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Abstract� In this paper, the continuous genetic al-
gorithm, previously developed by the second author,
is applied for the solution of the second-order sin-
gular boundary value problems. The proposed tech-
nique might be considered as a variation of the �nite
di¤erence method in the sense that each derivatives
are replaced by an appropriate di¤erence quotients
approximation. This novel approach possesses main
advantage as compared to other exiting methods, it
can be applied without any limitation on the na-
ture of the problem and the number of mesh points.
Numerical example is included to demonstrate the
e¢ ciency, accuracy, and generality of the presented
technique.
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I. INTRODUCTION

Singular boundary value problems (SBVPs) of ordi-
nary di¤erential equations play an important role in
many �elds. Accurate and fast numerical solution
of second-order SBVPs is of great importance due
to its wide applications in scienti�c and engineering
research [4,6]. Since, it is usually impossible to ob-
tain the closed form solution even when it exists, this

problem must be attacked by various approximate
methods [5,7].
Continuous genetic algorithm (CGA) depends on

the evolutions of curves in two-dimensional space.
Generally, CGA uses smooth operators and avoid
sharp jumps in the parameter values. The algo-
rithm begin with a population of randomly gener-
ated candidates and evolve to-wards better solution
by applying genetic operators which is reproduction,
crossover, and mutation. This novel approach is a
relatively new class of optimization technique, which
are generating a growing interest in the mathematics
and engineering community. CGA well suited for a
broad range of problems encountered in science, en-
gineering, and economics [1�3].
In this paper, we apply the CGA to develop a novel

numerical method for obtaining approximations to
the solution of second-order SBVPs with the assump-
tion that the smooth solution is unique. We consider
the following equation:

y00 (x) = f (x; y (x) ; y0 (x)) ; x 2 I;
y (a) = �; y (b) = �:

(1)

Here f is continuous real-valued function de�ned on
I � D, where D is an open connected subset of R2,
I is any not closed interval with end points fa; bg,
and �; � 2 R. This general formulation includes, for
example, computational �uid-dynamics, electromag-
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netism, electrochemistry, nonlinear elasticity, and op-
timal control, etc., see [4,6].
In the survey paper [8], Kumar and Singh intro-

duce various numerical techniques include �nite dif-
ference, �nite element, collocation, variational itera-
tion, and other special approximation methods used
in literature followed by own critical comments as
remarks for solving some explicit forms of Equation
(1). However, the previous listed methods require the
use of other numerical techniques. Moreover, most of
these methods are suited for a special case of Equa-
tion (1) with more constraints on the function f , see
for example, [11]. In the nonlinear case some of pre-
vious methods are available and need some modi�-
cations in order to obtain the approximate solutions,
see for example [5].
The work presented in this paper is motivated by

the needs for a new numerical technique for the so-
lution of the second-order SBVPs with the following
characteristics: �rst, it does not require any modi�-
cation while switching from the linear to the nonlin-
ear case. Second, the method is not a mathematically
guided scheme, which means that it does not use any
basic or advanced mathematical tools and has ability
to solve the Equation (1) without the use of other nu-
merical techniques; that is, the algorithm should be
simple to understand, implement, and should be thus
easily accepted in the mathematical and engineering
applications �elds. Third, the CGA is of global na-
ture in terms of the solutions obtained as well as it
is ability to solve other mathematical problems. Fi-
nally, the proposed methodology has an implicit par-
allel nature which points to its implementation on
parallel machines. However, being a variant of the
�nite di¤erence scheme with truncation error of the
order O(hn), n 2 N the method provides solutions
with moderate accuracy.
The reminder of the paper is organized as follows:

the formulation of the second-order SBVPs is de-
scribed in section 2. Section 3 covers the descrip-
tion of the CGA. Numerical results and convergence
analysis are given in section 4. Finally, conclusion is
presented in section 5.

II. FORMULATION OF THE PROBLEM

In this work, a novel method for the solution of the
SBVPs based on a CGA is introduced.
In order to apply the CGA, we must rewrite the

Equation (1) in the form of the following:

H (x; y (x) ; y0 (x) ; y00 (x)) = y00 � f (x; y; y0) ;
y (a) = �; y (b) = �:

(2)

To approximate the solution of Equation (2) we
make the stipulation that the mesh points are equally
distributed. This condition is ensured by setting xi =
a + ih, for each i = 0; 1; :::; N and h = (b� a) =N .
Thus, at the interior mesh points, xi, i = 1; 2; :::; N�
1, the SBVP to be approximated is given as:

H (xi; y (xi) ; y
0 (xi) ; y00 (xi)) = 0, i = 1; 2; :::; N � 1;

y (x0) = �, y (xN ) = �:

(3)

The di¤erence quotients formulas, which closely
approximates y0 (xi) and y00 (xi) using an (n+ 1)-
point formula at the interior mesh points with er-
ror up to O(hn), where n = 2; 3; :::; N can be eas-
ily obtained by using Algorithm (6:1) in reference
[9]. We mention here that the number n is start-
ing from 2 and gradually increases up to N . To
complete the formulation substituting the approxi-
mate value of y0 (xi) and y00 (xi) in Equation (3), dis-
cretized form of this equation is obtained. The result-
ing algebraic equations will be a function of y (xi�n),
y
�
xi�(n�1)

�
, y
�
xi�(n�2)

�
, :::, y (xi+n), and xi. After

that, it is necessary to rewrite the discretized equa-
tion as: f

�
xi; y (xi�n) ; y

�
xi�(n�1)

�
; :::; y (xi+n)

�
�

0, for i = 1; 2; :::; N � 1. The residual
of the general interior index, i, is de�ned as:
Res(i) = f

�
xi; y (xi�n) ; y

�
xi�(n�1)

�
; :::; y (xi+n)

�
,

for i = 1; 2; :::; N � 1. The overall individ-
ual residual is a function of the residuals of all
interior index. It may be stated as: Oir =�
Res2 (1) + :::+ Res2 (N � 1)

�1=2. A mapping of the
overall individual residual into a �tness function is
required in the algorithm in order to convert the min-
imization problem into a maximization problem. A
suitable �tness function used in this work is de�ned
as: Fit = 1= (1 +Oir). The individual �tness is im-
proved if a decrease in the value of the Oir is achieved.
The optimal solution of the problem, nodal values,
will be achieved when Oir approaches zero and Fit
approaches unity.

III. DESCRIBED OF CGA

CGA was developed as an e¢ cient method for the
solution of optimization problems in which the pa-
rameters to be optimized are correlated with each
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other or the smoothness of the solution curve must be
achieved. It has been successfully applied in the mo-
tion planing of robot manipulators, which is a highly
nonlinear, coupled problem [2], in the numerical so-
lution of regular two point BVPs [3], and in the so-
lution of optimal control problems [1]. Their novel
development has opened the doors for wide applica-
tions of the algorithm in the �led of mathematics and
engineering. The reader is asked to refer to [3] in or-
der to know more details about CGA including their
justi�cation for use, conditions on smoothness of the
functions used in the algorithms, several advantages
of CGA over conventional one when it is applied to
problems with coupled parameters and/or smooth so-
lution curves, etc. The CGA proposed in this work
consists of the following steps, for comparison see [3]:

1. Initialization: The initial population com-
prising of Np smooth individuals. Two smooth
functions that satisfy the boundary conditions
are chosen, which include the modi�ed normal
gaussian function (MNGF) p (j; i) = r (i) +

A exp
�
�0:5 ((i� �) =�)2

�
sin (�i=N), and the

modi�ed tangent hyperbolic function (MTHF)
p (j; i) = r (i) + A tanh ((i� �) =�) sin (�i=N)
for each i = 1; 2; :::; N � 1 and j = 1; 2; :::; Np,
where r (i) = �+ i (� � �) =N , pj (i) is the i-th
variable value for the j-th parent, and �; � are
a random numbers within the range [1; N � 1]
and (0; N=6], respectively.

The choice of A depend on the boundary condi-
tions � and � as follows: A is any random num-
bers within the range [�3 j� � �j ; 3 j� � �j] if
� 6= �, within the range [�3�; 3�] if � = �, and
within the range [�N=3; N=3] if � = � = 0.

The two initialization functions are shown in
Figure 1 in red line, while the ramp function,
r, appear in green line.

2. Evaluation: The �tness, a nonnegative mea-
sure of quality used to re�ect the degree of
goodness of the individual, is calculated for
each individual in the population using Fit
equation.

3. Selection: In the selection process, individuals
are chosen from the current population to enter
a mating pool devoted to the creation of new
individuals for the next generation such that

the chance of selection of a given individual for
mating is proportional to its relative �tness.

4. Crossover: Crossover combines the features
of two parent individuals, say s and h, to
form two children individuals, say l and
l + 1, that may have new patterns com-
pared to those of their parents and plays
a central role in algorithm. The crossover
process is expressed as: cl (i) = c (i) ps (i) +
(1� c (i)) ph (i), cl+1 (i) = (1� c (i)) ps (i) +
c (i) ph (i), and c (i) = tanh ((i� �) =�) for each
i = 1; 2; :::; N�1, where pl and ph represent the
two parents chosen from the mating pool, cl
and cl+1 are the two children obtained through
crossover process, c represents the crossover
weighting function. The parameters �; � are
as given in the initialization process.

Figure 1 shows the crossover process plotted
in cia color in a solution curve for the two ran-
dom parents as follows: c1: �rst child in the left
graph and c2: second child in the right graph.
It is clear that new information is incorporated
in the children while maintaining the smooth-
ness of the resulting solution curves.

5. Mutation: The purpose of mutation is to
introduce occasional perturbations to the pa-
rameters to maintain genetic diversity within
the population. The mutation process is gov-
erned by formulas: mj (i) = cj (i) + Am (i),

m (i) = exp
�
�0:5 ((i� �) =�)2

�
r2 (i) for each

i = 1; 2; :::; N � 1 and j = 1; 2; :::; Np, where cj
represents the j-th child produced through the
crossover process, mj is the mutated j-th child,
m is the gaussian mutation function. Regard-
ing the mutation center, �, and the dispersion
factor, �, used in the mutation function an so
mutation process the reader should refer to [3]
in order to know more details and the methods
that used to generating them. The parameters
A;�; � are as given in the initialization process.

The mutation processes plotted in a black color
for a random child are shown in Figure 1. as
follows: m1: mutation process for the �rst child
and m2: mutation process for the second child.
As in crossover process, some new informa-
tion is incorporated in the mutated child while
maintaining the smoothness of the resulting so-
lution curves.
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Figure 1. Geometric comparison between
process in CGA.

6. Replacement: After generating the o¤-
spring�s population through the application of
the genetic operators to the parents population,
the parents population is totally or partially re-
placed by the o¤spring�s population depending
on the replacement scheme used. This is known
as non-overlapping, generational, replacement.
This completes the �life cycle� of the popula-
tion.

7. Termination: The algorithm is terminated
when some convergence criterion is met. Pos-
sible convergence criteria are: the �tness of the
best individual so far found exceeds a threshold
value, the maximum number of generations is
reached, or the progress limit. After terminat-
ing the algorithm, the optimal solution of the
problem is the best individual so far found.

To summarize the evolution process in algorithm,
an individual is a candidate solution that consists
of single curve of N nodal values. The population of
individuals undergoes the selection process, which re-
sults in a mating pool among which pairs of individu-
als are crossed over with probability Pc. This process
results in an o¤spring generation where every child
undergoes mutation with probability Pm. For exam-
ple, if Pc value is set to 0:5, then one pair of parents

between two pairs is likely to be crossed, and if Pm
value is set to 0:5, then one child out of two children
is likely to be mutated. After that, the next genera-
tion is produced according to the replacement strat-
egy applied. The complete process is repeated till the
convergence criterion is met where the N parameters
of the best individual are the required nodal values.
The �nal goal of discovering the required nodal val-
ues is translated into �nding the �ttest individual in
genetic terms.
Two additional operators were introduced to en-

hance the performance of the algorithm, the "elitism"
and the "extinction and immigration" operators.
The reader should refer to [3] in order to know more
details about these operators.

IV. NUMERICAL RESULT AND
CONVERGENCE ANALYSIS

In order to evaluate the performance of the proposed
algorithm for the solution of second-order SBVPs, we
utilize the following example.

Example 1 [12] Consider the nonlinear singular
second-order BVP:

y00 (x) + 60p
x(x�1)2 y

0 (x) + 3
tan(x) cos (y (x)) = f (x) ;

f (x) = 3 cos(sin(�x)+e)
tan(x) � �2 sin (�x) + 60� cos(�x)p

x(x�1)2 ;

y (0) = e; y (1) = e; x 2 (0; 1) ;

whose analytical solution is y (x) = sin (�x)+e. This
problem can be solved by a few numerical methods, for
example, reproducing kernel space [12], cubic spline
TAGE method [10], while CGA can be solve it with
higher degree of accuracy. To compare the computa-
tional results, see [10,12].

The algorithm was implemented using Visual Basic
platform. The input data to the algorithm are as fol-
lows: Np = 500, Pc = Pm = 0:9, and N = 10. Mixed
method for initialization schemes are used where half
of the population is generated by the MNGF, while
the other half generated using the MTHF. The rank-
based selection strategy is used where the rank-based
ratio is set to 0:1. Generational replacement scheme
is applied where the number of elite parents that are
passed to the next generation equals one-tenth of the
population size. Extinction and immigration oper-
ator is applied when the improvement in the �tness
value of the best individual of the population over 100
generations is less than 0:01. The termination crite-
rion used for each problem is problem dependent and
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vary from one case to another. However, the CGA is
stopped when one of the following conditions is met.
First, the �tness of the best individual of the popula-
tion reaches a value of 0:99999. Second, a maximum
number of 5000 generations is reached. Third, the
improvement in the �tness value of the best indi-
vidual in the population over 500 generations is less
than 0:00001. It is to be noted that the �rst con-
dition indicate to a successful termination process
(optimal solution is found), while the last two con-
ditions point to a partially successful end depending
on the �tness of the best individual in the popula-
tion (near-optimal solution is reached) [3]. Due to
the stochastic nature of CGA, sixth di¤erent runs
were made using a di¤erent random number genera-
tor seed; results are the average values of these runs
[3]. The convergence speed of the algorithm, when-
ever used, means the average number of generations
required for convergence.
The convergence data are as follows: the problems

take about 3000 generations, on average, to converge
to a �tness value of about 0:99999467 with an average
absolute nodal residual 2:8891039957� 10�6 and an
average absolute error 1:6468545540 � 10�9. Table
1 and Table 2 show the results obtained using CGA
across all interior node.

Table 1. Numerical results using CGA
x Exact value Approximate value
0:1 3:027298822834 3:027298823609

0:2 3:306067080752 3:306067081574

0:3 3:527298822834 3:527298822995

0:4 3:669338344754 3:669338348798

0:5 3:718281828459 3:718281832346

0:6 3:669338344752 3:669338347402

0:7 3:527298822834 3:527298823863

0:8 3:306067080752 3:306067080856

0:9 3:027298822834 3:027298824183

Table 2. Numerical results using CGA
x Absolute error Absolute residue
0:1 7:75467246� 10�10 1:30090730� 10�6
0:2 8:22971913� 10�10 2:64175808� 10�6
0:3 1:60777613� 10�10 3:71315284� 10�6
0:4 4:04390121� 10�9 2:48448932� 10�6
0:5 3:88734511� 10�9 2:57037032� 10�6
0:6 2:64769140� 10�9 4:77295199� 10�6
0:7 1:02912745� 10�9 4:69600633� 10�6
0:8 1:04971587� 10�10 1:22938197� 10�6
0:9 1:34943745� 10�9 2:59291783� 10�6

It is clear that the accuracy obtained using CGA is
moderate since it has a truncation error of the order
O
�
h10
�
.

The evolutionary progress plots, of the best-�tness
individual is shown in Figure 2. It is observed that
from the evolutionary plots that the convergence
process is divided into two stages: the coarse-tuning
stage and the �ne-tuning stage, where the coarse-
tuning stage is the initial stage in which oscillations
in the evolutionary plots occur, while the �ne-tuning
stage is the �nal stage in which the evolutionary plots
reaches steady-state values.

Figure 2. Evolutionary progress plots for the best-
of-generation individual.

The percentage of the coarse-tuning stage till con-
vergence from the total number of generations with
respect to �tness evolution is 20%, while the remain-
ing 80% is spent in the �ne-tuning stage. That means
in the �rst 20% of the generations the best-�tness ap-
proaches to one very fast, after that it approaches to
one slower. In other words, the approximate of CGA
converge to the actual solution very fast in the �rst
20% of the generations.
The way in which the nodal values evolve are plot-

ted in Figure 3 and Figure 4, respectivelly.

Figure 3. Evolution of the �rst nodal value.
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Figure 4. Evolution of the middle nodal value.

It is observed that all nodes, reaches the near op-
timal solution together. It is also concluded that the
evolution has initial oscillatory nature for all nodes.
As a result, the distance (number of nodes) from
the boundary points doesn�t e¤ect in the convergence
speed. In addition to that, it is clear by inspection
that the coarse-tuning stage takes about 17%, on av-
erage, of the total number of generations required for
convergence, while the remaining 83% is spent in the
�ne-tuning stage.
The e¤ect of the di¤erent types of initialization

methods on the convergence speed of the algorithm
is studied next. Table 3 shows that the used initial-
ization method has a minor e¤ect on the convergence
speed because usually the e¤ect of the initial popu-
lation dies after few tens of generations and the con-
vergence speed after that is governed by the selection
mechanism, crossover, and mutation operators. As a
result, the mixed-type initialization method is used
as the algorithm�s default method.

Table.3. E¤ect of initialization functions:
Kind Mixed-type MNGF MTHF
Generations 3000 2987 3003

V. CONCLUSION

In this research, a new numerical method to tackle
the second-order SBVPs is proposed. Central to the
approach is the novel use of CGA where smooth so-
lution curves are used for representing the required
nodal values. Compared with existing classical nu-
merical methods, the present method is found to be
simple, e¢ cient, and attractive with a great potential
in mathematical and engineering applications.
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