
Artificial Bee Colony Algorithm for
Curriculum-Based Course Timetabling Problem

Asaju La’aro Bolajia , Ahamad Tajudin Khadera ,Mohammed Azmi Al-betara,b , Mohammed Awadallaha
a School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang

Email: abl10− sa0739@student.usm.my
b Faculty of Computer Science, Al-Zaytoonah Private University of Jordan, Amman 11733, Jordan

Abstract—This research article presents the adaption of the
Artificial Bee Colony algorithm for solving timetabling problems,
with particular focus on the curriculum-based course timetabling
that formed part of the competition track 3 of the 2nd Interna-
tional Timetabling Competition in 2007 (ITC-2007). An attempt
to solve these problems was made via an approach broken
down into two parts; first, Saturation Degree (SD) was used
to ensure a feasible solution, where the hard constraints are
satisfied. Secondly, Artificial Bee Colony Algorithm was used to
further improve the results obtained. The algorithm produced
very good results, though they were not comparatively better
than those previously reported in the literature due to the fact
that the algorithm easily gets stuck in the local optimal solution.
With proper modification and hybridizing local search-based
algorithms this approach could make the algorithm perform
better on timetabling problem in general.

Keywords: Curriculum Based Course Timetabling, Artificial
Bee Colony Algorithm, Nature Inspired Algorithms

I. INTRODUCTION

Timetabling is an NP-hard combinatorial optimisation prob-
lem [1] which has captured the interest of many researchers
in operational research and the artificial intelligence domain.
University course timetabling problem (UCTP), the principal
interest of this paper, is the assignment of a set of events
to given periods and rooms subject to some given (hard and
soft) constraints. Hard constraints must be satisfied in order to
produce a feasible timetabling solution, yet satisfying the soft
constraints is not mandatory but rather desired. The objective
is to produce a feasible timetable with the least number of soft
constraint violations.

Conventionally, UCTP normally has two forms: Post en-
rolment course timetabling and Curriculum-based course
timetabling problem (CB-CTT). The CB-CTT has recently
been proposed as part of the tracks of international timetabling
competition (ITC-2007) [http://www.cs.qub.ac.uk/itc2007].
The aim of the competition was to bridge the gap between
research and practice of the university timetabling domain
[2]. Since then, several optimization algorithms have been
developed to tackle the CB-CTT, but research in this area is
still ongoing, due to the peculiar nature of the problem. Some
of the developed algorithms include heuristic such as integer
programming [3], [4], metaheuristic such as local search based
and hybrid algorithms [5], [6], [7], [8], [9], [10].

The general description of CB-CTT and its formulations
were presented in [11], where the insight and detailed

overview of CB-CTT with respect to ITC-2007 were dis-
cussed. The integer programming approach also was proposed
in [3], where the method used was broken down into two
stages: the first stage was used to ensure the feasibility whereas
in the second, the aim was to enhance the feasible solutions
to the state-of-the-art results. The authors claimed that the
algorithm was very robust in the sense that it steadily gave
satisfactory lower and upper bound solution within a reason-
able computation time without particular parameter tuning. Yet
it did not emerge as the overall winner. Burke et.al in [4]
used branch and cut technique to the CB-CTT problem; the
process towards the solution in their work was divided into
two stages. They presented an alternative integer programming
formulation in the first phase, which allowed less than normal
number of variables and mildly increased the number of soft
constraints. The Branch and Cut procedure was presented
in the second phase, where constraints from enumeration of
events/free-period patterns, necessary to reach optimality, were
added when they were violated. The results produced by the
method showed that within 15 minutes, it was possible to
find provably optimal solutions to two instances. The CB-
CTT was studied in [12] that came up with a hybrid solution
algorithm called Adaptive Tabu Search (ATS). Incorporated in
ATS method was a new neighborhood and the combination
of Tabu search with perturbation from iterated local search.
The results showed that it improved the previously best known
results. The ITC-2007 problem was considered by Müller [13]
and was judged as the best in the CB-CTT. The method
was a combination of great deluge and simulated annealing
incorporated into the constraint solver library. The iterative
local search was used in the construction stage and the solution
was further enhanced with the aid of constraint-based statistics
(CBS). Another method which used the local search approach
for CB-CTT was presented in [5]. Here, a constructive heuris-
tics which was similar to Squeaky Wheel optimization was
used to obtain a feasible timetabling solution and Threshold
Accepting rule from simulated annealing was later used to
improve the solution. The computational result showed that the
algorithm was good for the problem. In another study, the CB-
CTT was treated as multi-objective optimization problem in
[6]. The author presented a solution framework based on local
search heuristics by using two different aggregation techniques
i.e. a weighted sum aggregation and a reference point-based

ICIT 2011 The 5th International Conference on Information Technology

method. The experimental results produced showed that the
approach was able to obtain good solutions.

The swarm intelligence is a branch of nature inspired
algorithm which is aimed at simulating the behaviors of social
insects and their activities in solving daily life problems within
their environment. These kinds of algorithms are developed
based on mathematical models and optimization techniques to
solve real world optimization problems in a manner similar
to that of social insects [14]. Examples of nature inspired
algorithms as stated in [15] include Ant Colony Optimization
Algorithm, Firefly Algorithm, Bat Algorithm, Fish schooling,
Bee Algorithm, Bird Flock, Monkey Algorithm and Artificial
Bee Colony algorithm, which is the main focus of this paper.

The main objective of this research is to adapt Artificial Bee
Colony Algorithm (ABC) to CB-CTT as an initial work which
explores the efficiency of the algorithm to solve the problem.
The initial results show that ABC can efficiently produce good
solutions but not comparable to those reported in the literature.

This paper is organized as follows; section two provides
the detailed description and mathematical formulations of CB-
CTT in terms of hard and soft constraints; details of Artificial
Bee colony Algorithm are presented in section three; the ways
in which ABC was adapted for CB-CTT are discussed in
section four. Section five shows the computational results and
their comparison with previous findings in the literature. The
final section presents the conclusion and possible directions
for the future.

II. THE CURRICULUM-BASED COURSE TIMETABLING

A. Problem Description
The CB-CTT problems deals with the assignment of a set of

lectures of courses to a set of rooms and timeslots on a weekly
basis, in accordance with a given set of constraints [11]. A
timetable is considered feasible once all lectures of courses
have been assigned to timeslots and rooms with respect to the
(H1 - H4) hard constraints. In addition, a feasible timetable
satisfying the four hard constraints gives a penalty cost for
the violations of the four (S1 - S4) soft constraints, the main
objective of the CB-CTT problem is to minimize the number
of soft constraint violations in a feasible solution. The four
hard constraints and four soft constraints are outlined below:

Hard Constraints
• H1 Lectures: All lectures of a course must be assigned

to a distinct period and a room.
• H2 Room Occupancy: Two lectures cannot be scheduled

to the same room and the same period.
• H3 Conflicts: Lectures of courses in the same curriculum

or taught by the same teacher must be scheduled to
different periods.

• H4 Availability: If the teacher of a course is not available
at a given period, then no lectures of the course can be
allocated to that period.

Soft Constraints
• S1 Room Capacity: The number of students attending

the course for each lecture must be less than or equal to
the capacity of the rooms hosting the lectures

• S2 Room Stability: All lectures of a particular course
should be assigned to the same room; otherwise, the
number of occupied rooms should be less.

• S3 Curriculum Compactness: Lectures of courses be-
longing to the same curriculum should be in consecutive
periods (i.e., adjacent to each other).

• S4 Minimum Working Days: The lectures of each
course should be spread across a given number of days.

B. Problem formulation

The CB-CTT problem deal with an assignment of tn courses
C=(c1, c2........, ctn) to a set of tr rooms R=(r1, r2........, rtr)
and a set of tp periods P=(p1, p2........, ptp), where period is
the composition of minimum working days td and timeslots
per working days tt i.e. tp = td × tt. Each course ci
consists of a set of lectures li that has to be assigned to
different periods. The problem consists of a set of curricula
CU=(Cu1, Cu2..., Cutc) where each curriculum Cui is a
group of courses having common students and finally, the
CB-CTT consists of a set students stdi, where stdi =
(std1, std2,., Stdi) and each student is assigned with a
set of courses within the same curricula.

Table 1. The symbols used for CB-CTT problem.
Symbols Definition
tn The total number of courses
tr The total number of rooms
td The total number of min. Working days per week
tt The total number of timeslots per days
tp The total number of periods, tp = td× tt
tc The total number of curricula
C Set of the courses, C = {c1,, ctn}
R Set of the rooms, R = {r1,, rtr}
P Set of the periods, P = {p1,, ptp}
CU Set of the curricula, CU = {Cu1,, Cutc}
Cum The mth curriculum including a set of courses
li The total number of lectures ci
tl The total number of all lectures

∑tn
1 li

stdi The number of students attending course ci
tchi The teacher taking course ci
mwdi The number of minimum working days of course ci
rcapk The capacity of room rk
unavi,j Whether course ci is available at period pj .

unavij = 0 if it available, unavi,j = 1 otherwise.
Confi,j Whether course ci and cj are in conflict;

0, if (tchi 6= tchj) ∧(∀Cuq, ci /∈ Cuq ∨ cj /∈ Cuq)
1, otherwise

From Table 1, it is possible to formulate the objective
function in terms of hard and soft constraints. It is worthy to
note that the objective function f(X) =

∑
(S1+S2+S3+S4),

represents the total number of penalty cost for the violations
of the four soft constraints. By this formulation, we assumed
that hard constraints had been satisfied. The timetable solution
Xtp,tr for CB-CTT is represented by a matrix, where each
element xi,j has either lecture m of course c or -1 if it is

ICIT 2011 The 5th International Conference on Information Technology

empty; i represents the timeslots or periods and j represents
the room identity or number (as shown in Figure 1).

x0,0 x0,1 x0,tr
x1,0 x1,1 x1,tr
x2,0 x2,1 x2,tr
......
xtp,0 xtp,1 xtp,tr


Figure 1, The CB-CTT Solution Representation

• H1: Lectures
∀cm ∈ C

∑
i=1...tp,j=1...tr slnm(xi,j = lm)

• H2: Room Occupancy The solution representation sat-
isfied this hard constraint automatically.

• H3: Conflicts ∀xi,j , xi,l ∈ X, xi,j = ca, xi,l = cb
Confa,b =0

• H4: Availability ∀xi,j ∈ X, xi,j = cm,
unavm,i =0

• S1: Room Capacity ∀xi,j ∈ X, xi,j = cm

OC1(xi,j) =

{
β1 · (stdm − capj), ifcapj < stdm;
0, otherwise.

(1)
• S2: Room Stability. ∀ci ∈ C,
OC2(ci) = β2 · (tnri(X)− 1)

• S3: Curriculum Compactness. ∀xi,j ∈ X, xi,j = cm,

OC3(xi,j) = β3 ·
∑

cuq∈CU

c− cum,q · isoq,j(X) (2)

c− cum,q =

{
1, ifcm ∈ cuq;
0, otherwise.

(3)

isoq,i(X) =

{
1, ifγ
0, otherwise.

(4)

where γ = (i%tt = 1 ∨ cuwq,i−1(X) = 0)
∧(i%tt = 0 ∨ cuwq,i−1(X) = 0)

• S4: Minimum Working Days. ∀cj ∈ C,

OC4(cj) =

{
β4 · (d1 − d2), ifd1 < d2;
0, otherwise.

(5)

where d1 = mwdj and d2 = ndj(X)

This formulation is adapted from [10] with minor modifi-
cations

The penalty value for the soft constraints are represented
by β1, β2, β3, β4. The penalty weights for each were fixed for
the each violations of soft constraints such as β1 = 1, β2 =
1, β3 = 5, β4 = 2. The objective cost f(x) is represented as
the summation of penalty values for the violation of four soft
constraints, given as

f(X) =
∑

xi,j∈X
OCrc(xi,j) +

∑
ci∈C

OCrs(ci)+ (6)

∑
xi,j∈X OCcc(xi,i) +

∑
ci∈C OCmwd(ci)

III. ARTIFICIAL BEE COLONY ALGORITHM

The Artificial Bee Colony (ABC) algorithm is a branch
of nature inspired or swarm intelligence based meta-heuristic
algorithm which was proposed by Karaboga [16] for optimiz-
ing numerical problems. It was motivated by the intelligent
foraging behavior of honey bees. The algorithm is particu-
larly based on the model proposed in [17] for the foraging
manners of honey bee colonies. The model comprises three
vital fundamentals: employed and unemployed foraging bees,
and food sources. The first two fundamentals, employed and
unemployed foraging bees search for rich food sources, which
is the third fundamental, is being close to their hive. The
two principal modes of behaviour are also described by the
model, which are necessary for self-organization and collective
intelligence: recruitment of foragers to the rich food sources
resulting in positive feedback and abandonment of poor food
sources by foragers causing negative feedback [16].

In ABC, the colony consists of three groups of bees: em-
ployed bees linked with specific food sources, onlooker bees
studying the dancing behaviour of employed bees in the hive
to choose the desired food source and scout bees searching
for food sources randomly once the employed is stuck with
unsatisfactory food source. Both onlookers and scouts are
also known as unemployed bees. The positions of all food
sources are discovered by the scout bees originally. Thereafter,
the exploitation of nectar of food sources are carried out by
employed bees and onlooker bees. The repetitive exploitation
will eventually cause them to become exhausted. Then, the
employed bee which was exploiting the exhausted food source
becomes a scout bee in search of other food sources once
again. In other words, the employed bee whose food source
has been exhausted becomes a scout bee. The position of a
food source in ABC corresponds to the possible solution to
the problem and the nectar amount of a food source signifies
the quality (fitness) of the associated solution. The number
of employed bees is equal to the number of food sources
(solutions), since each employed bee is associated with one
and only one food source [16].

ABC algorithm as a population-based metaheuristic algo-
rithm competes well with other population-based algorithms
with an advantage of employing fewer control parameters [18],
[19]. Due to its simplicity and ease of implementation, the
ABC algorithm has captured much attention and has been
applied to solve many practical optimization problems such
as structural and concrete analyses [20], integer programming
[21], leaf-constrained minimum spanning tree [22], digital IIR
filter [23], real parameter control [24], generalized assignment
problem [25], protein folding simulation [26], training of
artificial neural networks [27], Numerical optimization [18],
[28] constrained optimization problems [29], cluster based
wireless sensor network routing [30], fuzzy clustering [31],
reconfiguring distribution network [32], quadratic knapsack
problem [33], job shop problem [34] and the lot-streaming
flow shop scheduling problem [35].

The general format of the ABC algorithm as proposed by

ICIT 2011 The 5th International Conference on Information Technology

Karaboga [16] is as follows:
• Send the scouts onto the initial food sources
• REPEAT

– Send the employed bees onto the food sources and
determine their nectar amounts

– Calculate the probability value of the sources with
which they are preferred by the onlooker bees

– Send the onlooker bees onto the food sources and
determine their nectar amounts

– Abandon the exploitation process, if the sources are
exhausted by the bees

– Send the scouts into the search area for discovering
new food sources, randomly

– Memorize the best food source found so far
• UNTIL (requirements are met)

IV. ARTIFICIAL BEE COLONY FOR CB-CTT

The ABC concept is described within the context of
generating the best food source by artificial bees. Table 2
shows the equivalence between the optimization terms and
the artificial bee colony terms.

Table 2. The optimization terms in the Artificial Bee context
ABC Terms Optimization Terms
Employed or Onlooker Bees ↔ Solution
Nectar Amount ↔ Fitness of the solution
Repeated search for Food ↔ Iteration
Food Source Position ↔ Position of Solution
Food source ↔ Decision Variable
Best food source ↔ Best solution

The five main steps of ABC as adapted to CB-CTT, which
is the form of pseudocode are described as follows:

Algorithm The ABC algorithm for CB-CTT
STEP 1 Initialize the CB-CTT and ABC parameters.

Input the Data from CB-CTT instance.
Formulate detailed knowledge CB-CTT: objective
cost and solution representation.
Define ABC parameter (MCN, Limit, Population,
No of Employed, No of Onlooker).

STEP 2 Initialize the ABC Population (SN)
Generate Food Source using Saturation
Degree (SD) and store in the population SN
SN = x1, x2,, xSN

Determine the Best food source in SN, xbest ∈ SN
f(xbest) ≤ f(xt),∀t ∈ (1,SN)

STEP 3 Generate a new food source.
x

′
= φ i.e. new food source

for each employed bee
→ apply neighbourhood move
→ if the cost(move) ≤ cost (employed bee)
→ employed bee = neighbourhood move
Determine the probability by using the cost
select the onlookers to the sites
→ apply neighbourhood move as in employed bee

→ determine the fitness cost for the onlooker solution
→ if the cost(move) ≤ cost (employed bee solution)
→ employed bee solution = fitness of onlookers
→ select the scout bee by choosing the worst
employed bee

STEP 4 Memorize Best food source.
if(f(x′) < f(xbest)) then
→ Replace with x′

end if
STEP 5 Check the stop condition.

while termination condition not met (MCN)
→ Repeat STEP 3 and STEP 4
end while

Step 1. Initialize the CB-CTT problem and ABC Pa-
rameters
The solution to the CB-CTT problem is represented in Figure
1, where each course is scheduled to room(s) and period(s),
subject to the number of lectures and minimum working days.
ABC parameters such as SN, MCN, Limit are also initialized.

Step 2. Initialize the ABC Population (SN)
In step 2, the solutions are randomly generated using saturation
degree as in [36]. These solutions are stored in the memory of
ABC algorithm and the nectar amount or fitness is determined
to obtain the best food source. It is worthy to note that the
number of solutions is equal to the number of employed bees.

Step 3. Generate a New Food Source
In step 3, the new food source (timetabling solution) is
produced by ABC algorithm using its three operators i.e
employed, onlooker, and scout bees.

• Employed Bees: The Employed bee operator selects a
food source i.e. feasible solution based on the objective
function from the population of solutions. The employed
bees work iteratively to produce a new solution on the
neighborhood of this food source and the fitness of the
solution is determined. This is done by selecting the
courses randomly and assigning them to empty slots
within the timetable solution.

• Onlooker Bees: The fitness of each food source is
determined by the onlookers and the food source whose
nectar amount or fitness is high is selected using tourna-
ment selection method; the onlooker exploits the solution
applying similar criteria used by the employed bees. The
onlooker abandons the food source if there is no further
improvement and the employed bee associated with this
food source becomes a scout.

• The scout Bees: These are known as the colony explorer
navigates the search space for a new random solution and
substitutes the one in the memory if it is better.

Step 4. Memorize Best Food Source
In step 4, the fitness value of the new food source found is
evaluated by the ABC algorithm. If the fitness value of this
new food source is better than the fitness of the best food
source stored in the memory, the new food source replaces
the best one in the memory.

ICIT 2011 The 5th International Conference on Information Technology

Step 5. Stop Condition
Here, the ABC algorithm repeats steps 3 and 4 until the
maximum number of cycles (MCN) parameter is met.

V. COMPUTATIONAL RESULTS AND DISCUSSION

In this section, the performance of ABC algorithm for
solving the CB-CTT problem was evaluated using 21 data
instances generated in ITC-2007. The details of the problem
can be found in http://tabu.diegm.uniud.it/ctt/index.php. The
proposed method is coded in Microsoft Visual C++ 6.0 under
Windows Vista on an Intel Machine with CoreTM and a
2.66GHz processor and 2GB RAM. We ran the experiment 5
times for each problem instance for the purpose of statistical
calculation. The overall penalty cost for each dataset was
evaluated using the objective function formulation in equation
(6), which adds up all the violations of soft constraints S1,
S2, S3 and S4. The parameter setting for ABC algorithm is
as shown in Table 3:
Table 3. ABC algorithm parameter setting

Parameter Maximum Cycle SN Limit
Value 20000 90 100

Table 4 shows the experimental results of ABC algorithm
and the best known results in literature; where the first column
represents the best results produced by ABC, the second
column shows the worst results of ABC while the last column
shows the best results found in the literature, as reported in
[8].
Table 4. Experimental Results of ABC

Problem Best Result Worst Result Best in
instance of ABC of ABC in Literature
Comp01 - - 4
Comp02 312 391 20
Comp03 292 357 38
Comp04 193 224 18
Comp05 - - 219
Comp06 336 392 16
Comp07 324 410 3
Comp08 218 246 20
Comp09 302 339 54
Comp10 274 371 2
Comp11 293 359 0
Comp12 - - 239
Comp13 - - 32
Comp14 236 295 27
Comp15 284 335 28
Comp16 281 330 16
Comp17 331 376 34
Comp18 196 217 34
Comp19 304 314 32
Comp20 372 457 11
Comp21 - - 52

The result demonstrates that ABC algorithm could be
tailored to solve CB-CTT problems. However, our approach
is still not able to achieve results comparable with the best
reported in the literature. An improvement (which is currently
ongoing, with optimism) is required, in order to enhance
the performance of the proposed method to produce desired

outcomes better than those currently in use.

VI. CONCLUSION AND POSSIBLE FUTURE DIRECTIONS

This paper presented the Artificial Bee Colony algorithm
for tackling the CBC-TT problems. As the results have shown,
the algorithm is capable of solving timetabling problems. Al-
though the results produced by the algorithm in this study are
presently not comparatively better than those already reported
in the literature, this is initial adaptation of ABC algorithm.
Further work will be necessary taking into consideration the
of the problem.

ACKNOWLEDGMENT

This research was supported by the Universiti Sains
Malaysia under Graduate Fellowship Scheme, 2011.

REFERENCES

[1] M. Garey and D. Johnson, Computers and intractability. A guide to
the theory of NP-completeness. A Series of Books in the Mathematical
Sciences. WH Freeman and Company, San Francisco, Calif, 1979.

[2] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis,
A. Parkes, L. Gaspero, R. Qu, and E. Burke, “Setting the research
agenda in automated timetabling: The second international timetabling
competition,” INFORMS Journal on Computing, vol. 22, no. 1, pp. 120–
130, 2010.

[3] G. Lach and M. Lübbecke, “Curriculum based course timetabling: Op-
timal solutions to the udine benchmark instances,” Burke and Gendreau
(2008), 2008.

[4] E. Burke, J. Mareček, A. Parkes, and H. Rudová, “Ann Oper Res
manuscript No.(will be inserted by the editor) A Branch-and-cut Proce-
dure for the Udine Course Timetabling Problem,” 2008.

[5] M. Geiger, “Applying the threshold accepting metaheuristic to curricu-
lum based course timetabling,” Annals of Operations Research, pp. 1–14.

[6] ——, “Multi-criteria Curriculum-Based Course Timetabling-A Compar-
ison of a Weighted Sum and a Reference Point Based Approach,” in
Evolutionary Multi-Criterion Optimization. Springer, 2009, pp. 290–
304.

[7] K. Shaker and S. Abdullah, “Incorporating great deluge approach
with kempe chain neighbourhood structure for curriculum-based course
timetabling problems,” in Data Mining and Optimization, 2009.
DMO’09. 2nd Conference on. IEEE, 2009, pp. 149–153.

[8] S. Abdullah, H. Turabieh, B. McCollum, and E. Burke, “An Investigation
of a Genetic Algorithm and Sequential Local Search Approach for
Curriculum-based Course Timetabling Problems,” 2010.

[9] Z. Lü, J. Hao, and F. Glover, “Neighborhood analysis: a case study on
curriculum-based course timetabling,” Journal of Heuristics, pp. 1–22,
2009.

[10] Z. Lü and J. Hao, “Adaptive tabu search for course timetabling,”
European Journal of Operational Research, vol. 200, no. 1, pp. 235–244,
2010.

[11] L. Di Gaspero, B. McCollum, and A. Schaerf, “The second inter-
national timetabling competition (ITC-2007): Curriculum-based course
timetabling (track 3),” in Proc. of the 14th RCRA workshop on Exper.
Eval. of Algo. for Sol. Prob. with Combinatorial Explosion, Rome, Italy.
Citeseer, 2007.

[12] Z. Lü and J. Hao, “Solving the Course Timetabling Problem with
a Hybrid Heuristic Algorithm,” Artificial Intelligence: Methodology,
Systems, and Applications, pp. 262–273, 2008.

[13] T. Müller, “Itc2007 solver description: A hybrid approach,” Annals of
Operations Research, vol. 172, no. 1, pp. 429–446, 2009.

[14] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial systems. Oxford University Press, USA, 1999.

[15] X. Yang, Nature-inspired metaheuristic algorithms. Luniver Press,
2010.

[16] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Techn. Rep. TR06, Erciyes Univ. Press, Erciyes, 2005.

ICIT 2011 The 5th International Conference on Information Technology

[17] D. Teodorović and M. DellOrco, “Bee colony optimization–a coopera-
tive learning approach to complex transportation problems,” in Advanced
OR and AI Methods in Transportation. Proceedings of the 10th Meet-
ing of the EURO Working Group on Transportation, Poznan, Poland.
Citeseer, 2005, pp. 51–60.

[18] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm,”
Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[19] D. Karaboga and B. Akay, “A comparative study of artificial bee colony
algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp.
108–132, 2009.

[20] F. Kang, J. Li, and Q. Xu, “Structural inverse analysis by hybrid simplex
artificial bee colony algorithms,” Computers & Structures, vol. 87, no.
13-14, pp. 861–870, 2009.

[21] B. Akay and D. Karaboga, “Solving Integer Programming Problems
by Using Artificial Bee Colony Algorithm,” AI* IA 2009: Emergent
Perspectives in Artificial Intelligence, pp. 355–364, 2009.

[22] A. Singh, “An artificial bee colony algorithm for the leaf-constrained
minimum spanning tree problem,” Applied Soft Computing, vol. 9, no. 2,
pp. 625–631, 2009.

[23] N. Karaboga, “A new design method based on artificial bee colony
algorithm for digital IIR filters,” Journal of the Franklin Institute, vol.
346, no. 4, pp. 328–348, 2009.

[24] B. Akay and D. Karaboga, “Parameter tuning for the artificial bee colony
algorithm,” Computational Collective Intelligence. Semantic Web, Social
Networks and Multiagent Systems, pp. 608–619, 2009.

[25] A. Baykasoglu, L. Ozbakir, and P. Tapkan, “Artificial bee colony
algorithm and its application to generalized assignment problem,” Swarm
Intelligence: Focus on Ant and Particle Swarm Optimization, pp. 113–
144, 2007.

[26] J. Chen, “Protein Folding Simulation Using a Modified Artificial Bee
Colony Algorithm,” 2009.

[27] D. Karaboga and B. Akay, “Artificial Bee Colony (ABC) Algorithm
on Training Artificial Neural Networks,” in Signal Processing and
Communications Applications, 2007. SIU 2007. IEEE 15th. IEEE,
2007, pp. 1–4.

[28] G. Zhu and S. Kwong, “Gbest-Guided Artificial Bee Colony Algorithm
for Numerical Function Optimization,” Applied Mathematics and Com-
putation, 2010.

[29] D. Karaboga and B. Basturk, “Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems,” Foundations
of Fuzzy Logic and Soft Computing, pp. 789–798, 2007.

[30] D. Karaboga, S. Okdem, and C. Ozturk, “Cluster based wireless sensor
network routings using Artificial Bee Colony Algorithm,” in Autonomous
and Intelligent Systems (AIS), 2010 International Conference on. IEEE,
2010, pp. 1–5.

[31] D. Karaboga and C. Ozturk, “Fuzzy clustering with artificial bee colony
algorithm,” Scientific Research and Essays, vol. 5, no. 14, pp. 1899–
1902, 2010.

[32] N. Linh and N. Anh, “Application Artificial Bee Colony Algorithm
(ABC) for Reconfiguring Distribution Network,” in 2010 Second In-
ternational Conference on Computer Modeling and Simulation. IEEE,
2010, pp. 102–106.

[33] S. Pulikanti and A. Singh, “An Artificial Bee Colony Algorithm for
the Quadratic Knapsack Problem,” in Neural Information Processing.
Springer, 2009, pp. 196–205.

[34] B. Yao, C. Yang, J. Hu, G. Yin, and B. Yu, “An Improved Artificial
Bee Colony Algorithm for Job Shop Problem,” Applied Mechanics and
Materials, vol. 26, pp. 657–660, 2010.

[35] Q. Pan, M. Fatih Tasgetiren, P. Suganthan, and T. Chua, “A discrete
artificial bee colony algorithm for the lot-streaming flow shop scheduling
problem,” Information Sciences, 2010.

[36] D. Brélaz, “New methods to color the vertices of a graph,” Communi-
cations of the ACM, vol. 22, no. 4, pp. 251–256, 1979.

ICIT 2011 The 5th International Conference on Information Technology

