
Software Process Improvement (SPI) In Small Software Firms

Mejhem Yousef Al Tarawneh
Dept. of Information Technology, College of Arts & Sciences, Universiti Utara Malaysia

mejhem1981@yahoo.com

Mohd Syazwan Abdullah
Dept. of Information Technology, College of Arts & Sciences, Universiti Utara Malaysia

syazwan@uum.edu.my

Abdul Bashah Mat Ali
Dept. of Information Technology, College of Arts & Sciences, Universiti Utara Malaysia

bashah@uum.edu.my

Key words: software process improvement, small software firms, future research, critical success factors

ABSTRACT
Small software firms need to improve their software process by adopting a suitable SPI model.
However, all the traditional SPI models and standards were created for large firms and software
houses. This paper presents the generic information about software processes, software process
improvement and small software firms to highlight the challenges faced by the small software
firms in applying traditional SPI models. This paper also discusses how future work can be done
to solve this problem. This is achieved by reviewing literatures to determine the SPI activities,
characteristics of small software firms and the critical success factors of software process and
SPI, and using these features in developing new software process model for small software firms.

1. Introduction
The use of technology techniques have
increased in our life. As a result we have to
manage these techniques to get all the benefits
of the technologies. Small software firms form
the important sectors that are needed to manage
and develop their software processes, because
small firms play a fundamental role in most
countries economies, and they represent up to
85 percent of all software firms in the US,
Canada, China, India, Finland, Ireland, and
many other countries [1]. But the problem here
is that all the traditional software process
improvement (SPI) models and standard for
assessment were developed to improve software
process in large and very firms that have more
than 100 employees, and the small software
firms cannot afford these models [2].
Furthermore, there is lack of research about the
use of SPI in small firms [3]. This paper
discusses these issues and proposes new
software process model that can be used in

small software firms. This model is based on
traditional software process development
models and SPI traditional model such as
Capability Maturity Model (CMM), Capability
Maturity Model Integration (CMMI),
International Organization for Standardization
(ISO), and Software Process Improvement and
Capability Determination (SPICE).

2. Software process
Saiedian and Carr [4] point out that ‘software
process’ refers to a set of tools, practices and
methods to produce software products
according to specific plan. The main objective
of software process is to provide the suitable
organizational stability and good control [5].
Although there are lots of software process
definitions, all these definitions have the same
aim of helping software engineers to develop
software of high quality. Pressman [7] defines

mailto:mejhem1981@yahoo.com
mailto:syazwan@uum.edu.my
mailto:bashah@uum.edu.my

the software process as a framework of tasks to
built high quality software. Sommerville [6]
summarized the software process as a structure
of activities to development software systems
and pointed out that software process consists
of the following four activities:

A- Software Specification
 This activity used to establish the required
services from the system, and determine the
constraints of system operations and
development. Software Specification has two
levels: (1) level for high-end users and (2)
customer needs level for system developers.

B- Software Design and Implementation
This activity is used to convert and translate the
system specifications to the executable system.

C- Software Validation
This activity is used to show if the system is
achieving its specifications and meeting
customer needs through testing process.

D- Software Evolution
This activity is used to maintain and develop the
system so that the system can meet
circumstantial changes such as requirements
changes and customer needs.

2.1 Software Development Process Models
Sommerville [6] defines the software
development process model as an abstract
representation of a process that presents the
description of a process from some particular
perspective. He summarized the software
development process models as a following:

A- Waterfall Model (Software Life Cycle)
This model is the first model in software
process development by Rock in 1970 and is
called the ‘Waterfall’, because its numbers of
separate specifications and development
activities worked as a cascade.
Waterfall activities:
1- Requirements analysis and definition:

 Establish the systems services, goals and

 constraints by consultation with system users.
2- System and software design:

System software using to partition the
requirements to software and hardware systems.
Software design helping to define and describe
the fundamentals and relationships of the
software system abstraction.
3- Implementation and unit testing:
Convert the design to a set of programs by
implementation, and checking these program
units by testing unit to achieve all units’
specifications.
4- Integration and system testing:
In this phase, all program units are integrated to
create the main system, and test this system to
ensure the achieving the software requirements,
and deliver the system to the customers.
5- Operation and maintenance:
Install the system and using real data to check
the system. The maintenance help to correct the
errors in the systems that couldn’t be discover
in previous phases.

B- Evolutionary Development Models
These models are based on developing an initial
implementation and show users how to navigate
the users’ comments and refining that by many
versions to achieve the suitable version for
users. Moreover, these models have separated
activities such as specification, development
and validation, and these activities executed
through rabid feedback. These models are
divided into two types as a follow:
1- Exploratory development:
This type starts with understanding
requirements by an initial outline specification
and by working with customers to explore the
requirements. Then, the need features are added
to achieve the desirable system. An incremental
model such as Extreme Program is an example
of this method.

2- Throw-away prototyping:
This type starts with poorly understood
requirements and explains the needed
requirements. Spiral model is an example of this
method.

C- Formal system development
This model is based on formal mathematical
 notations for system specifications and uses a
series of transformations for design,
implementation and testing.

D-Reuse-Oriented development (Component-
based software engineering)
This model uses existing components or COTS
(Commercial-off-the-shelf) systems to develop
the process by systematic reuse. It has four
stages as a following:
1- Component analysis: By knowing the
requirements specification, this phase search
and specify the suitable components to
implement these requirements.
2- Requirements modification: Modify the
requirements to be suitable with existing
components.
3- System design with reuse: Design the new
framework of the system or reuse the existing
framework.
4- Development and integration: Develop the
software which cannot be bought and integrate
the components and COST to create the system.

3. Software Process Improvement
Because of the increasing of use software in all
aspects of our life, the software firms need to
manage and develop their software processes to
meet the challenges of continuously changing
user requirements to satisfy the customers
needed within set time restraints, low cost,
while maintaining high quality. According to
BAe [8], most software firms facing tough
competitions struggle to develop the quality of
its software within specific time and suitable
budget to achieve business needs to satisfy its
customers. Allen and others [9] also believed
that the increasing use of software systems that
lead to the complexity of these systems and the
need to understand and manage the software
development process to ensure high quality,
suitable cost and maximize productivity.
According to Wang and King [10] the SPI is a
systemic procedure for improving the
performance of an existing process system by

changing or updating the process. Sommerville
[11] point out that the software process
improvement is used to understand the current
processes and doing changes on process to
improve the product quality, reduce cost or
accelerate schedules.

3.1 Software Process Improvement
Traditional Models and Standards
Most researches in the world have focused on
some of the generic process improvement
traditional and standards models such as CMM,
CMMI, ISO, SPICE and BOOTSTRAP. This
section discusses general information about
these models as a follow:

A- Capability Maturity Model
CMM model was developed by the U.S.
Department of Defense at Software Engineering
Institute (SEI) of Carnegie Mellon University.
This model focus on managing the process and
the main objective of this model is to develop a
process maturity framework to help the
organization to improve their software process
by using five maturity levels (Initial level,
Repeatable level, Defined level, Managed level
and Optimizing level [12].

B- Capability Maturity Model Integration
CMMI improvement model was created by
Software Engineering Institute by combining
the CMM models (SW- CMM V2.0, integrated
product development (IPD), and system
engineering CMM (SE-CMM)) [13]. According
to Yao and Lee [14] this model was used as a
guideline for improving the process in the
organizations. They also point out that this
model was written specially for the software
industry and describes the software process in
detail. Furthermore, this model focuses on
supplier to improve the internal software
process.

C- Software Process Improvement and
Capability Determination
The SPICE is the major international initiative
to support the development of an International
Standard for Software Process Assessment .The

first version of the standard was released in
1995 and the goal of the SPICE project was to
develop a standard that would be applicable to
both process improvement and capability
determination in different application domains
[15].

D- International Organization for
Standardization
In 1987 the ISO published the first edition of
ISO 9000 Quality System Standards and revised
this model in 1994 and 2000 [16]. The purpose
is to guide the software development and
maintenance. ISO 9000 is a quality system for
software development stages including design,
development, production, installation, and
servicing. ISO 9000 series is the standard used
to provide the guidance of quality management
(by ISO 9000 and ISO 9004) and quality
assurance by ISO 9001, 9002 and, ISO 9003
[16].

E- BOOTSTRAP
The bootstrap is a methodology developed in
the ESPRIT (the European Strategic
Programme for Research) in Information
Technology project from October 1991 to
February 1993. After the ESPRIT ended, the
Bootstrap Institute developed this methodology
for this [17]. The main goal of this model to
support and help (start up) application of
software engineering technology in the software
industry [18].

3.2 SPI Critical Success Factors
Most researchers have used the concept of
Critical Success Factors (CSFs) to identify areas
where attention must be focused. Since Rockart
[19] introduced the concept, CSFs studies have
been shown to be useful in the analysis of the
implementation and use of information systems
and management practices. Some studies refer
to the critical success factors and critical
barriers as both enabling and prohibitive. There
are a lot of classifications of these critical
success factors. However, Hall and others [20]
derived all the critical factors that where

founded by SPI researchers to four groups as a
following:

A- SPI Economic Factors
 Hersh [21] warned that it is not easy to
measure the value of process improvement in
terms of lower risk, staff monthly productivity,
improved quality, or customer satisfaction.
Many publications in the past have claimed to
have determined the return on investment for
process improvement. Recently however, high
costs and inadequate re-sourcing have been
found to be the greatest hindrance to SPI
success.

B- SPI People Issues
There is growing awareness of the important
role of individuals in SPI programs as the
literature reflects. This is stressed by
Komiyama, Sunazuka and Koyama [22] who
claim that the process determines the success of
the outcome of the software project, and that all
personnel must be interested in the process.
Some researcher mentioned these people issues
as a following: (1) Management commitment
and SPI leadership, (2) Staff involvement, (3)
Mentors, (4) Training and expertise, and (5)
Motivation. [23]

C- SPI Organizational Factors
Many researchers have derived these factors
into six, such as [24]. They point out the six
organizational factors in SPI (human, political,
cultural, goals, and change management).
However, Aileen [13] distributed these factors
to three dimensions, which focused on
communication between the employees and the
availability of resources to achieve all needed
improvement. She also focused on the business
strategy that is used in firms.

D- SPI Implementation Factors
 There are a variety of implementation factors
which can cause well-planned SPI initiatives to
result in failure such as setting realistic
objectives, SPI infrastructure, Evaluation and
Readiness [25].

4. Small Software Firms
Small software firms represented a high
Proportion of firms in most countries all over
the world. They represent more than 85% of all
software firms in the US, Canada, China, India,
Finland, Ireland, and many other countries [1].
Small firms are less hierarchical and have the
organizational flexibility and freedom to take
more risks than larger ones who operate on a
more aggressive business plan. [26]. As for the
size of firms is depends on the number of
employees, and this number different between
countries. According to Fayad and others [27],
the small software firms have fewer than 50
employees. Laporte and others [28] determined
this number to be fewer than 60 employees.
Depending on an empirical study in Australia
by Hofer [29], the size of small software firms
is between 10 to 50 employees. Then from the
pervious analysis we can conclude that the
expected size of small software firms is
between 10 to 50 employees. Moreover,
Hoofers [29] explains the methods and
techniques that are used in small software firms,
as shown in Table 1. We can conclude that the
object oriented programs (OOP), object oriented
design (OOD), object oriented analyses (OOA)
such as C++, and Component based software
development (CBD)such as JAVA are the most
common methods used by small firms.
Also according to Hoofers [29], when we look
to Table 2, we can make conclusions about
some of the generic characteristics of small
software firms. It can be concluded that the
strongest characteristics that are recognized in
more than 86% of firms, customer support,
dynamic and flexible company policies, and
that internal project meetings are held regularly.
Further, it has been established that quality
management is important.

5. Software Process Improvement in
Small Software Firms
 Small firms represent the majority of all firms
in most countries and have many processes
which need to be developed. They need SPI

methods and techniques Ratio
OOP 92%
OOA/OOD 92%
 CBD 63%
UML 48%
COM/DCOM 37%
Automated Testing 25%
Design Pattern 29%
CORBA 22%
Extreme Programming 12%
Analysis Pattern 12%
Re-factoring 12%
Pair Programming 5%
Table 1: Usage of methods and techniques in
small software firms.

Characteristics
Approximately
Ratio in small

firms (%)
internal project meetings are
held regularly 90%

serve mainly regular
customers 65%

projects often last longer
than planned 50%

employees often work
overtime 73%

marketing is an important part
of the company philosophy 75%

investing in training of
employees 78%

quality management is
important 87%

continuous documentation
of all tasks 6%

traditionally structured
company 52%

teamwork is important 99%
customer involvement all the
time 80%

develop software for many
different domains 50%

always newest technology 80%
dynamic and flexible
company 94%
customer support is important
 95%
often use new methods
and techniques 75%

 Table 2: characteristics of small software firms.

to achieve all goals and quality assurance for
its products, customers satisfaction, reduce
cost, and time. However, the main problem here
is that no SPI traditional model can be used to
improve their software processes, since all these
models are designed for large and very large
firms [8]. There are many researches who
consider the use of SPI in small software firms
to be very difficult, and they focused primarily
on the larger firms.

5.1 Lack of Research in Small Software
Firms
Most researchers focused are on large and very
large firms because most of these firms have
enough investment to improve its software
processes by using SPI traditional models.
Thus, the small software firms do not have
enough researches to solve their problem of
improving their software process. Lobo & Jones
[31] emphasize that the empirical research into
the rate and success of implementation of SPI in
small software firms are always considered as
being inadequate. Oscar Pedreira [2] points out
in his survey about the empirical studies in
the digital libraries that there is 20% of
empirical studies about small firms and 80%
about large firms. Small software firms need a
lot of specific and focused research to improve
their software processes.

5.2 Difficulty to Implement SPI Models and
Standards in Small Software Firms
SPI traditional models need a lot of activities
and requirements, but most small software firms
can’t afford these [1]. According to Guerrero
and Eterovic, small software firms have a lack
understanding of the success factors of SPI and
do not have enough people to perform all the
SPI activities. Therefore, they find themselves
to be very far from implementing formal SPI
traditional models. Hofer [29] point out that the
main problems in small software firms for
implementing SPI formal models are factors
such as a lack of management and resources, a
lack methods and techniques, and a low number
of human aspects. One of the main problems in
implementing SPI traditional models in small

software firms is that the number of employees
cannot support the activities of improvement
[30]. Therefore, we can conclude that the main
problems for implementation of SPI traditional
models in small software firms include a low
level of SPI experience, lack of resources, and
the high cost by using SPI traditional models.

5.3 Future Research
 The proposed future research is aimed at
helping small software firms in general to
improve their software processes.
To help small software firms, we have to
determine the characteristics of these firms
depending on literature reviews because most
small software firms have the same
characteristics. Then, we need to determine the
SP activities to check the SPI critical success
factors. Depending on the critical success
factors of SPI, we will discuss all software
process models that are used in small software
firms to choose the most suitable one that can
help small software firms to improve their
software processes. We will study all SPI
traditional models and choose or adapt the most
suitable ones for small firms.
When we have identified the SP model and SPI
model, we will need to compare the SP
activities of selected SP models with process
areas of selected SPI models to determine the
missing activities of SP models with the SPI
models. We will then modify the SP activities
to achieve all process areas of SPI model
depending on the activities of other SP models.
After this modification, we will determine the
new SP model requirements and this requires
administrating questionnaires on small firms to
check whether the new model meets their
expectation. After the analysis of the
questionnaires, we will be familiar with the user
requirements. Then, we can determine the final
requirements for implementing the SPI model
for small software firms, and depending on
these requirements we will know what activities
in selected SP model need to be modified and
what activities need to be added to achieve all
the key process areas of SPI selected model.
Figure 1 shows how this is done.

Figure 1: development stages of SP model for small software firms.

6. Conclusion
Small software firms represent a high proportion
of software firms around the world. However,
these firms do not have the suitable software
process model to achieve all key process areas of
one of SPI traditional models since these models
are created to help large and very large firms.
Small software firms need to have suitable
software process models that can achieve all the
activities of a selected SPI traditional model.
This paper discussed this problem and how it can
be solved. It depends on the comparison between
software process models and the characteristics
of small software firms, as well as and getting
the features required by small firms on SPI
model. Then a new SP model will be developed
based on these requirements.

References:
[1] Richardson, and C. von Wangenheim, “Why

Are Small Software Organizations
Different?,” IEEE SOFTWARE, vol. 1,
2007, pp. 9.

[2] K. Malaivongs, “Software Process

Improvement in Thailand,” 2008.
http://www.drkanchit.com/presentations/200
805_ProcessImprovement_NewKeyNoteAdd
ress.pdf

 [3] O. Pedreira, et al., “A systematic review of

software process tailoring,” ACM
SIGSOFT Software Engineering Notes,
vol. 32, no. 3, 2007, pp. 1-6.

 [4] H. Saiedian and N. Carr, “Characterizing a

software process maturity model for small
organizations,” ACM SIGICE Bulletin,
vol. 23, no. 1, 1997, pp. 2-11.

 [5] B. Wong and S. Hasan, “Software Process

Improvement in Bangladesh',” Software
Engineering Research and Practice, ed.
Arabnia, HR and Reza, H., SERP, 2006,
pp. 26-29.

 [6] I. Sommerville, “software process”, in

Software Engineering, 6th edn, Addison-
Wesley, 2001, chapter 3, pp.43-50.

 [7] R. S. Pressman, Software Engineering: A

Practitioner’s Approach, 6th international
edn, McGraw-Hill Education, Singapore,
2005, p.53.

 [8] D. Bae, “Panel: Software Process

Improvement for Small Organizations,”
COMPSAC, 2007.

 [9] P. Allen, et al., “PRISMS: an approach to

software process improvement for small to
medium enterprises,” Proceedings of the
Third International Conference on Quality
Software (QSIC’03), pp. 211-214.

[10] Y. Wang and G. King, Software

Engineering Processes: Principles and
Applications, CRC Press LLC, Boca Raton,
FL, USA, 2000, pp.42.

 [11] I. Sommerville, “software process”, in

Software Engineering, 6th edn, Addison-
Wesley, 2001, chapter 25, pp.558.

[12] C. Lutteroth, et al., “A maturity model for

computing education Ninth Australasian
Computing Education Conference
(ACE2007), Ballarat, Victoria, Australia,
pp. 107-114.

 [13] A. Cater-Steel, “An evaluation of software

development practice and assessment-
based process improvement in small
software development firms,” Ph.D.
dissertation, Sch..Com. Info. Tech, Griffith
Uni, Australia, 2004.

 [14] Y. Yao and H. Lee, “Applying ISO 9001 and

CMMI in quality-oriented knowledge
management for software process
improvement,” International Journal of
Electronic Business Management, vol. 2,
no. 2, 2004, pp. 140-151.

 [15] K. El Emam, et al., SPICE: The theory and

practice of software process improvement
and capability determination, IEEE
Computer Society Press Los Alamitos, CA,
USA, 1997.

http://www.drkanchit.com/presentations/200

 [16] S. Winistorfer and H. Steudel, “ISO 9000:

Issues for the structural composite lumber
industry,” Forest Products Journal, vol. 47,
1997, pp.43-47.

 [17] D.Robben,” TPI, BOOTSTRAP and

testing”,’ Sogeti Nederland B.V., Vianen,
the Netherlands’, 2000.

 [18] D. Vasiljevic and S. Skoog, “A software

process improvement framework for small
organizations: A research approach,”
Master’s thesis, Dept.Soft. Eng.and.Com.
Sci. Blekinge Institute of Technology,
Ronneby, Sweden, 2003.

[19] J. Rockart, “Chief executives define their

own data needs,” Harvard Business
Review, vol. 57, no. 2, 1979, pp. 81-93.

[20] T. Hall, et al., “Implementing software

process improvement: an empirical study,”
Software Process: Improvement and
Practice, vol. 7, no. 1, 2002, pp. 3-15.

 [21] A. Hersh, “Where's the return on process

improvement?,” IEEE SOFTWARE, vol.
10, no. 4, 1993. p. 12.

 [22] T. Komiyama, et al., “Software process

assessment and improvement in NEC-
current status and future direction,”
Software Process: Improvement and
Practice, vol. 5, no. 1, 2000.

 [23] N. Baddoo and T. Hall, “Motivators of

software process improvement: an
analysis of practitioners' views,” The
Journal of Systems & Software, vol. 62,
no. 2, 2002, pp. 85-96.

 [24] J.Brietzke, A.Rabelo,”resistance factors in
software process improvement”,’CLEI
ELECTRONIC journal’, volume 9,
number 1, 2006, paper 4.

 [25] T. Kaltio and A. Kinnula, “Deploying the

defined SW process,” Software Process:
Improvement and Practice, vol. 5, no. 1,
2000, pp. 65-83.

 [26] Winger, Alan R.,” Is Big Really Bad?
Business Economics”, 29, 1994, pp. 38-
42.

 [27] M. Fayad, et al., “Thinking objectively:

software engineering in the small,”
Communications of the ACM, vol. 43,
no. 3, 2000, pp. 115-118.

 [28] C. Laporte, et al., “Initiating Software

Process Improvement in Small
Enterprises: Experiments with Micro-
Evaluation Framework,” 2005, pp. 153–
163.

 [29] C. Hofer, “Software development in

Austria: results of an empirical study
among small and very small enterprises,”
2002, pp. 361-366.

 [30] P. Grunbacher,”A software assessment

process for small software enterprises”,’
In Proceedings of EUROMICRO97’,
Budapest, Hungary, September. IEEE
Computer Society Press, 1997, pp.123-
128.

 [31] M. Xydias-Lobo and J. Jones, Quality

Initiatives and Business Growth in
Australian Manufacturing SMEs: an
Exploratory Investigation, School of
Commerce, Flinders University, 2003.

