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Abstract - The Graham’s Scan approach to two-
dimensional convex hull calculation is considered. The 
performance bottleneck is found in the sorting step that 
precedes the Graham’s Scan scanning operation. Methods 
are considered to eliminate this bottleneck. The method 
chosen is replacing the O(n lg n) sorting algorithm 
normally used with a radix sort. To operate within 
Graham’s scan, the radix sort algorithm must be modified. 
The main modification is getting it to operate on real 
numbers. This is achieved by using the fact that digital 
computers only operate on a countable and finite subset of 
real numbers, and using this fact to reduce the problem of 
sorting by real number to sorting by integer. The 
ramifications of this modification are taken into 
consideration in the light of previous theoretical work in 
this area. Performance as compared to other algorithms is 
considered. Further, the consequences of a proof that the 
lower bound for the temporal complexity of two-
dimensional convex hull algorithms is Ω(n lg n) are 
considered. 
 
Keywords - convex hull, algorithm, radix sort, Graham 
scan, computer graphics 
 

I. INTRODUCTION 
The convex hull problem in two-dimensional space can be 

summarized as the search for a convex polygon that contains 
all the points in a certain set Q while being minimal in size. 
This is, to an extent, a simplification. In the general case 
finding the convex hull of a set of points Q in R

 One of the algorithms capable of finding the convex 
hull of a set of points in two dimensions is Graham’s Scan.  
Graham’s scan is a simple rotational sweep algorithm with 
good performance characteristics. It is O(n lg n) in the worst 
case. The algorithm exists in multiple variants, but the original 
works in three distinct phases: [2] [3] 

n
 is the search 

for a boundary of the least convex set which contains all those 
points.  In the two-dimensional case this boundary is clearly a 
polygon which brings us to the initial definition [1].  

1. Preparing the input point set. 
2. Computing the initial hull. 
3. Sweeping around the points removing ones which 

would not fit into the hull.  

The input set is prepared by first picking a pivot point for the 
algorithm. This pivot point is usually the lowest, leftmost 
point in the set and is, as an extreme, always a part of the 
convex hull [4]. All other points are sorted by their polar angle 
around the pivot point. Those points which had identical polar 
angles are eliminated in such a manner that the only point with 
a given angle remaining is the one farthest from the pivot 
point [2].  

The initial hull is computed by simply starting with 
the pivot point and the first two points in the sorted input 
points. This initial hull becomes the current hull which is 
updated throughout the algorithm.  The sweeping phase 
considers points in the sorted input set one by one. For each of 
those points it is determined if its addition to the current hull 
causes a non-left turn. If it does, the latest point in the current 
hull is removed and the direction of the turn is tested again. 
This continues until a left turn is obtained, at which point the 
considered point is added to the current hull [2].  

Listing 1 contains a pseudocode representation of the 
unmodified algorithm. Several external operations are used in 
this algorithm. They include: 

• init(S), push(S, E), pop(S) and length(S) are standard 
stack and/or list operations. 

• lowest(Q) returns the lowest, leftmost point in a 
given set Q. 

• eliminate(Q, p0) takes a list Q, sorted by the polar 
angle around p0 and returns a list where there are no 
points with the same angle. In case of conflict, only 
the point farthest away from p0 is kept. This can be 
made an O(n) operation.  

• nonleft(a, b, c) determines if the angle formed by the 
three indicated points turns to the left or not. Easily 
determined by calculating the dot product of the 
relevant vectors.  

 
It has previously been stated that Graham’s scan has O(n 

lg n) complexity. It is possible, given the pseudocode 
representation, to see why. Lines 1, 5, 6, 7 and 8 are O(1), and 
need not be further discussed. The calculation of the lowest, 
leftmost point in line 2 is a θ(n) operation. Line 3 is a simple 
heap sort and has the complexity class of O(n lg n). Line 4 has 
the complexity of O(n). The two nested loops give the 
impression of great complexity but, in fact, pose little 
complication. The outer loop can execute, at the most n – 3 
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GRAHAM-SCAN(Q): 
01. if(length(Q) <= 3) return Q 
02. p0 := lowest(Q) 
03. (t_p1...t_pn) := hsort(Q, p0) 
04. (p1...pm) := eliminate((t_p1...t_pn), p0) 
05. init(S) 
06. push(p0, S) 
07. push(p1, S) 
08. push(p2, S)  
09. for i := 3 to m do 
10.     while(nonleft(peek(S), top(S), pi) do 
11.         pop(S) 
12.     push(pi, S) 
13. return S 

Listing 1: Unmodified Graham’s Scan 

times. Discounting the inner loop, each execution of the outer 
loop is an O(1) push operation. The inner loop is less 
predictable. However, given that it contains only a pop 
operation, and that it is impossible to pop something from the 
stack which isn’t there in the first place, it is clear that the 
while loop can only execute, in toto, m – 2 times. Since the 
nonleft test is O(1), and so is the pop operation, and since m – 
2 ≤ n – 1 the total complexity of the while loop is O(n). Thus, 
the total complexity of the algorithm is O(1) + θ(n) + O(n lg 
n) + O(n) + O(1) + O(1) + O(1) + O(n) + O(n) = O(n lg n). 
[2].  
 It is interesting to note that the complexity of the 
algorithm does not depend on the part of the algorithm that 
does the calculation of the hull itself, but instead on the 
sorting step which is clearly the dominant member, 
complexity-wise. This poses the question if it is possible to 
decrease the complexity by trying for a more efficient sort. It 
is commonly known that there exists a lower bound of Ω(n lg 
n) for any sorting algorithms based on arbitrary key 
comparisons [5]. However, there exist more specialized 
algorithms that exhibit better performance in certain cases. 

 
 This paper is divided into four separate sections. The 
first is the introduction, which introduces the concepts used in 
the paper, chiefly, Graham’s Scan algorithm. The second 
section outlines radix sort and how it may be modified and 
incorporated into Graham’s Scan. The third section deals with 
the implication of this modification and the linearization of 
Graham’s Scan temporal complexity. It deals with the existing 
proof of a lower bound for two-dimensional convex hull 
calculation, and compares the modified Graham’s Scan to 
other algorithms. The fourth section concludes the paper, 
briefly describes what has been accomplished and outlines 

potential avenues for further research.  
 
 

II. THE RADIX SORT MODIFICATION 
 The core concept of this paper is to adapt the radix 
sort algorithm to Graham’s scan in order to reduce the 
complexity class of the resulting algorithm to O(kn). Radix 
sort is a variant of non-comparison based sorting generally 
meant for integer keys. Briefly, it operates by sorting a given 
list of integers by sorting them sequentially by their digits in a 
certain radix. The specific version used here starts with the 
least significant digit (LSD) and uses iterated counting sort 
applied to bytes. This means that it will sort a, say, four-byte 
value in four passes. The total performance of a radix sort is 
O(kn) [5].  
 As described, radix sort will only work with integers. 
Further, it will only work on integers that can be expressed in 
a certain, fixed, number of radices, though this number can be 
arbitrarily large. To be used in Graham’s scan, radix sort will 
need to sort by polar angle. This requires sorting points by real 
keys, which is quite different than sorting a single list of 
integers.  The problems which need to be solved are: 

• Sorting real numbers with radix sort. 

• Sorting points by key, and not only the keys 
themselves. 

• Maintaining the performance gain. 

• Assuring unchanged precision.  
 
 It should be stated immediately that radix sort cannot 
sort true real numbers. However, since no digital computer 
works with true real numbers, but an approximation thereof, 
this shouldn’t pose any problem. The numbers that radix sort 
needs to sort in this instance are limited to the range [0, 2π]. 
Any implemented approximation used on an actual computer 
will have limited precision. Given the limited precision, and 
the limited range of possible values it is clear that it is possible 
to construct an O(1) function such that equation 1 holds. 
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Equation 1: Mapping represented real numbers to integers 

 In Equation 1 RF is the set of real numbers which can 
be represented in the system of approximation in question. 
Given that a fixed-size system of representation can only 

 
Figure 1: Double precision floating point number 
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represent a fixed number of distinct numbers, it is possible to 
construct f by ordering all possible real representations using 
the index of a given input parameter in the resulting list as the 
result of f. With this in mind, it is clear that radix sort can be 
used to sort by polar angle, provided an appropriate f is used. 
 Most modern computers represent real numbers 
using floating point, specifically, the IEEE 754 standard.  The 
implementation used in this paper is based on the double 
precision IEEE 754 standard as seen on Figure 1. Double 
precision floating point values in this standard can be, 
provided they are positive, compared as integers [6]. 

MV EBES .12)1( ××−= −  
Equation 2: Calculating the value of a double precision IEEE 754 floating 

point representation 

 
 In equation 2, V is the value of the number, S is the 
signum, E is the exponent, EB is the exponent bias, which is 
equal to 1023 and M is the mantissa. The exponent bias makes 
sure that the value actually encoded in the  bit representation 
isn’t negative. Because the implicit 53 bit of the mantissa 

being always considered one, as long as the signum bit is 
always 0 the double precision representation can be 
interpreted as an integer and still compared with same results 
[6]. 
 Since polar angles are in the interval [0, 2π], double 
precision floating point values can be treated as integers for 
the purposes of sorting. Radix sort is normally an in-place sort 
stable sort [5], but for the purposes of this paper it was 
necessary to maintain association between the sorted polar 
angle values and the points they referred to. There is no 
immediatelly convenient way of doing so. It is possible to use 
a hashtable, but this would lead to performance issues and 
greater memory consumption. Thus, the radix sort used was 
modified to create a permutation which, when applied to the 
input list of points would create the sorted version, as can be 
seen in listing 2. The input to the RADIX-SORT algorithm is 
a list of floats which corresponds to the calculated polar 
angles of the input list of points. 
 The precision of this approach is not in question, as 
long as computers unable to handle true reals are used. The 
imprecision of the described approach is exactly equal to the 
imprecision of the method of depicting real numbers in fixed 
space. As a result of this, the precision of the modified 
algorithm is no better, and no worse, than any other 
comparable algorithm. RADIX-SORT uses several external 
operations. The raw(x) operation turns a double precision 
IEEE float into an integer based on their binary representation. 
This doesn’t require any substantial operations, and doesn’t 
influence performance. The getbyte(x, i) operation extracts the 
i-th byte from x. This can be accomplished with a couple of 
bitwise operations. 
 Graham’s scan is relatively easy to adapt to include 
RADIX-SORT. The modification is localised to lines 3-6 of 
listing 3. First, slist is created as a separate list of polar angles 
around p0. To do this, the getPolarAngle(p1, p2) external 
operation is employed. Slist is then sorted creating a 
permutation perm. The external operation eliminate(L, p, p0) 
works as before, but generates a new list and, instead of 
expecting a sorted L, it uses the permutation p to sort L. 
 As far as performance is concerned, the only 
substantive difference between this implementation and the 
original is in the complexity of the sorting step which is 
O(kn). The copying of the polar angle is an O(n) operation. 
Thus the temporal complexity of the entire algorithm is  
O(1) + θ(n) + O(n) + O(kn) + O(n) + O(1) + O(1) + O(1) + 
O(n) + O(n) = O(kn).  
 

 

III. IMPLICATIONS AND COMPARISONS 
 There exists a proof which states that the lower 
bound for convex hull algorithms in two dimensions is Ω(n lg 
n). Given n real numbers x1...n, a set P is constructed as in 
Equation 3. 

RADIX-SORT(L): 
01. len := length(L) 
02. for i := 0 to len-1 do 
03.     input[i] := raw(L[i]) 
04.     mIndices[i] := i 
05.     mIndices2[i] := i 
06. h0 := 0; h1 := 256; h2 := 512; h3 := 768;  
07.       h4 := 1024; h5 := 1280;  
08.       h6 := 1536; h7 := 1792 
09. for i := 0 to len-1 do 
10.     counters[h0 + getbyte(input[i], 0)]++ 
11.     counters[h1 + getbyte(input[i], 1)]++ 
12.     counters[h2 + getbyte(input[i], 2)]++ 
13.     counters[h3 + getbyte(input[i], 3)]++ 
14.     counters[h4 + getbyte(input[i], 4)]++ 
15.     counters[h5 + getbyte(input[i], 5)]++ 
16.     counters[h6 + getbyte(input[i], 6)]++ 
17.     counters[h7 + getbyte(input[i], 7)]++ 
18. for pass := 0 to 7 do 
19.     offsetTable[0] := 0 
20.     for i := 1 to 255 do 
21.         offsetTable[i] := offsetTable[i - 1]  
                       + counters[pass * 256 + i – 1] 
22.     for i := 0 to len – 1 do 
23.         id := mIndices[i] 
24.         byt := getbyte(input[id], pass) 
25.         mIndices2[offsetTable[byt]] := id 
26.         offsetTable[byt]++ 
27.     tmp := mIndices 
28.     mIndices := mIndices2 
29.     mIndices2 := tmp 
30. return mIndices 

Listing 2: Modified and adapted radix sort 

 

ICIT 2011  The 5th International Conference on Information Technology



),(

}1|{
2
iii

i

xxp
nipP

=

≤≤=
 

Equation 3: Constructing a set for the proof 
 
 Then, the convex hull of P is computed. The order in 
which the points p1...n appear on the lower half-hull of convP is 
the order in which x1...n should be sorted. Thus, if the convex 
hull can be computed in ο(n lg n) time, points can be sorted in 
ο(n lg n) time [7]. This conflicts with the known lower bound 
for general sorts [5]. Despite appearances, the described 
modification to Graham’s Scan does not conflict with this 
proof. The proof rests on the theoretical framework of 
algebraic trees and assumes the coordinates of the points are 
actual real values. The modified Graham’s scan does not work 
on actual real values, and as such the proof does not apply. 
 It is of some considerable interest to compare this 
modification against other algorithms for two-dimensional 
convex hulls. Table I shows the names of the more common 
algorithms and their expected performance characteristics in 
an average case and in the worst-possible case.  

TABLE I 
PERFORMANCES OF VARIOUS ALGORITHMS FOR CALCULATING TWO-

DIMENSIONAL CONVEX HULLS 
Name  Complexity, 

average 
case 

Complexity, 
worse case 

Reference 

Gift 
Wrapping 
Algorithm 

O(nh) O(nh) [2][4][8] 

Graham’s 
Scan O(n lg n) O(n lg n) [2][3] 

Quickhull O(n lg n) O(n2) [9] 

Incremental 
with 
Edelsbrunner 
modification 

O(n lg n) O(n lg n) [10] 

Preparata – 
Hong O(n lg n) O(n lg n) [11] 

Chan’s 
Algorithm O(n lg h) O(n lg h) [12] 

Graham’s 
Scan, 
modfied 

O(kn) O(kn) / 

 Some convex hull algorithms belong to a class of 
algorithms known as output-sensitive. That means that they 
express their complexity as a function of not only n, but also 
the size of the output set – h. To compare algorithms easily, it 
is necessary to estimate a value for h. This is a non-trivial 
problem of stochastic geometry, but there exist certain 
solutions in the literature as seen in Table II.  

TABLE II 
STOCHASTIC ESTIMATIONS FOR HULL SIZE 

Distribution Estimate Reference 

Circular uniform n⅓ [3][4] 

Square uniform n⅓ [4] 

Normal planar 
distribution (lg n)½ [3] 

Uniform within 
convex polygon lg n [3] 

 For purposes of easy and intuitive comparison, for an 
average case the circular/square uniform distribution used 
which means that h = n⅓. In the worst case, the input set of 
points is on the border of a circle, which means that h = n. The 
only remaining parameter is a value for k. An illustrative 
estimate for k is 3. Of course this is only good for simple 
comparisons.  

 

GRAHAM-SCAN-RADIX(Q): 
01. if(length(Q) <= 3) return Q 
02. p0 := lowest(Q) 
03. for i := 0 to len – 1 do 
04.     slist[i] := getPolarAngle(p0, Q[i]) 
05. perm := radix-sort(slist) 
06. (p1...pm) := eliminate(Q, perm, p0) 
07. init(S) 
08. push(p0, S) 
09. push(p1, S) 
10. push(p2, S)  
11. for i := 3 to m do 
12.     while(nonleft(peek(S),top(S),pi) do 
13.         pop(S) 
14.     push(pi, S) 
15. return S 

Listing 3: Graham’s Scan modified to include RADIX-SORT 
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Figure 2: Average case complexity graph 

 

 
Figure 3: Worse case complexity graph 
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 The estimate of k used is chosen primarily to 
illustrate the behavior of the complexity as n increases. A true 
value for k is best determined via experiment.   
 A graphical representation of the comparison of these 
algorithms can be seen on Figure 2 and Figure 3. Figure 2 is 
the comparison between algorithms in an average case, and 
figure 3 is the comparison between algorithms in the worst 
possible case. As can easily be seen, the modified Graham’s 
scan is the fastest algorithm in the long run. This is to be 
expected as a constant multiplier, no matter how large, can 
always be surpassed by a function of n, as n increases.   
However, the weakness of modified Graham’s scan is that it 
takes a trully large input set before its superiority sets in. How 
practical this is, can only be determined by experimenting.  
 

IV. CONCLUSION 

 This paper has outlined how the temporal complexity 
of Graham’s Scan can be linearized provided it operates on a 
finite, countable subset of reals that can be represented on 
some digital computer. It provides the framework to create 
such an algorithm independantly of the system a given 
computer uses to represent real numbers.  
 This principle is illustrated on the example of the 
floating point representation of reals, specifically one 
described in IEEE’s 754 standard. A concrete implementation 
of the idea, in pseudocode, allows for discussion of 
implementation detail and a more nuanced analysis of 
expected performance.  
 Further possible avenues of research include an 
analysis of potential applications, an experimental 
determination of the performanse characteristics of the 
algorithm and an experimental comparison between this 
algorithm and reference implementations of already well 
known algorithms.  
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