
Syntactic Sugar Programming Languages'

Constructs - Preliminary Study

Mustafa Al-Tamim
#1

, Rashid Jayousi
#2

Department of Computer Science, Al-Quds University, Jerusalem, Palestine
1
maltamim@science.alquds.edu

00972-59-9293002

2
rjayousi@science.alquds.edu

00972-52-7456731

ICIT 2011 The 5th International Conference on Information Technology

Syntactic Sugar Programming Languages'

Constructs - Preliminary Study

Mustafa Al-Tamim
#1

, Rashid Jayousi
#2

Department of Computer Science, Al-Quds University, Jerusalem, Palestine
1
maltamim@science.alquds.edu

2
rjayousi@science.alquds.edu

Abstract— Software application development is a daily task done

by developers and code writer all over the world. Valuable

portion of developers’ time is spent in writing repetitive

keywords, debugging code, trying to understand its semantic,

and fixing syntax errors. These tasks become harder when no

integrated development environment (IDE) is available or

developers use remote access terminals like UNIX and simple

text editors for code writing. Syntactic sugar constructs in

programming languages are found to offer simple and easy

syntax constructs to make developers life easier and smother. In

this paper, we propose a new set of syntactic sugar constructs,

and try to find if they really can help developers in eliminating

syntax errors, make code more readable, more easier to write,

and can help in debugging and semantic understanding.

Keywords— Programming languages, syntax, constructs,

syntactic sugars, syntax errors, ambiguity.

I. INTRODUCTION

Developing and writing software application is common daily

activity done by hundreds of thousands of developers and

programmers as the demand on software applications is

increasing to meet the technical revolution.

Enterprise software applications development using

programming languages (PL) requires extensive code writing.

Such applications have complex functionality and business

logic for developers to focus on. Valuable portion of

developers’ time is spent writing repetitive keywords and

determining code building blocks’ scopes that can be

ambiguous for them to follow up and debug, also it may

generate many syntax errors that need extra efforts to find and

fix. In addition, source code reading and semantic extraction

by developers is not easy task when it's not their own code.

Students who learn programming languages in universities

and schools face similar issues in code ambiguity and syntax

errors. These issues could cost programmers hours to fix

syntax errors especially if they lack experience maturity to

help them in code debugging and memorizing syntax

keywords and complex structures. The problem becomes

evidently visible when developers use remote access terminals

like UNIX or simple text editors where no advanced IDE

(Integrated Development Environments) and coding wizard

available.

Syntactic sugar [4] enhancements on programming languages

syntax constructs is one of the approaches used to enhance

syntax and help in making it more readable, easier to write,

less syntax errors and less ambiguous.

In this research, we proposed new set of syntactic sugar

constructs that can be composed by a mixture of existing

constructs obtained from some programming languages in

addition to syntactic enhancements suggested by us. Through

our work as software developer, team leaders, and guiding

many students in their projects, we noticed that developers

write a lot of repetitive keywords in specific parts of code like

packages calling keywords, attributes access modifiers, code

segments and building blocks’ scopes determination symbols

and others. One case example, the usage of curly braces “{ }”

to determine program’s building blocks (class, method, if,

for…etc.) scopes in the same program, can make it difficult to

distinguish the method scope from its internal control

statements scopes especially in the case of missed opening or

closing symbol.

This kind of repeated keywords and ambiguity can cause

many syntax errors, and make it difficult to debug and

understand the code semantic. This consumes portion of

developers’ efforts and time especially when using text mode

development environment. This motivated us to search for

syntactic sugar constructs that can help in enhancing

programming language syntax in order to use less repetitive

keywords, better scope determination symbols, better

exception handling, and more readable code with less writing

efforts to make developers work easier with more focus on

business logic implementation. The questions we try to

answer in this research: Is syntactic sugar constructs help in

rapid development with less syntax errors? Can they make

code more readable and easier to write? Do they help in

semantic extraction?

Research results show positive indicators for using syntactic

sugar in writing application source code. In the following

section, we review the previous work done in this field. In

section 3, we describe the methodology used to extract the

syntactic sugars constructs set. The suggested syntactic sugar

constructs are shown in section 4. Constructs validation case

study is explained in section 5. In section 6, we show and

discuss the case study results, and in section 7, we conclude

and suggest future work.

ICIT 2011 The 5th International Conference on Information Technology

II. BACKGROUND

The term "Syntactic Sugar" was found by the British computer

scientist Peter J. Landin [4], this term describes making

programming languages syntax user friendly and offer

alternative syntactic expressions to language common

constructs to be sweeter and written in simpler way without

affecting the semantic [4] [5].

Syntactic sugars were used in many programming languages

to offer new set of features in certain areas. In [4], C# 3.0 was

provided with new features to support LINQ as functional

paradigm. These features were classified as syntactic sugars

that help in cutting down the repetitive code tediousness. W3C

OWL Web Ontology Language was extended by OWL 2 [5]

where OWL 2 added extra syntactic sugar to make common

patterns and statements in OWL easier to write as the case of

the disjoint union of classes.

The OCL language in [7] was extended by syntactic sugars as

its concrete syntax is verbose and hard to be read, the authors

added new syntactic sugars extracted from math and logic

depending on positive results authors got from using the

syntactic sugars within workshop notes and formalized due to

UML 1.4.2 standard [15].

Java like languages (Java, Scala and C#), introduced many

simple syntactic sugar that were used to reduce syntax

complexity, as well as shortening and cleaning the code like

omitting empty type parameters list in classes and methods,

omitting empty arguments lists, and using special identifiers

(_) for un-referenced parameters. [11] Describes Liskell

which is a new syntax for Haskell that provides programmers

with a set of syntax sugars to eases programming (Simple

List, The Dispatcher Namespace, syntax sugar for defining

macros "defmacro" and others).

Syntactic sugar also used within Aspect Oriented

Programming in a language called RE-AspectLua which is a

new version of AspectLua [13]. Authors used syntactic sugar

to reduce the number of code lines needed to define aspect

interface and associate it. In [9], syntactic sugar was used in

Java based embedded domain specific languages (EDSL) to

implement sugar methods to replace the Java noisy syntax and

non domain related code used to create and set up domain

specific objects. The XML document query language

"XQuery" in [12], used syntactic sugar to offer shorter

constructs for common and certain expressions (The Empty

Function, Quanti_ed Formula, FLWOR Expressions,

Coercion) to replace the complicated syntax used in research

and education. RhoStratego language used syntactic sugars to

code un-ambiguity by replacing parentheses with angle

brackets [14]. It also provided syntactic sugar for

concurrencies, lists, and tuples. In [8], OpenC++ is C++

extension. OpenC++ provided syntax sugar for matrix

manipulation library to define matrix as an array with

initialized values which is not possible in regular C++, and a

new kind of loop statement using "forall" notation to loop

over all matrix entries in shorthand way. Authors of

unfamiliar TEX language [6] provided syntactic sugars to

make TEX constructs about the loop, the switch, array

addressing, and keyword parameters closer to high level

programming languages constructs like Pascal to be easier for

users. All the related work described previously was focusing

on enhancing certain syntax constructs partially to add

support for specific concepts like supporting functional

paradigm in object oriented, add shorthand methods and

constructs, decrease code verbose and un-ambiguity) [10]. In

our work, we tried to make enhancements using syntactic

sugars on general level for the most common abstract

constructs that are used in both object oriented and procedural

programming languages paradigms. We propose using

syntactic sugar to eliminate syntactic errors, reduction of

keywords, better semantic extraction, code debugging, and

make remote development easier.

III. CONSTRUCTS SELECTION

Constructs selection methodology that we used to select and

enhance the syntactic sugar constructs set depends on two

factors: Usability frequency of constructs in writing programs,

and Object Oriented Programming (OOP) Relevance. We

determined the common and widely used abstract

programming constructs [1] that are classified under these

factors.

The abstracted common constructs we used and related to

usability frequency are: Method (function) definition, Looping

construct, Selection construct, Building blocks scopes

determination, and Exception handling variables scope

constructs.

In the abstracted common constructs relevant to OOP, we

focused on constructs that represent the main OOP concepts

like inheritance, encapsulation, polymorphism, and relations.

The constructs are: Class, Inheritance, Using Methods as

Constructor, libraries and packages usage, Class Attributes

access modifiers, Methods access modifiers, Objects

Collection Iteration, Object instantiation, and Object /

Method messages passing (calling) format.

Using the abstract constructs set; we extracted the actual

syntactic constructs from set of programming languages. We

selected 5 programming languages and extracted the actual

syntactic constructs from them. The programming languages

were selected upon: 1) Languages usage and spreading. 2)

Languages families and development. The Selected

programming languages are: Eiffel, Python, Java, C#, and

Ruby. We considered selecting languages that are developed

on top of others older languages or their syntax is a mix of

other pre-exist languages. This to make balance between old

and new programming languages, and to cover syntactic

constructs that are used in large set of programming languages

[2]. The final set of the syntactic sugar constructs proposed

was a mix of syntactic constructs we extracted from

programming languages which considered to be widely used,

in addition to a set of syntactic enhancements suggest by

authors as syntactic sugar constructs.

The first constructs set was general and included many

alternatives for the same abstract construct. To narrow the

selection and form the new syntax constructs set, we followed

questionnaire approach to get people who use programming

languages (programmers, developers, students…etc.) opinion

ICIT 2011 The 5th International Conference on Information Technology

and know their recommendation of which constructs are better

upon their experience and expectations.

We distributed the questionnaire over programming

professionals and students in Palestinian universities and

companies in west bank – Palestine. The populations and

sample size was calculated depending on a report of ICT

working forces in Palestine [3]. The sample size was: ICT

Professionals: 77, ICT Students: 93. Number of distributed

copies is 600, collected were 251 as follows: ICT

Professionals: 79, ICT Students: 172.

The analysis of the results obtained from the collected

questionnaire showed that 14 out of 15 questions’ answers

were Java constructs selection, only 1 constructs was from

another languages (Ruby). The results helped us in realizing a

fact the people usually prefer what they know and resist

change (change management); they answered in a way that

didn’t nominate new easier constructs set, we concluded this

using "Percentage Distribution of ICT Professionals

According to Technical Skills" statistics in ICT working forces

in Palestine report [3].

Results directed us to modify our methodology by nominating

a set of syntactic sugar constructs from the extracted and

enhanced set we assume that it help in improving code syntax

and achieve all objective we try to approve (the nominated

constructs set is explained in section 4). Then we asked people

to practice them, and received their feedback as explained in

section 5.

IV. SYNTACTIC SUGAR CONSTRUCTS SET

Upon modification done in the methodology, we nominated

set of syntactic sugar constructs to produce new partial syntax

for programming languages common constructs. The

constructs selection criteria were: 1) Reduce repetitive

keywords. 2) Make construct shorter to write, Close to natural

language and standard like UML notation. 3) Offer many

writing form alternatives for the same construct. 4) Enhance

constructs scope symbols to make code more readable and

less ambiguous.

The following table summarizes all selected and enhanced

constructs:

TABLE I

SELECTED AND ENHANCED SYNTACTIC SUGAR CONSTRUCTS

Enhanced Constructs Suggested Syntax Comments

Class Inheritance Construct class ChildClass -> ParentClass // UML notation

class ChildClass:ParentClass

Offers code reusability, shorthand, and

maintenance.

Class Instantiation Construct myInstance = MyClass(); Keyword reduction

Method Definition Construct def methodName(int size, Object obj)

 int x = 5 + size;

 return x;

endef

Used simple construct to define a method

where the return type is not needed.

Method Calling Construct

instanceName.methodName; // calling method

without parenthesis

instanceName.methodName(); // calling method with

parenthesis

instanceName.methodName2(5, objInst); //calling

method with parameters and parenthesis

instanceName.methodName2 5, objInst; //calling

method with parameters and without parenthesis

Many alternatives to call a method from

class instance and message passing

Method Execution on Class

Construction Construct

class MyClass create executeMeMethod{

 def executeMeMethod()

 system.out.println("I'm executed on instance");

 endef

}

Used to execute a method on class

instantiation without using constructors or if

no constructors / defaults constructor is

available.

Looping Construct 5:times do ref // loop 5 times

 System.out.println("Val: "+ref+" in: "+arr[ref-1]);

end

Used to Loop a block of statements or array

entries number of times in simple way. "ref"

is optional.

Object Collection Iteration

Construct
myCollection:each do ref // iterate myCollection

 System.out.println("Hi, I'm looping…"+ref);

endEach

It iterates over collection of objects or any

type derived from collection type in easy way

Selection Construct choose(a){

 case 1: System.out.println("One…");

}

The keyword used to me more close to

human natural language

ICIT 2011 The 5th International Conference on Information Technology

Packages / Modules Calling

Construct
import: java.io.*; // write import only once for all

 java.util.*;

 java.lang.*;

This to reduce repetitive "import" keywords

Variables Access Modifier class ClassName{

 private: // private attributes

 int a = 1;

 String b;

 public: // public attributes

 File file = new File();

 double length;

// the same for other access modifier

}

An enhancement to define many attributes

with the same access modifier. Close to

C++.

Method’s Access Modifier def __privateMeth()//2 underscores : private

def _protectedMeth() //1 underscores: protected

def publicMeth() //no underscores: public method

The access modifiers for methods are

specified in simple way by using

underscore(s) "_" at the beginning of method

name.

Exception Handling Variables

Scope

try{

 int nm = Integer.parseInt(br1.readLine());

}

catch(Exception e){

 System.out.println("num="+nm);//nm is accessible

}

System.out.println("num="+nm);//num is accessible

We modified the scope (accessibility) of

variables defined within the exception try

block to be accessible outside the try block

V. THE EXPLORATORY CASE STUDY

Measuring constructs efficiency is done by asking users to

practice them. To verify the assumption of the suggested

syntactic constructs set obtained upon modified methodology,

we designed and executed exploratory case study. We

conducted an exploratory case study with small sample size as

we considered this experiment as an indicator to know if our

assumption regarding the new constructs set was valid. We do

not claim that results in this research are final, they are

indicators. We were unable to make the experiment with large

set of users because of many difficulties we faced: students

were not interested to participate, their times and availability

was hard, professional developers don’t prefer to spend time

in doing work outside their paid time and their availability is

hard to be managed. The case study designed into two tracks:

The first track was with computer science students. We

introduced the new constructs to them with simple training,

get their feedback through an interview, then we asked them

write some programs using the new constructs set designed

upon their university courses with different difficulty levels.

In this track we wanted to measure the percentage of syntactic

errors and difficulty in writing programs by students, and if

the new constructs set can help in eliminating errors and code

writing efforts. The other track was with programming

professionals who work in software industry. We gave them

set of shuffled programs (some of them written using the new

constructs and the others in old Java syntax), and asked them

to debug and extract their semantic. Then we introduced the

new constructs set to them, and did an interview to get their

feedback. In this track we wanted to verify if the new

constructs can help in semantic extraction, debugging, and

making the code more readable. We implemented the new

constructs set as syntactic extension on top of Java 1.5 syntax

using parser generator tool called JavaCC [16] in addition to a

very simple integrated development environment (IDE) used

by participants to write programs using the new syntax

constructs set. After completing the case study execution, all

data were collected (interview answers, written programs,

errors' log files) and analyzed to get results as explained in

section 6.

TABLE II

INTERVIEW QUESTIONS' ANSWERS SUMMARY

Questions Students' Results Professionals' Results

1- Do you believe that using the new constructs will save efforts in writing code especially

in case of repetitive keywords (import, access modifiers…etc.) and shorter looping

constructs?

Agree Agree

2- Do you think that using new constructs will help in decreasing syntax errors as result

from saving repetitive keywords and distinguish scope using different identifiers?
Totally Agree Agree

3- Do you agree that using new constructs will make the code debugging easier? Agree Totally Agree

4- Do you think that the code will be more readable using the new constructs? Totally Agree Totally Agree

5- Are the new constructs can help in extracting the program semantic from just reading it

with minimal execution efforts and without the need for executing it many times and

debug it to understand its functionality?

Agree with

Reservation
Agree

6- Is it true that the new construct can help in producing programs with less number of

code lines (shorter syntax)?
Totally Agree Totally Agree

ICIT 2011 The 5th International Conference on Information Technology

VI. CASE STUDY RESULTS

Analyzing the data collected in all case study tracks showed

encouraging results and positive indicators that support

research assumptions. Interview summarized answers in Table

2 for both students and professionals showed that the new

syntax constructs set affect on decreasing the syntactic errors

and making the code more readable and shorter.

They help in saving code writing efforts, using less repetitive

keyword, and make code debugging easier, and extract

programs semantic in easier and faster way. In students' case

study track (Programs Writing), and depending on the log

data generated by the parser, we extracted and counted errors

happened in each program for each student. We classified the

errors to two types: errors occurred in old Java syntax, and the

errors occurred in the new suggested constructs. This

classification is to measure the percentage of errors occurred

by each type and to check if there was any improvement. Prior

to analyzing the results in Fig. 1, we counted the number of

each constructs type used in each program and summarized

them. This is to check if the ratio of generated errors from

each constructs type is reasonable to the number of constructs

used in each program. As shown in Fig. 2, we notice that the

used new constructs form 39% of whole BubbleSort program

constructs and old construct are 61%, but if we looked at

percentage of errors in Fig. 1, we find that new constructs

caused 8% of total errors in this program while the old

constructs caused 92%. The same observation can be noticed

for the other programs. Also, It is noticed that whenever the

program becomes longer (number of syntax lines is higher),

new constructs are used more in the syntax as shown in Fig. 2.

This show another observation: the new constructs are used in

higher percentage in longer programs while they generate

fewer errors, this mean the total errors count in the programs

will decrease due to new constructs usage.

Fig. 1 Percentage of generated errors

Fig. 2 Percentage of constructs used in each program

In professionals track (Semantic Extraction), answers were

collected and graded in scale start from 1 to 3. 1 means the

extracted semantic is far from the correct answer, 3 means the

semantic is correct and accurate. We calculated average

answer grade for each program for all answers using the

following equation:

A avg. = (∑ A(1...n))/n
Where A: The professional answer grade and n: number of participant

professionals

Then, we calculated “Accuracy Ratio" to show how many the

A avg. for each program is close to the complete accurate

answer grade which is 3. The Equation used:

Accuracy Ratio = A avg. / 3.

From results in Table 3, we concluded that the new constructs

helped in extracting more accurate programs semantic than the

old constructs. The new constructs results show the lowest

accuracy ration was 83%, and the highest was 100% with two

programs had accuracy of 93%. In the old constructs’

programs results, the lowest accuracy was 53% which is much

less than the lowest new constructs accuracy result, and the

highest was 93% and not 100% as the new construct highest

accuracy. It is important to note that professionals asked to

extract the semantic of programs without any previous

knowledge about the new constructs while they had enough

knowledge about the old constructs as all participants were

Java developers.

TABLE III

SEMANTIC EXTRACTION RESULTS

Programs Constructs Type A avg. Accuracy Ratio

P8 Old Syntax 1.6 53%

P9 Old Syntax 2.5 83%

P3 Old Syntax 2.5 83%

P1 Old Syntax 2.6 87%

P5 Old Syntax 2.8 93%

P10 New Syntax 2.5 83%

P7 New Syntax 2.6 87%

P6 New Syntax 2.8 93%

P2 New Syntax 2.8 93%

P5 New Syntax 3 100%

ICIT 2011 The 5th International Conference on Information Technology

From the results, using different scope determination symbols

for each construct help in reducing errors and make code more

readable and less ambiguous. And the effect of new syntactic

sugar constructs on semantic extraction was higher from

professionals' perspective.

VII. CONCLUSION AND FUTURE WORK

In this work, the new constructs set with syntactic sugar

showed positive indicators that can help in producing less

syntactic errors and repetitive keywords, more readable,

shorter, easier to write, debug, and clearer code, in addition to

better scope determination, and more accurate semantic

understanding. We recommend considering these results in the

design of new programming languages' syntax.

In future work, we need to extend the constructs set to include

new constructs and increase experiment sample size to be

larger and longer period. One way we intend on doing is to

teach the constructs during a university course for several

semesters to get more representative evaluation.

REFERENCES

 [1] Peter D. Mosses, "A Constructive Approach to Language Definition",
Journal of Universal Computer Science, vol. 11, no. 7, 2005, pp. 1117-

1134.

[2] Éric Lévénez, Computer Languages History, At
http://www.levenez.com/lang/lang_a4.pdf, 2009.

[3] The Palestinian IT Association of Companies (PITA), Assessment of

the Palestinian ICT Workforce, At
http://www.pita.ps/newweb/pdfs/local_2008.pdf, 2008.

[4] Ahmad Emad Mageed, "The Evolution of the C# Language: The

Impact of Syntactic Sugar and Language Integrated Query on
Performance", A thesis submitted to the Graduate Faculty of Auburn

University, Auburn, Alabama, 2010.

[5] Christine Golbreich and Evan K. Wallace, OWL 2 Web Ontology
Language: New Features and Rationale, W3C Working Draft 02,

2008.

[6] Kees van der Laan, "Syntactic Sugar", Dutch TEX Users Group (NTG),
AJ Schagen,The Netherlands, 1992.

[7] Jörn Guy Süß. "Sugar for OCL". Proceedings of the 6th OCL

Workshop at the UML/- MoDELS Conference, 2006. Pp. 240–251.
[8] Shigeru Chiba, “OpenC++ Programmer’s Guide for Version 2,”

Xerox PARC Technical Report, 1996

[9] Steve Freeman and Nat Pryce, "Evolving an Embedded Domain-
Specific Language in Java", OOPSLA '06 Companion to the 21st ACM

SIGPLAN symposium on Object-oriented programming systems,

languages, and applications, 2006
[10] Philippe Altherr and Vincent Cremet, "Abstract Type Constructors for

Java-like Languages", At

http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.90.6424&type=
ab, 2006.

[11] Clemens Fruhwirth, "Liskell Haskell Semantics with Lisp Syntax", At

http://clemens.endorphin.org/ILC07-Liskell-draft.pdf, 2007.
[12] Jan Hidders, Philippe Michiels, Jan Paredaens, and Roel Vercammen,

"LiXQuery: A Formal Foundation for XQuery Research", SIGMOD

Record, Vol. 34, No. 4, 2005.
[13] Thaís Batista and Maurício Vieira, "RE-AspectLua - Achieving Reuse

in AspectLua", Journal of Universal Computer Science, Vol. 13, No. 6,

pp 786-805, 2007.
[14] Eelco Dolstra, "First Class Rules and Generic Traversals for Program

Transformation Languages", Utrecht University, 2001.
[15] Object Management Group (OMG). Unified Modeling Language

Specification, Version 1.4.2, Jan 2005.http://www.omg.org/cgi-

bin/doc?formal/05-04-01.pdf.
[16] JavaCC, At https://javacc.dev.java.net, 2010

ICIT 2011 The 5th International Conference on Information Technology

