
Linearization of Graham’s Scan Algorithm
Complexity

Veljko Petrović#1, Dragan Ivetić#2

#Faculty of Technical Sciences, University of Novi Sad, Republic of Serbia
1pveljko@uns.ac.rs
2ivetic@uns.ac.rs

Abstract - The Graham’s Scan approach to two-
dimensional convex hull calculation is considered. The
performance bottleneck is found in the sorting step that
precedes the Graham’s Scan scanning operation. Methods
are considered to eliminate this bottleneck. The method
chosen is replacing the O(n lg n) sorting algorithm
normally used with a radix sort. To operate within
Graham’s scan, the radix sort algorithm must be modified.
The main modification is getting it to operate on real
numbers. This is achieved by using the fact that digital
computers only operate on a countable and finite subset of
real numbers, and using this fact to reduce the problem of
sorting by real number to sorting by integer. The
ramifications of this modification are taken into
consideration in the light of previous theoretical work in
this area. Performance as compared to other algorithms is
considered. Further, the consequences of a proof that the
lower bound for the temporal complexity of two-
dimensional convex hull algorithms is Ω(n lg n) are
considered.

Keywords - convex hull, algorithm, radix sort, Graham
scan, computer graphics

I. INTRODUCTION
The convex hull problem in two-dimensional space can be

summarized as the search for a convex polygon that contains
all the points in a certain set Q while being minimal in size.
This is, to an extent, a simplification. In the general case
finding the convex hull of a set of points Q in R

 One of the algorithms capable of finding the convex
hull of a set of points in two dimensions is Graham’s Scan.
Graham’s scan is a simple rotational sweep algorithm with
good performance characteristics. It is O(n lg n) in the worst
case. The algorithm exists in multiple variants, but the original
works in three distinct phases: [2] [3]

n
 is the search

for a boundary of the least convex set which contains all those
points. In the two-dimensional case this boundary is clearly a
polygon which brings us to the initial definition [1].

1. Preparing the input point set.
2. Computing the initial hull.
3. Sweeping around the points removing ones which

would not fit into the hull.

The input set is prepared by first picking a pivot point for the
algorithm. This pivot point is usually the lowest, leftmost
point in the set and is, as an extreme, always a part of the
convex hull [4]. All other points are sorted by their polar angle
around the pivot point. Those points which had identical polar
angles are eliminated in such a manner that the only point with
a given angle remaining is the one farthest from the pivot
point [2].

The initial hull is computed by simply starting with
the pivot point and the first two points in the sorted input
points. This initial hull becomes the current hull which is
updated throughout the algorithm. The sweeping phase
considers points in the sorted input set one by one. For each of
those points it is determined if its addition to the current hull
causes a non-left turn. If it does, the latest point in the current
hull is removed and the direction of the turn is tested again.
This continues until a left turn is obtained, at which point the
considered point is added to the current hull [2].

Listing 1 contains a pseudocode representation of the
unmodified algorithm. Several external operations are used in
this algorithm. They include:

• init(S), push(S, E), pop(S) and length(S) are standard
stack and/or list operations.

• lowest(Q) returns the lowest, leftmost point in a
given set Q.

• eliminate(Q, p0) takes a list Q, sorted by the polar
angle around p0 and returns a list where there are no
points with the same angle. In case of conflict, only
the point farthest away from p0 is kept. This can be
made an O(n) operation.

• nonleft(a, b, c) determines if the angle formed by the
three indicated points turns to the left or not. Easily
determined by calculating the dot product of the
relevant vectors.

It has previously been stated that Graham’s scan has O(n

lg n) complexity. It is possible, given the pseudocode
representation, to see why. Lines 1, 5, 6, 7 and 8 are O(1), and
need not be further discussed. The calculation of the lowest,
leftmost point in line 2 is a θ(n) operation. Line 3 is a simple
heap sort and has the complexity class of O(n lg n). Line 4 has
the complexity of O(n). The two nested loops give the
impression of great complexity but, in fact, pose little
complication. The outer loop can execute, at the most n – 3

ICIT 2011 The 5th International Conference on Information Technology

GRAHAM-SCAN(Q):
01. if(length(Q) <= 3) return Q
02. p0 := lowest(Q)
03. (t_p1...t_pn) := hsort(Q, p0)
04. (p1...pm) := eliminate((t_p1...t_pn), p0)
05. init(S)
06. push(p0, S)
07. push(p1, S)
08. push(p2, S)
09. for i := 3 to m do
10. while(nonleft(peek(S), top(S), pi) do
11. pop(S)
12. push(pi, S)
13. return S

Listing 1: Unmodified Graham’s Scan

times. Discounting the inner loop, each execution of the outer
loop is an O(1) push operation. The inner loop is less
predictable. However, given that it contains only a pop
operation, and that it is impossible to pop something from the
stack which isn’t there in the first place, it is clear that the
while loop can only execute, in toto, m – 2 times. Since the
nonleft test is O(1), and so is the pop operation, and since m –
2 ≤ n – 1 the total complexity of the while loop is O(n). Thus,
the total complexity of the algorithm is O(1) + θ(n) + O(n lg
n) + O(n) + O(1) + O(1) + O(1) + O(n) + O(n) = O(n lg n).
[2].
 It is interesting to note that the complexity of the
algorithm does not depend on the part of the algorithm that
does the calculation of the hull itself, but instead on the
sorting step which is clearly the dominant member,
complexity-wise. This poses the question if it is possible to
decrease the complexity by trying for a more efficient sort. It
is commonly known that there exists a lower bound of Ω(n lg
n) for any sorting algorithms based on arbitrary key
comparisons [5]. However, there exist more specialized
algorithms that exhibit better performance in certain cases.

 This paper is divided into four separate sections. The
first is the introduction, which introduces the concepts used in
the paper, chiefly, Graham’s Scan algorithm. The second
section outlines radix sort and how it may be modified and
incorporated into Graham’s Scan. The third section deals with
the implication of this modification and the linearization of
Graham’s Scan temporal complexity. It deals with the existing
proof of a lower bound for two-dimensional convex hull
calculation, and compares the modified Graham’s Scan to
other algorithms. The fourth section concludes the paper,
briefly describes what has been accomplished and outlines

potential avenues for further research.

II. THE RADIX SORT MODIFICATION
 The core concept of this paper is to adapt the radix
sort algorithm to Graham’s scan in order to reduce the
complexity class of the resulting algorithm to O(kn). Radix
sort is a variant of non-comparison based sorting generally
meant for integer keys. Briefly, it operates by sorting a given
list of integers by sorting them sequentially by their digits in a
certain radix. The specific version used here starts with the
least significant digit (LSD) and uses iterated counting sort
applied to bytes. This means that it will sort a, say, four-byte
value in four passes. The total performance of a radix sort is
O(kn) [5].
 As described, radix sort will only work with integers.
Further, it will only work on integers that can be expressed in
a certain, fixed, number of radices, though this number can be
arbitrarily large. To be used in Graham’s scan, radix sort will
need to sort by polar angle. This requires sorting points by real
keys, which is quite different than sorting a single list of
integers. The problems which need to be solved are:

• Sorting real numbers with radix sort.

• Sorting points by key, and not only the keys
themselves.

• Maintaining the performance gain.

• Assuring unchanged precision.

 It should be stated immediately that radix sort cannot
sort true real numbers. However, since no digital computer
works with true real numbers, but an approximation thereof,
this shouldn’t pose any problem. The numbers that radix sort
needs to sort in this instance are limited to the range [0, 2π].
Any implemented approximation used on an actual computer
will have limited precision. Given the limited precision, and
the limited range of possible values it is clear that it is possible
to construct an O(1) function such that equation 1 holds.

RFbabfafba
NRFf

∩∈∧≤⇔≤
→∩

]2,0[,)()(
]2,0[: 0

π
π

Equation 1: Mapping represented real numbers to integers

 In Equation 1 RF is the set of real numbers which can
be represented in the system of approximation in question.
Given that a fixed-size system of representation can only

Figure 1: Double precision floating point number

ICIT 2011 The 5th International Conference on Information Technology

represent a fixed number of distinct numbers, it is possible to
construct f by ordering all possible real representations using
the index of a given input parameter in the resulting list as the
result of f. With this in mind, it is clear that radix sort can be
used to sort by polar angle, provided an appropriate f is used.
 Most modern computers represent real numbers
using floating point, specifically, the IEEE 754 standard. The
implementation used in this paper is based on the double
precision IEEE 754 standard as seen on Figure 1. Double
precision floating point values in this standard can be,
provided they are positive, compared as integers [6].

MV EBES .12)1(××−= −
Equation 2: Calculating the value of a double precision IEEE 754 floating

point representation

 In equation 2, V is the value of the number, S is the
signum, E is the exponent, EB is the exponent bias, which is
equal to 1023 and M is the mantissa. The exponent bias makes
sure that the value actually encoded in the bit representation
isn’t negative. Because the implicit 53 bit of the mantissa

being always considered one, as long as the signum bit is
always 0 the double precision representation can be
interpreted as an integer and still compared with same results
[6].
 Since polar angles are in the interval [0, 2π], double
precision floating point values can be treated as integers for
the purposes of sorting. Radix sort is normally an in-place sort
stable sort [5], but for the purposes of this paper it was
necessary to maintain association between the sorted polar
angle values and the points they referred to. There is no
immediatelly convenient way of doing so. It is possible to use
a hashtable, but this would lead to performance issues and
greater memory consumption. Thus, the radix sort used was
modified to create a permutation which, when applied to the
input list of points would create the sorted version, as can be
seen in listing 2. The input to the RADIX-SORT algorithm is
a list of floats which corresponds to the calculated polar
angles of the input list of points.
 The precision of this approach is not in question, as
long as computers unable to handle true reals are used. The
imprecision of the described approach is exactly equal to the
imprecision of the method of depicting real numbers in fixed
space. As a result of this, the precision of the modified
algorithm is no better, and no worse, than any other
comparable algorithm. RADIX-SORT uses several external
operations. The raw(x) operation turns a double precision
IEEE float into an integer based on their binary representation.
This doesn’t require any substantial operations, and doesn’t
influence performance. The getbyte(x, i) operation extracts the
i-th byte from x. This can be accomplished with a couple of
bitwise operations.
 Graham’s scan is relatively easy to adapt to include
RADIX-SORT. The modification is localised to lines 3-6 of
listing 3. First, slist is created as a separate list of polar angles
around p0. To do this, the getPolarAngle(p1, p2) external
operation is employed. Slist is then sorted creating a
permutation perm. The external operation eliminate(L, p, p0)
works as before, but generates a new list and, instead of
expecting a sorted L, it uses the permutation p to sort L.
 As far as performance is concerned, the only
substantive difference between this implementation and the
original is in the complexity of the sorting step which is
O(kn). The copying of the polar angle is an O(n) operation.
Thus the temporal complexity of the entire algorithm is
O(1) + θ(n) + O(n) + O(kn) + O(n) + O(1) + O(1) + O(1) +
O(n) + O(n) = O(kn).

III. IMPLICATIONS AND COMPARISONS
 There exists a proof which states that the lower
bound for convex hull algorithms in two dimensions is Ω(n lg
n). Given n real numbers x1...n, a set P is constructed as in
Equation 3.

RADIX-SORT(L):
01. len := length(L)
02. for i := 0 to len-1 do
03. input[i] := raw(L[i])
04. mIndices[i] := i
05. mIndices2[i] := i
06. h0 := 0; h1 := 256; h2 := 512; h3 := 768;
07. h4 := 1024; h5 := 1280;
08. h6 := 1536; h7 := 1792
09. for i := 0 to len-1 do
10. counters[h0 + getbyte(input[i], 0)]++
11. counters[h1 + getbyte(input[i], 1)]++
12. counters[h2 + getbyte(input[i], 2)]++
13. counters[h3 + getbyte(input[i], 3)]++
14. counters[h4 + getbyte(input[i], 4)]++
15. counters[h5 + getbyte(input[i], 5)]++
16. counters[h6 + getbyte(input[i], 6)]++
17. counters[h7 + getbyte(input[i], 7)]++
18. for pass := 0 to 7 do
19. offsetTable[0] := 0
20. for i := 1 to 255 do
21. offsetTable[i] := offsetTable[i - 1]
 + counters[pass * 256 + i – 1]
22. for i := 0 to len – 1 do
23. id := mIndices[i]
24. byt := getbyte(input[id], pass)
25. mIndices2[offsetTable[byt]] := id
26. offsetTable[byt]++
27. tmp := mIndices
28. mIndices := mIndices2
29. mIndices2 := tmp
30. return mIndices

Listing 2: Modified and adapted radix sort

ICIT 2011 The 5th International Conference on Information Technology

),(

}1|{
2
iii

i

xxp
nipP

=

≤≤=

Equation 3: Constructing a set for the proof

 Then, the convex hull of P is computed. The order in
which the points p1...n appear on the lower half-hull of convP is
the order in which x1...n should be sorted. Thus, if the convex
hull can be computed in ο(n lg n) time, points can be sorted in
ο(n lg n) time [7]. This conflicts with the known lower bound
for general sorts [5]. Despite appearances, the described
modification to Graham’s Scan does not conflict with this
proof. The proof rests on the theoretical framework of
algebraic trees and assumes the coordinates of the points are
actual real values. The modified Graham’s scan does not work
on actual real values, and as such the proof does not apply.
 It is of some considerable interest to compare this
modification against other algorithms for two-dimensional
convex hulls. Table I shows the names of the more common
algorithms and their expected performance characteristics in
an average case and in the worst-possible case.

TABLE I
PERFORMANCES OF VARIOUS ALGORITHMS FOR CALCULATING TWO-

DIMENSIONAL CONVEX HULLS
Name Complexity,

average
case

Complexity,
worse case

Reference

Gift
Wrapping
Algorithm

O(nh) O(nh) [2][4][8]

Graham’s
Scan O(n lg n) O(n lg n) [2][3]

Quickhull O(n lg n) O(n2) [9]

Incremental
with
Edelsbrunner
modification

O(n lg n) O(n lg n) [10]

Preparata –
Hong O(n lg n) O(n lg n) [11]

Chan’s
Algorithm O(n lg h) O(n lg h) [12]

Graham’s
Scan,
modfied

O(kn) O(kn) /

 Some convex hull algorithms belong to a class of
algorithms known as output-sensitive. That means that they
express their complexity as a function of not only n, but also
the size of the output set – h. To compare algorithms easily, it
is necessary to estimate a value for h. This is a non-trivial
problem of stochastic geometry, but there exist certain
solutions in the literature as seen in Table II.

TABLE II
STOCHASTIC ESTIMATIONS FOR HULL SIZE

Distribution Estimate Reference

Circular uniform n⅓ [3][4]

Square uniform n⅓ [4]

Normal planar
distribution (lg n)½ [3]

Uniform within
convex polygon lg n [3]

 For purposes of easy and intuitive comparison, for an
average case the circular/square uniform distribution used
which means that h = n⅓. In the worst case, the input set of
points is on the border of a circle, which means that h = n. The
only remaining parameter is a value for k. An illustrative
estimate for k is 3. Of course this is only good for simple
comparisons.

GRAHAM-SCAN-RADIX(Q):
01. if(length(Q) <= 3) return Q
02. p0 := lowest(Q)
03. for i := 0 to len – 1 do
04. slist[i] := getPolarAngle(p0, Q[i])
05. perm := radix-sort(slist)
06. (p1...pm) := eliminate(Q, perm, p0)
07. init(S)
08. push(p0, S)
09. push(p1, S)
10. push(p2, S)
11. for i := 3 to m do
12. while(nonleft(peek(S),top(S),pi) do
13. pop(S)
14. push(pi, S)
15. return S

Listing 3: Graham’s Scan modified to include RADIX-SORT

ICIT 2011 The 5th International Conference on Information Technology

Figure 2: Average case complexity graph

Figure 3: Worse case complexity graph

ICIT 2011 The 5th International Conference on Information Technology

 The estimate of k used is chosen primarily to
illustrate the behavior of the complexity as n increases. A true
value for k is best determined via experiment.
 A graphical representation of the comparison of these
algorithms can be seen on Figure 2 and Figure 3. Figure 2 is
the comparison between algorithms in an average case, and
figure 3 is the comparison between algorithms in the worst
possible case. As can easily be seen, the modified Graham’s
scan is the fastest algorithm in the long run. This is to be
expected as a constant multiplier, no matter how large, can
always be surpassed by a function of n, as n increases.
However, the weakness of modified Graham’s scan is that it
takes a trully large input set before its superiority sets in. How
practical this is, can only be determined by experimenting.

IV. CONCLUSION

 This paper has outlined how the temporal complexity
of Graham’s Scan can be linearized provided it operates on a
finite, countable subset of reals that can be represented on
some digital computer. It provides the framework to create
such an algorithm independantly of the system a given
computer uses to represent real numbers.
 This principle is illustrated on the example of the
floating point representation of reals, specifically one
described in IEEE’s 754 standard. A concrete implementation
of the idea, in pseudocode, allows for discussion of
implementation detail and a more nuanced analysis of
expected performance.
 Further possible avenues of research include an
analysis of potential applications, an experimental
determination of the performanse characteristics of the
algorithm and an experimental comparison between this
algorithm and reference implementations of already well
known algorithms.

References:
[1] M. De Berg, O. Cheong, M. Van Kreveld, M. Overmars,
Computational Geometry Algorithms and Applications,
Berlin, Germany, Springer-Verlag, 2008.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction
to Algorithms, Cambridge, USA, MIT Press, 2001.
[3] V. Bayer, „Survey of Algorithms for the Convex Hull
Problem“, preprint, 1999.
[4] R. Sedgewick, Algorithms, Reading, USA, Addison-
Wesley, 1983.
[5] D.E. Knuth, The Art of Computer Programming Volume 3:
Sorting and Searching, Reading, USA, Addison-Wesley,
1998.
[6] IEEE Standard for Floating-Point Arithmetic, IEEE 754,
2008.
[7] M. Ben-Or, „Lower bounds for algebraic computation
trees,“ in Proc. 15th Annu.ACM Sympos. Theory Comput.,
pp. 80-86.

[8] R. A. Jarvis, „On the identification of the convex hull of a
finite set of points in the plane“, Information Porcessing
Letters 2, pp. 18-21.
[9] J. O’Rourke, Computational Geometry in C, Cambridge,
UK, Cambridge University Press, 1998.
[10] H. Edelsbrunner, Algorithms in Combinatorial Geometry,
Berlin, Germany, Springer-Verlag, 1987.
[11] F. P. Preparata, S.J. Hong, „Convex Hulls of Finite Sets
of Points in Two and Three Dimensions“, Communications of
the ACM, Vol. 20, No 2, pp. 87-93.
[12] T. M. Chan, „Optimal Output-Sensitive Convex Hull
Algorithms in Two and Three Dimensions“, Dicreete &
Computational Geometry vol. 16, pp. 361-368.

ICIT 2011 The 5th International Conference on Information Technology

	Linearization of Graham’s Scan Algorithm Complexity
	I. Introduction
	II. The radix sort modification
	III. Implications and comparisons
	References:

