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Abstract—  A Genetic Algorithm based techniques is introduced 
for finding a solution for the problem of finding minimum cost 
routes within a network. GA approach is selected for solving 
such problems due to its adaptive nature where possible solutions 
are integrated to produce better solutions until reaching the 
optimal solution. The implemented GA is used to find the 
minimum cost routes between nodes of different networks 
models. Three network models are introduced and analyzed: 
Random, Small-World and Scale-Free network models. Each 
network model has its own structure and properties. The overall 
fitness value for each network, which represents the average 
fitness value for the minimum cost routes within the network, is 
calculated and compared for the studied network models. The 
produced experiments provide reasonable results in terms of 
minimum cost routes within a network, which might be used by 
network designers and administrators to suggest network 
redesign techniques in order to overcome routing bottlenecks 
within any given network. 
 
Keywords—  GA, Average fitness, Minimum cost route, 
Complex networks, Average network degree. 

I. INTRODUCTION 
We are going to use Genetic Algorithms (GA) to develop 

an algorithm for finding the minimum cost routes between any 
selected pair of nodes within different network models. First 
of all, finding the minimum cost route between two nodes 
within a network is an optimization problem. Therefore, using 
GA approach could be suitable for solving such problems due 
to its adaptive nature where possible solutions are integrated 
to produce better solutions until reaching the optimal solution. 
GA is based on few known steps: Generation, Crossover and 
mutation. Its implementation requires setting and defining 
design constraints, and changing the algorithm to best fit the 
problem solving approach. The optimal solution is a baseline 
in the performance evaluation criteria; hence network 
administrators and designers can use this information toward 
redesigning the network to get a better structure with higher 
throughput. 

The topology of the network plays major role in 
determining the optimal route between a pair of nodes. 
Searching for the optimal network topology in which we 
identify two nodes of minimum cost is not a trivial task. Here, 
we intend to examine several network structures and find the 

optimal solutions. Evidently, there exists no optimal network 
topology satisfying our objective function. Consequently, 
generating several network structures and optimize each one 
of them. Three main networks structures are examined: 
random, small world and scale-free.  

In this research, we demonstrate the application of GA on 
finding the optimal solution in all of the three network models. 
We are going to find the minimum cost routes between any 
selected nodes in different networks models using a GA 
approach. Then we are going to evaluate different network 
models in terms of existing minimum cost routes within their 
structure. 

II. GENETIC ALGORITHM (GA) 
A genetic algorithm (GA) is a programming technique that 

mimics biological evolution as a problem-solving strategy. 
Given a specific problem to solve, the input to the GA is a set 
of potential solutions to that problem, encoded in some 
fashion, and a metric called a fitness function that allows each 
candidate to be quantitatively evaluated. These candidates 
may be solutions already known to work, with the aim of the 
GA being to improve them, but more often, they are generated 
at random. 

The GA then evaluates each candidate according to the 
fitness function. In a pool of randomly generated candidates, 
of course, most will not work at all, and these will be deleted. 
However, purely by chance, a few may hold promise - they 
may show activity, even if only weak and imperfect activity, 
toward solving the problem. These promising candidates are 
kept and allowed to reproduce. Multiple copies are made of 
them, but the copies are not perfect; random changes are 
introduced during the copying process. These digital 
offsprings then go on to the next generation, forming a new 
pool of candidate solutions, and are subjected to a second 
round of fitness evaluation. Those candidate solutions which 
were worsened, or made no better, by the changes to their 
code are again deleted; but again, it is possible that the 
random variations introduced into the population may have 
improved some individuals, making them into better, more 
complete or more efficient solutions to the problem at hand. 
These winning individuals are selected and copied over into 
the next generation with random changes, and the process 
repeats. The expectation is that the average fitness of the 
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population will increase each round, and so by repeating this 
process for hundreds or thousands of rounds, very good 
solutions to the problem can be discovered. 

As astonishing and counterintuitive as it may seem to some, 
genetic algorithms have proven to be an enormously powerful 
and successful problem-solving strategy, dramatically 
demonstrating the power of evolutionary principles. Genetic 
algorithms have been used in a wide variety of fields to evolve 
solutions to problems as difficult as or more difficult than 
those faced by human designers. Moreover, the solutions they 
come up with are often more efficient, more elegant, or more 
complex than anything comparable a human engineer would 
produce [1]. 

Any implemented GA is made of few known steps. These 
steps might slightly vary from one implementation to another. 
However, the main steps must be implemented in order to 
have a meaningful genetic algorithm. In general, the main 
steps necessary to complete any given genetic algorithm are 
presented below in Fig. 1. 

 

 
Fig. 1  Main steps used by any given Genetic Algorithm 

 
In the following sections, parameters constraints and 

requirements along with detail description of the involved 
steps for a given GA are going to be presented in more details 
to provide better understanding of the design and 
implementation of a given GA.  

A. GA Constraints and Parameters 
Implementing GA requires defining the constraints and 

setting some parameters that are going to be used within the 
algorithm toward solving the optimization problem. These 
constraints and parameters vary from how to represent a 
single solution, to the way that individual solutions are 
selected and kept for later generations. Below, we are going to 
represent the basic constraints and parameters used while 
implementing GA. 

1)  Representation:  Before a genetic algorithm can be put 
to work on any problem, a method is needed to encode 
potential solutions to that problem in a form that a 
computer can process. One common approach is to encode 
solutions as binary strings: sequences of 1's and 0's, where 
the digit at each position represents the value of some 
aspect of the solution. Another, similar approach is to 
encode solutions as arrays of integers or decimal numbers, 
with each position again representing some particular 
aspect of the solution. This approach allows for greater 
precision and complexity than the comparatively restricted 
method of using binary numbers only and often is 
intuitively closer to the problem space [2]. 

2)  Initial Population:  The initial population is a set of 
randomly generated solutions for a given problem. This 
initial population is created randomly in order to cover 
different variations of the solution and avoid early 
convergence when applying GA. The size of the initial 
population is specified by the user and it must be large 
enough to provide better sample space of the possible 
solutions for a given problem.  The initial population is 
then used as the basis for the applied GA and therefore, all 
later generations are made of this population. 

3)  Fitness Function:  A fitness function is a particular type 
of objective function that prescribes the optimality of a 
solution (that is, a chromosome) in a genetic algorithm so 
that that particular chromosome may be ranked against all 
the other chromosomes. Optimal chromosomes, or at least 
chromosomes which are more optimal, are allowed to breed 
and mix their datasets by any of several techniques, 
producing a new generation that will (hopefully) be even 
better. An ideal fitness function correlates closely with the 
algorithm's goal, and yet may be computed quickly. Speed 
of execution is very important, as a typical genetic 
algorithm must be iterated many, many times in order to 
produce a usable result for a non-trivial problem [3]. 

4)  Selection, Mutation and Crossover:  Selection, mutation 
and crossover are used together to regenerate a new 
population that possibly have better overall fitness. 
Selection defines the criterion that is used to select the best 
solutions and keep them for next generation. For example, a 
selection technique is to keep the solutions with the highest 
fitness for next generation and replace the worst ones with 
newly generated offspring. On the other hand, mutation and 
crossover are methods used to generate new solutions based 
on existing chromosomes. Mutation is based on randomly 
changing a small portion of the original selected parent to 
generate a new child solution. Crossover is done by 
selecting two parent solutions and making a crossover 
between them to get new children solution. Crossover could 
be implemented in different ways such as single or multiple 
point crossovers. 

III. NETWORK MODELS 
We aim to use Genetic Algorithms (GA) to develop an 

algorithm for finding the minimum cost routes between nodes 
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within a given network. Studies have classified Complex 
networks into three major models: Random, Small-World and 
Scale-Free network models [4]–[6]. Each network model is 
created by following a set design constraints. These 
constraints are the factors that differentiate between different 
created network models. Understanding the properties and the 
structure of the existing network is useful for specifying the 
strengths and weaknesses of the network and helps toward 
providing better redesign and utilization techniques, which in 
term aims toward increasing the performance and minimizing 
the bottlenecks within the network. In the following sections, 
we are going to preview three network models: Random, 
Small-World and Scale-free network models. 

A. Random 
One of the most basic and popular models of random 

complex networks is the Erdős and Rényi model introduced in 
1959 [4], [7], [8]. In this model, a network with N nodes is 
constructed along with a probability p for connecting each 
pair of vertices in the network, excluding duplicate or self 
looping links. The resulting network represents an Erdős and 
Rényi random network. Fig. 2 represents an Erdős and Rényi 
network with 30 nodes and average degree of 3. We will refer 
to the Erdős and Rényi network model as the Random 
Network Model. 

 
Fig. 2  Erdős and Rényi network with 30 nodes and average degree of 3 

 

B. Small-World 
In 1967, Milgram made a famous experiment and found 

that two random chosen US citizens can reach each other 
through an average of six social links [5]. In other words, he 
found that in a social network, everyone in the network could 
be reached through a finite number of edge transitions [9], 
[10]. This concept is called the Small-World property, and 
therefore, the Small-World network model is defined as a 
network which has the Small-World property. Another 
property of the Small-World networks is the existence of a 
large number of loops of size 3 links, i.e. if node a is 
connected to b and c, then it is highly possible that b and c are 
also connected to each other forming a cluster of 3 links. A 
famous random network model which satisfies the Small-
World property and has high number of small clusters is the 
Watts-Strogatz (WS) small-world model [11]. To create a 
(WS) Small-World network, we start with N nodes, where 
each node is connected to k neighboring nodes in both 

directions forming 2.k neighbors. Then, each edge in the 
network is rewired based on a probability Pr. The resulting 
network looks similar to the network shown in Fig. 3, for a 
network of 30 nodes, k=2 and Pr =0.3.  

 
Fig. 3  Small-World network with 30 nodes, k=2 and Pr =0.3 

 

C. Scale-Free 
Many studies had shown that the degree distribution for 

many real networks do not follow a unique pattern, instead 
they showed that it follows an uneven distribution. Barabasi 
and Alberts [6] showed that in many systems, there are few 
nodes in the network that are highly connected while the 
others have much less connections. These few highly 
connected nodes represent hubs in the network and they have 
a large fraction of the existing relations in the network. A 
network with the mentioned characterization is called a Scale-
Free network. Scale-Free networks are built following a 
growth pattern. First, the network starts with M0 random 
nodes with random relations between them. Then the network 
grows by adding new nodes to the existing network and 
creating more relations between the newly added node and 
some of the previous nodes. Adding a new relation between a 
new node i and an existing node j is proportional to the total in 
and out degree of j. The probability of creating a link between 
node i and node j is represented by the summation of all in 
and out degree of j over the total degree for the network [6] 
and is given below: 

∑
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Fig. 4 illustrates a scale-free network with 30 nodes, initial 

population of M0=9 nodes and connecting probability of 
Pc=0.1. As shown in Fig. 4, all the nodes are connected in the 
network and no isolated nodes exist. This is a result of having 
relatively smaller connecting probability p. Also, you can 
notice that there are four nodes in the middle of the network 
that almost every other node is connected to, forming hubs for 
the network. These nodes tend to have highest degree when 
the network was initialized and therefore, they will have more 
relations toward them after adding the new nodes to the 
network. 
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Fig. 4  Scale-Free network with 30 nodes, M0=30% and Pc = 0.1 

 

IV. FINDING MINIMUM COST ROUTES WITHIN A NETWORK 
USING GA 

In this project, we are going to design and implement an 
algorithm for finding the minimum cost route between any 
pair of nodes within a given network. The conducted 
algorithm is going to be built on the basis of GA. We have 
selected GA because of its performance and compatibility 
when dealing with optimization problems. The minimum cost 
route would have been found using other techniques that can 
calculate the shortest path between two selected nodes. These 
algorithms could be used to find all shortest paths between 
two selected nodes and then evaluating them by calculating 
the overall cost through each path, in order to specify the 
minimum cost routes. These techniques sound easier to 
implement for small size networks with 10 or 20 nodes. 
However, if the network size is scaled up, these solutions 
might not be effective anymore because of the large size of 
the paths available between two nodes within a given network. 
Therefore, the GA has been adopted due to its adaptive nature 
where possible solutions are integrated to produce better 
solutions until reaching the optimal solution. Also, GA could 
be effectively adopted by any computer-based problem 
solving system, producing programs that can automatically 
solve a specified optimization problem with high performance. 
In the following sections, we are going to describe in more 
details the implemented GA, which is used to find the 
minimum cost route between any two nodes within a network. 

A. Algorithm Details 
We have developed a GA based algorithm to solve the 

problem of finding the minimum cost route between two 
nodes within a network. The algorithm starts by either reading 
existing input file or randomly creating the data related to the 
structure of a network with size N nodes and different inter 
link weights. Note that if the network is going to be created 
randomly, you will have the choice to create different types of 
networks such as Random, Small-World or Scale-Free 
networks. Based on the selection, the network is going to be 
generated randomly and according to the specified parameters 
and constraints. All networks are assumed to be undirected 
weighted networks, where the weights on the links represent 

the cost of traversing from a node to another through that 
specific link. The data related to the network is stored into a 
two dimensional transition matrix called network[N][N], 
where network[i][j] represents the cost of traveling from node 
i to node j within the network. After creating the network 
transition matrix, two nodes are selected to represent a source 
and destination nodes, and then, the GA is run for a specific 
number of generations to find the minimum cost route(s) 
between the selected source and destination. Finally, the 
above process could be repeated for any pair of source and 
destination nodes within the existing network in order to get 
all minimum cost routes between the nodes. Fig. 5 below 
illustrates the mains steps of the overall algorithm used to find 
the minimum cost route between the selected source and 
destinations nodes. 

 
Fig. 5  General overview of the implemented algorithm for finding the 

minimum cost route between selected source and destination nodes 

 

B. Implemented GA 
The implemented GA in this project is not different than 

any other implemented GA in the main steps (generate initial 
population, selection, crossover and mutation). However, 
there are some important parameters and constraints that must 
be specified carefully and accurately in order to produce 
optimal results using the implemented GA. The related 
constraints are presented in details in the following sections. 

1)  Representation and Initialization parameters:  One of 
the most important parts of implementing any GA is the 
representation step. In this step, the designer must carefully 
choose a form to represent a given solution for the problem. 
Usually, the solutions are represented as a string of binary 
bits, where each bit in the solution array represents a gene 
within a chromosome. Other representation format is the 
integer representations, where genes are represented by an 
array of integer values. In this project, we need to calculate 
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the minimum cost route between any two selected nodes. 
Therefore, we are going to use integer representation with 
maximum chromosome size of 2xN, in order to cover 
variable length solutions. Each solution is represented by an 
array R[2.N], where each integer R[i] in the array list 
represents a gene within the chromosome (solution). This 
gene holds the cost of traversing from one node to the 
neighboring node on a selected link. For example, if a 
network with N=10 nodes and s=2 (source node number) 
and d=6 (destination node number), then the proposed 
solution R must have 20 genes in maximum, forming an 
array of integers which represent the cost of traversing from 
the source to the destination through the selected path. 
There will possibly be more than one route between any 
two selected source and destination nodes. Assume you 
have k routes between two nodes, an example route 
(solution) could be represented as following:  

Rk[20] :   20  13  5  48  2  36  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

The solution size is selected to be twice the size of the 
network and therefore, as the size of the network grows, the 
solution size will also grow, providing larger solution space 
for routes that can be made with more number of links. 
This will help in covering most available solutions when 
generating the initial population as we will present in the 
next sections. 

2)  Fitness Function:  As described in section 2, a fitness 
function is an objective function that prescribes the 
optimality of a solution. Fitness function could be described 
in different forms considering the problem nature and the 
solution required. In this problem, the minimum cost route 
between two selected nodes is required to be found and 
therefore, a meaningful fitness function would be the 
accumulative summation of the costs along a given path R 
that connects the two selected nodes, as shown in equation 
(2). This fitness function is created toward serving the goal 
of the implemented GA, which is finding the path with the 
minimum (optimal) cost. 

∑
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3)  Selection and Crossover:  Selection and crossover are 
two steps used by the GA to generate new population 
which possibly has better overall fitness. In this project, 
mutation is not used; instead a single point crossover is 
used to create the new possible solutions. Single point 
crossover is done by selecting two parent solutions and 
making a crossover between them at a single point to 
generate two new children solutions. At each crossover 
operation, the crossover point must be randomly selected. 
To make sure that the generated children are valid solutions, 
the crossover point must be selected at a common node 
between the two parents. If the selected crossover point is 
not common between the two selected parents, then the 
generated children will not represent valid routes and, 
therefore will be discarded after the crossover operation. 

Adding this constraint to the algorithm helps toward saving 
time by making sure that the generated children solutions 
represent valid solution after each crossover operation. The 
selection criteria is based on selecting the routes that have 
the best fitness (minimum cost) to be stored for the next 
generation and discard the routes with the worst fitness 
(maximum cost). This selection criterion is used to 
hopefully get new generation with better overall fitness, 
which in term is expected to generate new generations with 
better overall fitness as well. 

V. DISCUSSION AND EXPERIMENTAL RESULTS 
A C++ code was written to design the algorithm used for 

finding the minimum cost route between existing nodes within 
a network. The networks are generated randomly, representing 
different network models with different sizes. In this report, 
all networks are undirected networks that are generated 
randomly with a fixed size of 50 nodes. Also, all links 
between nodes are assumed to have a unique value α which is 
referred to as the cost of routing from node a to node b and 
vice versa. For this study, we assume that α=1.  

In the following sections, we are going to generate different 
types networks (random, small-world and scale-free) and 
analyze them by calculating the overall routing cost within the 
network. The overall routing cost for any network is given as 
the average of fitness values for all minimum cost routes 
between existing nodes in the network. To get the average 
fitness value for a given network, the minimum cost routes are 
found for every pair of nodes within the network. These 
minimum values are then averaged to get the overall fitness 
value for a given network.  All experiments are applied for 
networks with N=50 nodes, with a solution size of 2.N, and an 
initial population of size NP=100 solutions. Moreover, the GA 
is applied on each network for 1000 generations repeatedly 
until getting the final optimal solution. The designed code for 
this project will generate the networks automatically after 
specifying the needed parameters such as the network size, 
population size, number of generations and etc. Then, the code 
is going to perform the GA to find the minimum cost routes 
between every two nodes. Eventually, it is going to get the 
overall routing cost for the network by averaging all 
calculated minimum cost routes. For accurate data 
representation, the procedure is applied for 500 samples of 
each network and the overall values are averaged to get a 
more accurate result for each network. 

A. Random Network Model: Sample Solution 
For random networks with size 50 nodes, a randomly 

selected network sample is presented in Fig. 6 below. All links 
are randomly created with no specific pattern and with a 
creating probability of 0.4 (if the generated random number 
p<0.4, then create a link between two nodes, otherwise no link 
is created). Also, all links have a unique value of α, which is 
removed from the figure for simplicity of the network. As 
shown in Fig. 6, the network is made of a huge number of 
randomly created links between network nodes. The final 
output file for this program contains all paired nodes and the 
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minimum cost paths and their fitness values. A sample part of 
the final output file is given in Table 1, which represents the 
minimum cost routes between node number 1 and the first 10 
nodes within the network. The maximum and minimum 
fitness values among all routes are given as 5 and 1 
respectively, which means that the longest path between two 
nodes in the network uses 5 links (5α) and the shortest path 
between any two existing nodes goes through a single link 
(1α). 

 
Fig. 6  Random network with N=50 nodes 

 
TABLE I 

A SAMPLE OF THE MINIMUM COST ROUTES WITHIN THE GIVEN RANDOM 
NETWORK AND THEIR FITNESS VALUES 

n1 n2 Minimum 
Fitness 

Minimum Cost 
Route 

1 2 2          1-26-2 
1 3 2          1-20-3 
1 4 2          1-32-4 
1 5 2          1-11-5 
1 6 1          1-6 
1 7 1          1-7 
1 8 2          1-11-8 
1 9 2          1-19-9 
1 10 1          1-10 

 
The total degree (in and out degrees) for the above given 

random network is 1548 links, which is large but typical for a 
random network.  This is one of the properties of any given 
random network, since the probability of creating a link 
between two links is equal to 40 %, which means that there is 
a 40% chance of creating a link between any two selected 
nodes upon network creation. On average, the minimum cost 
routes between selected pairs of nodes have an average fitness 
value of 1.63 (1.63α), which represents the overall fitness for 
the network. 

B. Small-World Network Model: Sample Solution 

For the small-world network model, a network of size 
N=50, rewiring probability Pr=0.5 and number of neighbors 
k=2 (2.k neighboring nodes) was created and used as shown in 
Fig. 7 below. As shown in Fig. 7, the resulting networks is 
presented in a ring like structure in order to better present the 
small-world properties of the network, which is the 
connection to the closest 2k neighbors. The effect of the 
rewiring process during the network creation is clearly 
presented by the links that are rewired from the closest 
neighbors to nodes that are located away from the selected 
node.   

 
Fig. 7  Small-world network with N=50 nodes, k=2 and Pr=0.5 

 
The final output file for this network is similar in structure 

to the previously generated output files for the random 
network model and contains all paired nodes and the 
minimum cost paths and their fitness values. A sample part of 
the final output file is given in Table 2, which represents the 
minimum cost routes between node number 20 and the first 10 
nodes with IDs greater than 20. The maximum and minimum 
fitness values among all routes are given as 9 and 1 
respectively, which means that the longest path between two 
nodes in the network uses 9 links (9α) and the shortest path 
between any two existing nodes goes through a single link 
(1α). 

TABLE II 

A SAMPLE OF THE MINIMUM COST ROUTES WITHIN THE GIVEN SMALL-
WORLD NETWORK AND THEIR FITNESS VALUES 

n1 n2 Minimum 
Fitness 

Minimum Cost 
Route 

20 21 2 20-33-21 
20 22 3 20-33-21-22 
20 23 2 20-31-23 
20 24 4 20-31-27-26-24 
20 25 2 20-32-25 
20 26 3 20-31-27-26 
20 27 2 20-31-27 
20 28 2 20-18-28 
20 29 3 20-31-27-29 
20 30 3 20-33-36-30 
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The total degree (in and out degrees) for the small-world 
network given in Fig. 7 is 346 links, which represents 4 
neighbors for each nodes (2k) plus the extra links added after 
rewiring existing links [(2x2x50) + (rewired links)]. Therefore, 
the resulted degree for the network is represents a correct 
value for a small-world network with the given specification. 
We notice that the total degree for small-world networks is 
much less than random networks. The average routing cost for 
the given small-world network, which represents the overall 
fitness for the network, is found to be 2.45 (2.45 α). 

C. Scale-Free Network Model: Sample Solution 
A scale-free network with initial population M0=0.4 and 

connecting probability Pc=0.06 was created randomly and 
presented in Fig. 8. The initial population is a portion of the 
network that is created randomly at the first step. For this 
network, the first 20 nodes represent the initial random 
population. As shown in Fig. 8, these nodes reside in the 
middle of the network. Furthermore, when creating the 
network, based on the value of the connecting probability Pc 
and the degree of the nodes within the initial population, a link 
is created between newly added nodes and some of the 
existing nodes within the initial population. Nodes 5, 6, 7, 10, 
13 and 18 have higher degree among the initial population and 
therefore, all newly added nodes are connected to them. This 
is a property of any given scale-free network, which is having 
hub-like nodes that attract all other nodes toward them. 

 
Fig. 8  Scale-Free network with N=50 nodes, M0=0.4 and Pc=0.06 

 
Similar to the previous cases, a sample part of the final 

output is given in Table 3, which represents the minimum cost 
routes between node number 30 and the first 10 nodes with 
IDs greater than 30.  

The total degree (in and out degrees) for the generated 
scale-free network is 656 links. The total degree depends on 
the initial population percentage and the number of hub-like 
nodes within the initial population. On the other hand, the 
average value of all minimum cost routes which represents the 
overall fitness value of the network is equal to 2.08 (2.08α), 
with minimum and maximum fitness values of 1 and 8 links 
respectively (minimum=1α and maximum=8α). 

 

TABLE III 

A SAMPLE OF THE MINIMUM COST ROUTES WITHIN THE GIVEN SCALE-FREE 
NETWORK AND THEIR FITNESS VALUES 

n1 n2 Minimum 
Fitness 

Minimum Cost 
Route 

30 31 2       30-6-31 
30 32 2       30-5-32 
30 33 2       30-18-33 
30 34 2       30-18-34 
30 35 2       30-6-35 
30 36 2       30-13-36 
30 37 2       30-6-37 
30 38 2       30-5-38 
30 39 2       30-18-39 
30 40 2       30-6-40 

 

D. Network Comparison and Concluding Remarks 
We have provided sample networks and sample output files 

in the previous sections. In this section we are going to 
generate 500 random sample networks of each network model 
(random, small-world and scale-free) and calculate the 
resulting average value for the overall fitness for each network 
type. The results are presented in Table 4 along with the 
average network degree for the studied network types. 

TABLE IV 

AVERAGE NETWORK DEGREE AND FITNESS VALUES FOR DIFFERENT 
NETWORKS AFTER GENERATING 500 SAMPLES 

Network Model Average Network 
Degree Average Fitness 

Random 1352 1.72 

Small-World 359 2.43 

Scale-Free 694 2.11 

 

VI. CONCLUSION 
As described in this report, GA was used successfully to 

find the minimum cost path between any two selected nodes 
within a given network. The used algorithm is consistent, 
resulting in software with high performance and efficiency. 
The software finds the optimal solution after relatively small 
number of generations. The goal of the overall study is to 
evaluate a given network’s structure and propose a redesign 
criteria (if necessary) based on the calculated minimum cost 
routes between any two nodes. By calculating the minimum 
cost routes between any two nodes within the network, the 
designers can observe and compare the minimum cost routes 
in terms of number of links and their location, and point out 
the links that form a bottleneck and have higher traffic rate 
and suggest redesigning the network in a way to serve the 
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overall routing problem in the network. The bottlenecks might 
be overcome by simply adding more links, or changing the 
endpoints of a given link, or by changing the weight on a 
specific link. These issues were not clear for the designers 
unless they have an overview of the existing minimum cost 
routes, which was provided by the suggested GA algorithm in 
this report. 
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