies.

Keywords— MDA, B method, Co-design Refinement,
Embedded System, VHDL

I. INTRODUCTION
 As computer performance improves and human-built

systems augment, there are continuous efforts to employ
suitable Computer Aided design tools that are able to develop
such complex systems. A common attitude between designers
in different technologies is to use more abstract design levels
that enable designer to concentrate, at first, on the most
important requirements of the system.

In hardware domain, many tools are produced to develop
higher levels than printed circuits or RTL (register transfer
level). VHDL (IEEE 1076) is emerged on 1987. it permits to
represent a complete hardware system. It became the
dominant in Hardware modelling. VerilogSystem is
standardised in 2005 to manage abstract level of hardware
system.
In software area, number of OOP languages has emerged.
They give more facilities to treat complex system than
procedural languages. An implementation-independent tool,
UML (unified modelling language), use graphical diagrams to
gather common aspects of OOP Languages using. An object
oriented system is made up of interaction components. Each
component (object) has its own local state and provides
operations on that state. In Object oriented design process,
Designer concentrates more on precising classes (abstraction

of real objects) and the relationships between these classes.
MDA (model driven architecture) was launched by the OMG
(Object Management Group) in 2001. It proposes to separate
the design into two stages: implementation-independent stage
then an implementation-dependent one. “The transition
between these stages of development should, ideally, be
seamless, with compatible notation used at each stage.
Moving to the next stage involves refining the previous stage
by adding details to exiting object classes and devising new
classes to provide additional functionality. As information is
concealed within objects, detailed design decision about the
representation of data can be delayed until the system is
implemented.”[8].

Another important aspect of nowadays systems is the
interference between different technologies. Most systems
consist of different cooperating sub-systems where some
functionality may migrate from one technology to another in
further versions of the system.

In our project, which is illustrated in figure 1, we improved

MDA approach in three main aspects:
1. Smoothing transfer from the abstract specification of

the system into the implementation with a proven
refinement from each level to the next and the more
deterministic one.

2. Formal notation of the complete system in the
abstract levels

3. Formal projection of components that are
implemented in hardware technology.

Our approach (that joints the advantages of MDA and B

method) permits to obtain many advantages:
1. The possibility to obtain a correct-by-design system
2. Increase the reusability: when a modification is

necessary, we preserve all design levels that are more
abstract than the level where modification is
occurred.

3. The possibility of migration between technologies in
low levels without reproving the complete system if

1

ICIT 2011 The 5th International Conference on Information Technology

the immigration preserves the logical behaviour
captured in the formal projection.

Figure 1 shows that the first step is to formally specify the

requirements. This step may be achieved during an iterative
process where new requirements do not contradict with the
previous ones. This step may be followed by one or more
steps to design the main components of the wanted system
independently of the implementation technology. Using the
formal refinement of B, components in each step is proven to
be coherent and refine the previous step. Designers in each
community may use their own development tools and
techniques to implement a part of the system. A formal
representation of the implementation of the different
technologies is traced to prove the compatibility and the
implantation- independent architecture. If necessary, the
system may be proven in coexisting with mathematical
representation of parts of the real environments such as
physical laws, external systems, etc.

Fig. 1 Refined MDA

II. MDA AND BHDL

Most Co-design verification methods depend on Co-
simulation of two or more types of components that are
designed by different technologies. Each research community
tries to extend design stages to include more abstract levels.
Fortunately, we can observe many common properties in the
research result of these different communities. It is quite
interesting to compare them and to show that they could be
prefigured and structured within a model driven architecture.
In this paper, we focus on B and VHDL.

B method [1] is known in software engineering as a formal

method to specify and to finely develop the specification
towards an executable program basing on set theory and first
order logic notation. During the software development in B
method, many versions of the same component may be found.
The first and the most abstract one is the abstract machine
where client needs are declared. Then, the following versions
should be more concretes. They should describe more and
more “how” we obtain the needed specifications. These
versions are called refinements except the last one where there
is no more possible refinement. This deterministic version is
called implementation. B tools generate the necessary proof
obligations to verify the coherence of each component and
correctness of the development. Furthermore, B tools help to
execute these proofs.

VHDL [2] is a dominant in Hardware description. The

designer may use two descriptions of a circuit; ENTITY and
ARCHITECTURE. In the first one, the interface of the circuit
with its environment is specified and in the second one the
internal structure of the circuit is detailed. Many standard and
private libraries and packages may be used to facilitate the
design.

As it is defined in its web site, VGUI is a Graphical User

Interface for Hardware Diagrams. It may be considered as a
simple component description tool. VGUI may be used to
create generic interconnected boxes. Each box may be
decomposed hierarchically into sub-boxes and so on. The
boxes and the connections are typed.

The principle of BHDL is to make use of the common

properties between B, ADL and HDL in order to use a
common formal iterance language. This will facilitate the
verification of design correctness since the early steps of co-
design. Fortunately, B method has its own mathematical
notation that can be used during all development steps. The
correctness of a system described by B language may be
“proven” by many tools as AtelierB, BToolkit , B-For-Free
and RODIN [3].

In the initial version of VGUI we could not attached logic

properties to a component (a Box). In cooperation with VGUI
developer, we added the possibility to attach logic property to
each box.

Implementation

Interface

Implementation-
Independent

Design

Hardware
Implementation

Specification

Hardware

Software

Mathematical
representation

of the real word

Logical projection of different
technology design

Common Formal System

⇑

⇑

Formal
Requirements

⇑

Formal Refinement (B method)

2

ICIT 2011 The 5th International Conference on Information Technology

Fig. 2 Common Aspects between ADL, HDL and B.

Fig.3 Principle of BHDL.

From VGUI interface the main structure of the system is
created. Then, two different notations are generated: VHDL
and B. The produced B code contains the main features of
VHDL one. After that, design may be separated in relation to
the technologic choices. VGUI has a limited expression
power, but our VHDL-B translator can handle any VHDL
code.

III. BHDL: B ↔ VHDL

VHDL is a language for describing the structural, physical

and behavioral characteristics of digital systems. As we have
said, two VHDL basic components are used to represent the
hierarchy; the Entity and the ARCHITECTURE. The first one
defines the interface of the system (or of a component). It
specifies the connection ports of the component and the type
of transmitted signals. While the second represents the
internal structure (or behavior) of the system (or of a

component). Each Architecture is attached to one Entity and it
may contain recursively one or more Entitys. This structure
looks similar to extern-view and intern-view in ADL,
procedure call and procedure implementation in imperative
language .etc. Also in B method two basic components excite:
the Abstract machine and the Refinement. The first one is
usually used to precise the specifications of the component;
the interface variables, the internal variables, the invariant
relation between them and the pre and post conditions of the
necessary operations. The second component may refine an
abstract machine; that means it precise partly how the
operations may be implemented. The Refinement component
may be, in his turn, refined recursively by more deterministic
Refinements. The last refinement step, when the behavior
becomes completely deterministic, is called the
implementation. B tools may prove the consistency of each
component and the refinement relation. In our project each
Entity is translated by an Abstract machine and each
Architecture by a refinement. The ports are declared as
Variables and the port typing as Invariant. Furthermore we
enhanced the VHDL notation with logical properties. These
properties are injected in B Invariant. The connection between
subcomponents of the Refinement should guarantee the
Invariant specified in the abstract machine (see figure4).

Fig. BHDL Refinement.

A. Hierarchy

In VHDL, the transition from an Entity into a

corresponding Architecture is usually performed in one step.
In BHDL, this may be finely performed by many steps or
levels. We may consider the refinement of a component in
BHDL as a replacement by other components. Also we may
refine a component by another one which has the same
structure and links but with more strict logic property. In all
cases the refinement is performed towards lower levels where
the behavior of the system becomes more deterministic.

The principal relation between the interface (external view)
and its refinement (or between two levels of refinement) is:

Connection(ϕ1, ϕ2,, …ϕn) ⇒ ϕ

which means that the logical connection between the
properties of the sub-components should satisfied the

ϕ
2

ϕ
1

ϕ
n

ϕ1 ∧ ϕ2 ∧ ϕn ∧ links ⇒ ϕ

implementation

ϕ

interface

VHDL

+INVARIANT
B

Designer

Abstract machine (φ)
(high level)

Refinement

Consists of

Refinement

External View
(ADL)

ENTITY
(VHDL)

Internal View
(ADL)

ARCHITECTURE
(VHDL)

Abstract machine
(φ1)

(high level)

External View
of a

sub-component

VGUI

3

ICIT 2011 The 5th International Conference on Information Technology

properties indicated in the abstract machine that represents the
Entity.

B. Compositionality and Invariant

Let ple example for
lustrating captures of multiple mathematical views and

re

Figure (5) ns two Nand

components. The modified version of VGUI allow to draw a
sim

 comp1 OF comp

 (i1,s,o)
nand PORT MAP (i2,i3,s)

OUT std_logic
cation

Specification Languages

A e as formal specification
nguage, PSL is an "add-on" language for Hardware

de

and fails to hold in every signal
cy

tely follows.

p until the next cycle in which
th

next time the right-hand
op

lerance

 T t in B method goes from the abstract
requirement to the concrete execution. During the
de

ation

B se of B tools to verify the
dependence between an output and an input. In Refinement
co

vely depends on the
lo

us consider the following sim

il
liability.

Fig. 5 Structure of Comp1 component.

shows a system that contai

ilar connected boxes and to precise the logic properties
and the internal structure of each box. Then VHDL+ and B
code is generated.

VGUI generated the following VHDL+ code for this
example:

STRUCTURE

NAL sSIG
BEGIN

 nand PORT MAP gate1 :
2 : gate

END
ENTITY nand

RT x, y : IN std_logic PO
 z :
 -- z = nand (x,y) B specifi
END

C.

s B is used in this exampl

la
scription languages that has recently been standardized by

the IEEE in 2005. PSL standard is based upon IBM's "Sugar"
language, which was developed and validated at IBM Labs
for many years before IBM donated the language to Accellera
for standardization. PSL works alongside a design written in
VHDL, Verilog or SystemVerilog. But in future it may be
extended to work with other languages. Properties written in
PSL may be embedded within the HDL code as comments or
may be placed in a separated file alongside the HDL code.
PSL includes multiple abstraction layers for assertion types
ranging from low-level Boolean and Temporal to higher-level
Modeling and Verification. Formally, PSL is structured into
four layers: the Boolean, Temporal, Verification and
Modeling layers. At its lowest-level, PSL uses references to

signals, variables and values that exist in the design's
conventional HDL description. Sugar used CTL (Computation
Tree Logic) formalism to express properties for model
checking. But the finally the underling semantic foundation
was migrated from CTL to LTL (Linear-Time Temporal
Logic) because the latter is considered more accessible to a
wider audience and it is more suitable for simulation. The
temporal operators of the foundation language provide
syntactic sugaring on the top of LTL operators. These
temporal operators include:

Always: it holds if its operator holds in every signal cycle.
Never: it holds if its oper
cle.
Next: it holds if its operand holds in the cycle that in the

immedia
Until: it holds if the property at its left-hand holds in every

cycle from the current cycle u
e property at its right-hand holds.
Before: it holds if the left-hand operand holds at least once

between the current cycle and the
erand holds.

D. Fault to

he usual developmen

velopment, the behavior becomes more and more
deterministic. In spite of that, BHDL can takes in account the
possibility to describe a fault scenario. Here we describe the
ideal system with the behavior of the ideal variables in the
abstract machine, then, by Refinement, we inject the possible
fault. This fault is declared using false variables. Then, we
propose the correction step for the false variables. At the end,
we prove that the corrected values of the false variables
respect the INVARIANT of the initial ones. The additional
variables and the correction operations are the cost of trust
behavior of the system.

E. Dependency Rel

HDL project can make u

mponents, each connection produces an independency
relation between two variables. Two types of connections
may be noticed; the connection between the sub-components
and the intern wires and the connection between sub-
components and outer ports.

The direction of the dependency is related to the signal
direction. As we see, this relation recursi

wer levels. As Refinement (architecture) can see only the
abstract machines (ENTITYs) of its sub-components. So that,
as the Refinement can not see the Refinements of its own sub-
components, it cannot see their dependency relation (see
figure 6). One solution is to modify the Invariant of each
Abstract machine where dependency relation is declared. To
facilitate the modification we write a part the invariant of the

i2 s

N

i1

i3

o

4

ICIT 2011 The 5th International Conference on Information Technology

abstract machine in an independent file that may be easily
modified by the refinement.

We defined a transitive relation “Depend” on the ensemble
PORTS with one direction. This relation should be defined
on

All these modif NT are applied at

re ent level where we can see the subcomponents. But
we

ndency relation has been use to check fan-out
property. In digital circuits, fan-out defines the maximum
nu

IV. AFCIM

he French project CI al Architectures for
Conception and Maintenance of Embedded Systems)
co

IM project is:

itecture (ie the common
part of specific description languages like ADL, HDL...), we
ad

REFERENCES

[1] J.-R. Abrial, The B-Book: ams to Meanings, Cambridge

University Press, UK, 1996.

 variables attached to the instances of the interne
components not to the generic form of them so we add new
variables for each instance to define the dependency relation.
For example, we shall write the dependency relation for the
following component.

Fig. 6 Dependency Relation.

ication of the INVARIA
finem
 need this information at the abstract machine level because

we need to know the dependency relation in a higher level
where this component (or abstract machine) is included, in its
turn, as subcomponent. The abstract machine of the right part
of figure (7) is used as a sub-component in the refinement of
the left part.

This depe

mber of digital inputs that the output of a single logic gate
can feed. The value of the fan-out is a big impact on test and
debugging.

T AF M (Form

ordinated by Philippe Devienne (LIFL) is a collaborative
research between four French universities and institutes
(LIFC, LIFL, Heudiasyc, INRETS).

The global architecture of the AFC

Fig.8 AFCIM

From a general Model Driven Arch

d formal annotations and specifications according to the
requirements or the fault scenarios that we want to handle.
All the tools used in our platform are freely used and
distributed (Rodin, Eclipse, Antlr, …). This research first
conducted into the AFCIM project (LIFL, INRETS,
HEUDIASYC Lab) will be now supported within a PCSI
project (Zero Defect Systems) between Lille University,
Aleppo University and Annaba University.

 Assigning Progr

[2] Y. Herve, VHDL-AMS – Applications et enjeux industriels, Duand,
France, 2002.

[3] The website of Event B and RODIN [Online]. Available
http://www.event-b.org/platform.html

[4] Flaviu Cristian, “Understanding Fault-Tolerant Distributed Systems”,
ACM, February 1991, 34(2): 56-78

[5] Terence Parr, The definitive ANTLR Reference, 384 pages, May 2007
[6] Ammar Aljer, Co-design and refinement in B, Ph.D. Thesis, Lille

Computer Science Laboratory, Lille, France, Dec. 2004.
[7] D. Garlan, “Formal Modeling and Analysis of Software Architecture:

Components, Connectors and Events”, Springer-Verlag, Sep 2003.
[8] I. Sommerville, Software Engineering, Pearson, 2007
[9] DOULOS, “PSL Golden Reference guide”,Book, 2005.

BHDL

Critical Systems
CONCEPTION

MODELS

Component - Hierarchy

HDLs/ ADLs
Redundan

Fault Tolerance,

cy,

Consists of

Refinement

Gate2
Gate1

i1

o1i2

l4 i3

Abstract machine (φ)
(high level)

Refine
(high level)

ment

m

Refinement

Depen
Inform

Depen
Information

dency

dency
ation

ICIT 2011 The 5th International Conference on Information Technology
Consists of
Fig. 7 Dependency Information Tra
Abstract
achine(φ)1

nsfer.

5

