
Applying GA to Find Minimum Cost Routes between
Existing Nodes in Different Network Models

Ahmad Al-Sayaad, Abeer Abu-Sultan, Zakaria Zayed, Deena Abu-Sultan
AXIS Solutions

P. O. Box 64418 Shuwaikh B, 70455, Kuwait
Ahmad.Al-Sayaad@axis-solutions.com

Abeer.Abu-Sultan@axis-solutions.com

Zakaria.Zayed@axis-solutions.com

Deena.Abu-Sultan@axis-solutions.com

Abstract— A Genetic Algorithm based techniques is introduced
for finding a solution for the problem of finding minimum cost
routes within a network. GA approach is selected for solving
such problems due to its adaptive nature where possible solutions
are integrated to produce better solutions until reaching the
optimal solution. The implemented GA is used to find the
minimum cost routes between nodes of different networks
models. Three network models are introduced and analyzed:
Random, Small-World and Scale-Free network models. Each
network model has its own structure and properties. The overall
fitness value for each network, which represents the average
fitness value for the minimum cost routes within the network, is
calculated and compared for the studied network models. The
produced experiments provide reasonable results in terms of
minimum cost routes within a network, which might be used by
network designers and administrators to suggest network
redesign techniques in order to overcome routing bottlenecks
within any given network.

Keywords— GA, Average fitness, Minimum cost route,
Complex networks, Average network degree.

I. INTRODUCTION
We are going to use Genetic Algorithms (GA) to develop

an algorithm for finding the minimum cost routes between any
selected pair of nodes within different network models. First
of all, finding the minimum cost route between two nodes
within a network is an optimization problem. Therefore, using
GA approach could be suitable for solving such problems due
to its adaptive nature where possible solutions are integrated
to produce better solutions until reaching the optimal solution.
GA is based on few known steps: Generation, Crossover and
mutation. Its implementation requires setting and defining
design constraints, and changing the algorithm to best fit the
problem solving approach. The optimal solution is a baseline
in the performance evaluation criteria; hence network
administrators and designers can use this information toward
redesigning the network to get a better structure with higher
throughput.

The topology of the network plays major role in
determining the optimal route between a pair of nodes.
Searching for the optimal network topology in which we
identify two nodes of minimum cost is not a trivial task. Here,
we intend to examine several network structures and find the

optimal solutions. Evidently, there exists no optimal network
topology satisfying our objective function. Consequently,
generating several network structures and optimize each one
of them. Three main networks structures are examined:
random, small world and scale-free.

In this research, we demonstrate the application of GA on
finding the optimal solution in all of the three network models.
We are going to find the minimum cost routes between any
selected nodes in different networks models using a GA
approach. Then we are going to evaluate different network
models in terms of existing minimum cost routes within their
structure.

II. GENETIC ALGORITHM (GA)
A genetic algorithm (GA) is a programming technique that

mimics biological evolution as a problem-solving strategy.
Given a specific problem to solve, the input to the GA is a set
of potential solutions to that problem, encoded in some
fashion, and a metric called a fitness function that allows each
candidate to be quantitatively evaluated. These candidates
may be solutions already known to work, with the aim of the
GA being to improve them, but more often, they are generated
at random.

The GA then evaluates each candidate according to the
fitness function. In a pool of randomly generated candidates,
of course, most will not work at all, and these will be deleted.
However, purely by chance, a few may hold promise - they
may show activity, even if only weak and imperfect activity,
toward solving the problem. These promising candidates are
kept and allowed to reproduce. Multiple copies are made of
them, but the copies are not perfect; random changes are
introduced during the copying process. These digital
offsprings then go on to the next generation, forming a new
pool of candidate solutions, and are subjected to a second
round of fitness evaluation. Those candidate solutions which
were worsened, or made no better, by the changes to their
code are again deleted; but again, it is possible that the
random variations introduced into the population may have
improved some individuals, making them into better, more
complete or more efficient solutions to the problem at hand.
These winning individuals are selected and copied over into
the next generation with random changes, and the process
repeats. The expectation is that the average fitness of the

ICIT 2011 The 5th International Conference on Information Technology

population will increase each round, and so by repeating this
process for hundreds or thousands of rounds, very good
solutions to the problem can be discovered.

As astonishing and counterintuitive as it may seem to some,
genetic algorithms have proven to be an enormously powerful
and successful problem-solving strategy, dramatically
demonstrating the power of evolutionary principles. Genetic
algorithms have been used in a wide variety of fields to evolve
solutions to problems as difficult as or more difficult than
those faced by human designers. Moreover, the solutions they
come up with are often more efficient, more elegant, or more
complex than anything comparable a human engineer would
produce [1].

Any implemented GA is made of few known steps. These
steps might slightly vary from one implementation to another.
However, the main steps must be implemented in order to
have a meaningful genetic algorithm. In general, the main
steps necessary to complete any given genetic algorithm are
presented below in Fig. 1.

Fig. 1 Main steps used by any given Genetic Algorithm

In the following sections, parameters constraints and

requirements along with detail description of the involved
steps for a given GA are going to be presented in more details
to provide better understanding of the design and
implementation of a given GA.

A. GA Constraints and Parameters
Implementing GA requires defining the constraints and

setting some parameters that are going to be used within the
algorithm toward solving the optimization problem. These
constraints and parameters vary from how to represent a
single solution, to the way that individual solutions are
selected and kept for later generations. Below, we are going to
represent the basic constraints and parameters used while
implementing GA.

1) Representation: Before a genetic algorithm can be put
to work on any problem, a method is needed to encode
potential solutions to that problem in a form that a
computer can process. One common approach is to encode
solutions as binary strings: sequences of 1's and 0's, where
the digit at each position represents the value of some
aspect of the solution. Another, similar approach is to
encode solutions as arrays of integers or decimal numbers,
with each position again representing some particular
aspect of the solution. This approach allows for greater
precision and complexity than the comparatively restricted
method of using binary numbers only and often is
intuitively closer to the problem space [2].

2) Initial Population: The initial population is a set of
randomly generated solutions for a given problem. This
initial population is created randomly in order to cover
different variations of the solution and avoid early
convergence when applying GA. The size of the initial
population is specified by the user and it must be large
enough to provide better sample space of the possible
solutions for a given problem. The initial population is
then used as the basis for the applied GA and therefore, all
later generations are made of this population.

3) Fitness Function: A fitness function is a particular type
of objective function that prescribes the optimality of a
solution (that is, a chromosome) in a genetic algorithm so
that that particular chromosome may be ranked against all
the other chromosomes. Optimal chromosomes, or at least
chromosomes which are more optimal, are allowed to breed
and mix their datasets by any of several techniques,
producing a new generation that will (hopefully) be even
better. An ideal fitness function correlates closely with the
algorithm's goal, and yet may be computed quickly. Speed
of execution is very important, as a typical genetic
algorithm must be iterated many, many times in order to
produce a usable result for a non-trivial problem [3].

4) Selection, Mutation and Crossover: Selection, mutation
and crossover are used together to regenerate a new
population that possibly have better overall fitness.
Selection defines the criterion that is used to select the best
solutions and keep them for next generation. For example, a
selection technique is to keep the solutions with the highest
fitness for next generation and replace the worst ones with
newly generated offspring. On the other hand, mutation and
crossover are methods used to generate new solutions based
on existing chromosomes. Mutation is based on randomly
changing a small portion of the original selected parent to
generate a new child solution. Crossover is done by
selecting two parent solutions and making a crossover
between them to get new children solution. Crossover could
be implemented in different ways such as single or multiple
point crossovers.

III. NETWORK MODELS
We aim to use Genetic Algorithms (GA) to develop an

algorithm for finding the minimum cost routes between nodes

ICIT 2011 The 5th International Conference on Information Technology

within a given network. Studies have classified Complex
networks into three major models: Random, Small-World and
Scale-Free network models [4]–[6]. Each network model is
created by following a set design constraints. These
constraints are the factors that differentiate between different
created network models. Understanding the properties and the
structure of the existing network is useful for specifying the
strengths and weaknesses of the network and helps toward
providing better redesign and utilization techniques, which in
term aims toward increasing the performance and minimizing
the bottlenecks within the network. In the following sections,
we are going to preview three network models: Random,
Small-World and Scale-free network models.

A. Random
One of the most basic and popular models of random

complex networks is the Erdős and Rényi model introduced in
1959 [4], [7], [8]. In this model, a network with N nodes is
constructed along with a probability p for connecting each
pair of vertices in the network, excluding duplicate or self
looping links. The resulting network represents an Erdős and
Rényi random network. Fig. 2 represents an Erdős and Rényi
network with 30 nodes and average degree of 3. We will refer
to the Erdős and Rényi network model as the Random
Network Model.

Fig. 2 Erdős and Rényi network with 30 nodes and average degree of 3

B. Small-World
In 1967, Milgram made a famous experiment and found

that two random chosen US citizens can reach each other
through an average of six social links [5]. In other words, he
found that in a social network, everyone in the network could
be reached through a finite number of edge transitions [9],
[10]. This concept is called the Small-World property, and
therefore, the Small-World network model is defined as a
network which has the Small-World property. Another
property of the Small-World networks is the existence of a
large number of loops of size 3 links, i.e. if node a is
connected to b and c, then it is highly possible that b and c are
also connected to each other forming a cluster of 3 links. A
famous random network model which satisfies the Small-
World property and has high number of small clusters is the
Watts-Strogatz (WS) small-world model [11]. To create a
(WS) Small-World network, we start with N nodes, where
each node is connected to k neighboring nodes in both

directions forming 2.k neighbors. Then, each edge in the
network is rewired based on a probability Pr. The resulting
network looks similar to the network shown in Fig. 3, for a
network of 30 nodes, k=2 and Pr =0.3.

Fig. 3 Small-World network with 30 nodes, k=2 and Pr =0.3

C. Scale-Free
Many studies had shown that the degree distribution for

many real networks do not follow a unique pattern, instead
they showed that it follows an uneven distribution. Barabasi
and Alberts [6] showed that in many systems, there are few
nodes in the network that are highly connected while the
others have much less connections. These few highly
connected nodes represent hubs in the network and they have
a large fraction of the existing relations in the network. A
network with the mentioned characterization is called a Scale-
Free network. Scale-Free networks are built following a
growth pattern. First, the network starts with M0 random
nodes with random relations between them. Then the network
grows by adding new nodes to the existing network and
creating more relations between the newly added node and
some of the previous nodes. Adding a new relation between a
new node i and an existing node j is proportional to the total in
and out degree of j. The probability of creating a link between
node i and node j is represented by the summation of all in
and out degree of j over the total degree for the network [6]
and is given below:

∑
∑=→

network

j
ji outinDegree

outinDegree
p

),(
),(

(1)

Fig. 4 illustrates a scale-free network with 30 nodes, initial

population of M0=9 nodes and connecting probability of
Pc=0.1. As shown in Fig. 4, all the nodes are connected in the
network and no isolated nodes exist. This is a result of having
relatively smaller connecting probability p. Also, you can
notice that there are four nodes in the middle of the network
that almost every other node is connected to, forming hubs for
the network. These nodes tend to have highest degree when
the network was initialized and therefore, they will have more
relations toward them after adding the new nodes to the
network.

ICIT 2011 The 5th International Conference on Information Technology

Fig. 4 Scale-Free network with 30 nodes, M0=30% and Pc = 0.1

IV. FINDING MINIMUM COST ROUTES WITHIN A NETWORK
USING GA

In this project, we are going to design and implement an
algorithm for finding the minimum cost route between any
pair of nodes within a given network. The conducted
algorithm is going to be built on the basis of GA. We have
selected GA because of its performance and compatibility
when dealing with optimization problems. The minimum cost
route would have been found using other techniques that can
calculate the shortest path between two selected nodes. These
algorithms could be used to find all shortest paths between
two selected nodes and then evaluating them by calculating
the overall cost through each path, in order to specify the
minimum cost routes. These techniques sound easier to
implement for small size networks with 10 or 20 nodes.
However, if the network size is scaled up, these solutions
might not be effective anymore because of the large size of
the paths available between two nodes within a given network.
Therefore, the GA has been adopted due to its adaptive nature
where possible solutions are integrated to produce better
solutions until reaching the optimal solution. Also, GA could
be effectively adopted by any computer-based problem
solving system, producing programs that can automatically
solve a specified optimization problem with high performance.
In the following sections, we are going to describe in more
details the implemented GA, which is used to find the
minimum cost route between any two nodes within a network.

A. Algorithm Details
We have developed a GA based algorithm to solve the

problem of finding the minimum cost route between two
nodes within a network. The algorithm starts by either reading
existing input file or randomly creating the data related to the
structure of a network with size N nodes and different inter
link weights. Note that if the network is going to be created
randomly, you will have the choice to create different types of
networks such as Random, Small-World or Scale-Free
networks. Based on the selection, the network is going to be
generated randomly and according to the specified parameters
and constraints. All networks are assumed to be undirected
weighted networks, where the weights on the links represent

the cost of traversing from a node to another through that
specific link. The data related to the network is stored into a
two dimensional transition matrix called network[N][N],
where network[i][j] represents the cost of traveling from node
i to node j within the network. After creating the network
transition matrix, two nodes are selected to represent a source
and destination nodes, and then, the GA is run for a specific
number of generations to find the minimum cost route(s)
between the selected source and destination. Finally, the
above process could be repeated for any pair of source and
destination nodes within the existing network in order to get
all minimum cost routes between the nodes. Fig. 5 below
illustrates the mains steps of the overall algorithm used to find
the minimum cost route between the selected source and
destinations nodes.

Fig. 5 General overview of the implemented algorithm for finding the

minimum cost route between selected source and destination nodes

B. Implemented GA
The implemented GA in this project is not different than

any other implemented GA in the main steps (generate initial
population, selection, crossover and mutation). However,
there are some important parameters and constraints that must
be specified carefully and accurately in order to produce
optimal results using the implemented GA. The related
constraints are presented in details in the following sections.

1) Representation and Initialization parameters: One of
the most important parts of implementing any GA is the
representation step. In this step, the designer must carefully
choose a form to represent a given solution for the problem.
Usually, the solutions are represented as a string of binary
bits, where each bit in the solution array represents a gene
within a chromosome. Other representation format is the
integer representations, where genes are represented by an
array of integer values. In this project, we need to calculate

ICIT 2011 The 5th International Conference on Information Technology

the minimum cost route between any two selected nodes.
Therefore, we are going to use integer representation with
maximum chromosome size of 2xN, in order to cover
variable length solutions. Each solution is represented by an
array R[2.N], where each integer R[i] in the array list
represents a gene within the chromosome (solution). This
gene holds the cost of traversing from one node to the
neighboring node on a selected link. For example, if a
network with N=10 nodes and s=2 (source node number)
and d=6 (destination node number), then the proposed
solution R must have 20 genes in maximum, forming an
array of integers which represent the cost of traversing from
the source to the destination through the selected path.
There will possibly be more than one route between any
two selected source and destination nodes. Assume you
have k routes between two nodes, an example route
(solution) could be represented as following:

Rk[20] : 20 13 5 48 2 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The solution size is selected to be twice the size of the
network and therefore, as the size of the network grows, the
solution size will also grow, providing larger solution space
for routes that can be made with more number of links.
This will help in covering most available solutions when
generating the initial population as we will present in the
next sections.

2) Fitness Function: As described in section 2, a fitness
function is an objective function that prescribes the
optimality of a solution. Fitness function could be described
in different forms considering the problem nature and the
solution required. In this problem, the minimum cost route
between two selected nodes is required to be found and
therefore, a meaningful fitness function would be the
accumulative summation of the costs along a given path R
that connects the two selected nodes, as shown in equation
(2). This fitness function is created toward serving the goal
of the implemented GA, which is finding the path with the
minimum (optimal) cost.

∑
=

=

=
Ni

i
kk iRdsFitness

.2

1

][),((2)

3) Selection and Crossover: Selection and crossover are
two steps used by the GA to generate new population
which possibly has better overall fitness. In this project,
mutation is not used; instead a single point crossover is
used to create the new possible solutions. Single point
crossover is done by selecting two parent solutions and
making a crossover between them at a single point to
generate two new children solutions. At each crossover
operation, the crossover point must be randomly selected.
To make sure that the generated children are valid solutions,
the crossover point must be selected at a common node
between the two parents. If the selected crossover point is
not common between the two selected parents, then the
generated children will not represent valid routes and,
therefore will be discarded after the crossover operation.

Adding this constraint to the algorithm helps toward saving
time by making sure that the generated children solutions
represent valid solution after each crossover operation. The
selection criteria is based on selecting the routes that have
the best fitness (minimum cost) to be stored for the next
generation and discard the routes with the worst fitness
(maximum cost). This selection criterion is used to
hopefully get new generation with better overall fitness,
which in term is expected to generate new generations with
better overall fitness as well.

V. DISCUSSION AND EXPERIMENTAL RESULTS
A C++ code was written to design the algorithm used for

finding the minimum cost route between existing nodes within
a network. The networks are generated randomly, representing
different network models with different sizes. In this report,
all networks are undirected networks that are generated
randomly with a fixed size of 50 nodes. Also, all links
between nodes are assumed to have a unique value α which is
referred to as the cost of routing from node a to node b and
vice versa. For this study, we assume that α=1.

In the following sections, we are going to generate different
types networks (random, small-world and scale-free) and
analyze them by calculating the overall routing cost within the
network. The overall routing cost for any network is given as
the average of fitness values for all minimum cost routes
between existing nodes in the network. To get the average
fitness value for a given network, the minimum cost routes are
found for every pair of nodes within the network. These
minimum values are then averaged to get the overall fitness
value for a given network. All experiments are applied for
networks with N=50 nodes, with a solution size of 2.N, and an
initial population of size NP=100 solutions. Moreover, the GA
is applied on each network for 1000 generations repeatedly
until getting the final optimal solution. The designed code for
this project will generate the networks automatically after
specifying the needed parameters such as the network size,
population size, number of generations and etc. Then, the code
is going to perform the GA to find the minimum cost routes
between every two nodes. Eventually, it is going to get the
overall routing cost for the network by averaging all
calculated minimum cost routes. For accurate data
representation, the procedure is applied for 500 samples of
each network and the overall values are averaged to get a
more accurate result for each network.

A. Random Network Model: Sample Solution
For random networks with size 50 nodes, a randomly

selected network sample is presented in Fig. 6 below. All links
are randomly created with no specific pattern and with a
creating probability of 0.4 (if the generated random number
p<0.4, then create a link between two nodes, otherwise no link
is created). Also, all links have a unique value of α, which is
removed from the figure for simplicity of the network. As
shown in Fig. 6, the network is made of a huge number of
randomly created links between network nodes. The final
output file for this program contains all paired nodes and the

ICIT 2011 The 5th International Conference on Information Technology

minimum cost paths and their fitness values. A sample part of
the final output file is given in Table 1, which represents the
minimum cost routes between node number 1 and the first 10
nodes within the network. The maximum and minimum
fitness values among all routes are given as 5 and 1
respectively, which means that the longest path between two
nodes in the network uses 5 links (5α) and the shortest path
between any two existing nodes goes through a single link
(1α).

Fig. 6 Random network with N=50 nodes

TABLE I

A SAMPLE OF THE MINIMUM COST ROUTES WITHIN THE GIVEN RANDOM
NETWORK AND THEIR FITNESS VALUES

n1 n2 Minimum
Fitness

Minimum Cost
Route

1 2 2 1-26-2
1 3 2 1-20-3
1 4 2 1-32-4
1 5 2 1-11-5
1 6 1 1-6
1 7 1 1-7
1 8 2 1-11-8
1 9 2 1-19-9
1 10 1 1-10

The total degree (in and out degrees) for the above given

random network is 1548 links, which is large but typical for a
random network. This is one of the properties of any given
random network, since the probability of creating a link
between two links is equal to 40 %, which means that there is
a 40% chance of creating a link between any two selected
nodes upon network creation. On average, the minimum cost
routes between selected pairs of nodes have an average fitness
value of 1.63 (1.63α), which represents the overall fitness for
the network.

B. Small-World Network Model: Sample Solution

For the small-world network model, a network of size
N=50, rewiring probability Pr=0.5 and number of neighbors
k=2 (2.k neighboring nodes) was created and used as shown in
Fig. 7 below. As shown in Fig. 7, the resulting networks is
presented in a ring like structure in order to better present the
small-world properties of the network, which is the
connection to the closest 2k neighbors. The effect of the
rewiring process during the network creation is clearly
presented by the links that are rewired from the closest
neighbors to nodes that are located away from the selected
node.

Fig. 7 Small-world network with N=50 nodes, k=2 and Pr=0.5

The final output file for this network is similar in structure

to the previously generated output files for the random
network model and contains all paired nodes and the
minimum cost paths and their fitness values. A sample part of
the final output file is given in Table 2, which represents the
minimum cost routes between node number 20 and the first 10
nodes with IDs greater than 20. The maximum and minimum
fitness values among all routes are given as 9 and 1
respectively, which means that the longest path between two
nodes in the network uses 9 links (9α) and the shortest path
between any two existing nodes goes through a single link
(1α).

TABLE II

A SAMPLE OF THE MINIMUM COST ROUTES WITHIN THE GIVEN SMALL-
WORLD NETWORK AND THEIR FITNESS VALUES

n1 n2 Minimum
Fitness

Minimum Cost
Route

20 21 2 20-33-21
20 22 3 20-33-21-22
20 23 2 20-31-23
20 24 4 20-31-27-26-24
20 25 2 20-32-25
20 26 3 20-31-27-26
20 27 2 20-31-27
20 28 2 20-18-28
20 29 3 20-31-27-29
20 30 3 20-33-36-30

ICIT 2011 The 5th International Conference on Information Technology

The total degree (in and out degrees) for the small-world
network given in Fig. 7 is 346 links, which represents 4
neighbors for each nodes (2k) plus the extra links added after
rewiring existing links [(2x2x50) + (rewired links)]. Therefore,
the resulted degree for the network is represents a correct
value for a small-world network with the given specification.
We notice that the total degree for small-world networks is
much less than random networks. The average routing cost for
the given small-world network, which represents the overall
fitness for the network, is found to be 2.45 (2.45 α).

C. Scale-Free Network Model: Sample Solution
A scale-free network with initial population M0=0.4 and

connecting probability Pc=0.06 was created randomly and
presented in Fig. 8. The initial population is a portion of the
network that is created randomly at the first step. For this
network, the first 20 nodes represent the initial random
population. As shown in Fig. 8, these nodes reside in the
middle of the network. Furthermore, when creating the
network, based on the value of the connecting probability Pc
and the degree of the nodes within the initial population, a link
is created between newly added nodes and some of the
existing nodes within the initial population. Nodes 5, 6, 7, 10,
13 and 18 have higher degree among the initial population and
therefore, all newly added nodes are connected to them. This
is a property of any given scale-free network, which is having
hub-like nodes that attract all other nodes toward them.

Fig. 8 Scale-Free network with N=50 nodes, M0=0.4 and Pc=0.06

Similar to the previous cases, a sample part of the final

output is given in Table 3, which represents the minimum cost
routes between node number 30 and the first 10 nodes with
IDs greater than 30.

The total degree (in and out degrees) for the generated
scale-free network is 656 links. The total degree depends on
the initial population percentage and the number of hub-like
nodes within the initial population. On the other hand, the
average value of all minimum cost routes which represents the
overall fitness value of the network is equal to 2.08 (2.08α),
with minimum and maximum fitness values of 1 and 8 links
respectively (minimum=1α and maximum=8α).

TABLE III

A SAMPLE OF THE MINIMUM COST ROUTES WITHIN THE GIVEN SCALE-FREE
NETWORK AND THEIR FITNESS VALUES

n1 n2 Minimum
Fitness

Minimum Cost
Route

30 31 2 30-6-31
30 32 2 30-5-32
30 33 2 30-18-33
30 34 2 30-18-34
30 35 2 30-6-35
30 36 2 30-13-36
30 37 2 30-6-37
30 38 2 30-5-38
30 39 2 30-18-39
30 40 2 30-6-40

D. Network Comparison and Concluding Remarks
We have provided sample networks and sample output files

in the previous sections. In this section we are going to
generate 500 random sample networks of each network model
(random, small-world and scale-free) and calculate the
resulting average value for the overall fitness for each network
type. The results are presented in Table 4 along with the
average network degree for the studied network types.

TABLE IV

AVERAGE NETWORK DEGREE AND FITNESS VALUES FOR DIFFERENT
NETWORKS AFTER GENERATING 500 SAMPLES

Network Model Average Network
Degree Average Fitness

Random 1352 1.72

Small-World 359 2.43

Scale-Free 694 2.11

VI. CONCLUSION
As described in this report, GA was used successfully to

find the minimum cost path between any two selected nodes
within a given network. The used algorithm is consistent,
resulting in software with high performance and efficiency.
The software finds the optimal solution after relatively small
number of generations. The goal of the overall study is to
evaluate a given network’s structure and propose a redesign
criteria (if necessary) based on the calculated minimum cost
routes between any two nodes. By calculating the minimum
cost routes between any two nodes within the network, the
designers can observe and compare the minimum cost routes
in terms of number of links and their location, and point out
the links that form a bottleneck and have higher traffic rate
and suggest redesigning the network in a way to serve the

ICIT 2011 The 5th International Conference on Information Technology

overall routing problem in the network. The bottlenecks might
be overcome by simply adding more links, or changing the
endpoints of a given link, or by changing the weight on a
specific link. These issues were not clear for the designers
unless they have an overview of the existing minimum cost
routes, which was provided by the suggested GA algorithm in
this report.

ACKNOWLEDGMENT
The authors would like to acknowledge the support by

Kuwait Foundation for the Advancement of Sciences (KFAS)
under a research grant No. 2006-1510-03.

REFERENCES
[1] Genetic Algorithms and Evolutionary Computation By Adam Marczyk,

(2004).
[2] Fleming, Peter and R.C. Purshouse. "Evolutionary algorithms in

control systems engineering: a survey." Control Engineering Practice,
vol.10, p.1223-1241 (2002).

[3] Extracted from “http://en.wikipedia.org/wiki/Fitness_function” in April
2010.

[4] P. Erdős and A. Rényi, 1959. On random graphs. Publicationes
Mathematicae, 6:290–297.

[5] S. Milgran, 1967. The small world problem. Psychology Today,
1(1):60–67.

[6] A.-L. Barabási and R. Albert, 1997. Emergence of scaling in random
networks. Science, 286:509–512.

[7] P. Erdős and A. Rényi, 1960. On the evolution of random graphs. Publ.
Math. Inst. Hungar. Acad. Sci, 5:17–61.

[8] P. Erdős and A. Rényi, 1961. On the strenght of connectedness of a
random graph. Acta Mathematica Scientia Hungary, 12:261–267.

[9] D. J. Watts, 1999. Small worlds : the dynamics of networks between
order and randomness. Princeton University Press.

[10] D. J. Watts, 2003. Six Degrees. The Science of a Connected Age. W.W.
Norton & Company.

[11] D. J. Watts and S. H. Strogatz, 1998. Collective dynamics of small-
world networks. Nature, 393(6684):440–442.

ICIT 2011 The 5th International Conference on Information Technology

