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ABSTRACT 
Decoupling the presentation logic, business logic and workflow in a complex system is essential to 
keep the system flexible. Modelling workflow in complex systems such as learning management 
systems (LMS) could be supported by creating partially defined workflows and producing the 
algorithms that will merge them into an integral workflow. This paper presents some issues that arise 
in the implementation of a LMS flow control module using partially defined workflows in existing 
workflow management software (Windows Workflow Foundation) and proposes an algorithm for its 
resolution. The research is still in progress and only the problems with parallel splits and 
synchronizations in flow control have been described.  
 
Keywords: Workflow management, partially defined workflows, workflow merge, Windows 
Workflow Foundation 
 
 
1. Introduction 
During the development of a learning 
management system (LMS) and during its 
use there are lots of issues that require 
attention. The focus is put mostly on the 
graphical design of course materials. 
Course authors tend to create graphically 
rich and interactive materials and organize 
them into appropriate topics and lessons. 
In case that something beyond the 
presentational tool is being developed, it is 
usually the module for knowledge 
assessment since a system that has various 
assessment types entices a more active 
approach to learning [2].   
But, after that, one of the important issues 
is when, to whom and in which order to 
present particular lesson or a course. 
Courses are usually organized in a tree 
form where the predecessors of a particular 
node in the tree are the courses that student 
had to pass in order to take the next course. 
As an LMS develops through time the flow 
logic changes continuously. As noted in 
[1] the design of e-learning systems is 
largely conducted on an intuitive, ad hoc 
basic, resulting in inefficient systems that 

defectively support the learning process. In 
order to make an e-learning system more 
process oriented, to maintain its quality 
and manageability, decoupling the 
presentation and business logic (what and 
how to present, how to manage data) and 
workflow (when and in which order to 
present) is in authors’ opinion one of the 
crucial things that need to be done. One 
use of a workflow within an e-learning 
system already has already been 
demonstrated in [3] and [4] but was limited 
mostly to sequence workflows. In contrast 
to these practical examples SCORM [8] as 
a standard [9] for course material design 
includes SCORM Navigation and 
Sequencing as a schema definition for 
common patterns in LMS flow control, but 
leaves the implementation problems to the 
system developers.  
This paper presents some issues that arise 
in the implementation of a LMS flow 
control module using existing workflow 
management software (Windows 
Workflow Foundation [10], in further text 
WF) and proposes an algorithm for its 
solution. 
 



2. Partially defined workflows 
A LMS can be extended with a module for 
course workflow management. In this way 
course creators could manage course 
workflow more easily. In a large LMS, or 
during the study curriculum design, it is 
reasonable to expect that more than one 
person will define courses and manage 
relationship between them. 
The basic idea behind the partially defined 
workflows is that the system should allow 
particular course designers to design their 
own courses and to connect them with the 
prerequisite courses. After all users have 
defined their courses and their 
prerequisites, the system should merge 
them and produce the final workflow. The 
situation where courses C and D are 
required for course F, courses B and C are 
required for course E etc is illustrated in 
Figure 1. Course relationships in the 
picture are described using directed graphs. 
 

 
Figure 1: Partially defined relationships between 

courses merged into the integral graph model 

Transforming the graph representation into 
a real workflow model is not a simple task. 
Although the graph shown in the Figure 1 
is simple, it clearly depicts the problem. It 
has one parallel split (A to B, C and D) and 
three synchronizations (at vertices E, F and 
G). Although it can be supported by the 
custom workflow management system (as 
shown in [5]) most of the workflow 
languages expect that each parallel split is 
paired with the corresponding 
synchronization. Therefore it is impossible 
to support graph from the Figure 1 without 
modifications.  
For instance, WF, similarly to other 
workflow languages, does not allow direct 

connections between the elements in two 
parallel branches. In this paper the authors 
propose cloning common courses and 
putting them into more than one parallel 
branch. Concrete implementation of the 
workflow model will ensure that those 
clones are shown as one course during the 
runtime. Creation of such workflow is 
done using the algorithm described in the 
following section. 
 
 
3. The workflow creation 
algorithm 
As shown in Figure 2, the algorithm has 
several steps. In the beginning partially 
defined workflows (graphs) have to be 
merged. Courses and their relationships are 
shown as a directed graph where an arc 
going from node A to node B means that 
course A is the predecessor of the course 
B. 
 

 
Figure 2: Phases of the workflow creation 

algorithm 

The efficient way of doing the initial 
merge process is to represent the graph 
with an incident matrix. Course names 
have to be uniquely translated to the 
positive numbers ranging from 1 and the 
number of the courses. After that, the 
creation of the incidence matrix is quite 
easy. Value at row i and column j will be  
0, -1, or 1 depending on whether the arc 
between vertices i and j does not exist, 



goes from i to j, or goes from j to i 
respectively. 
 
3.1 The edge reducing algorithm 
 
After the incidence matrix has been created 
cycle detection using modification of the 
topological sort described in [6] and [7] 
must be done. If the directed graph does 
not contain cycles, the algorithm can 
proceed to the edge reduction process. 
Basically, if for some edge ݁ = (A,B) an 
alternative path from vertex A to vertex B 
exists then the edge ݁ can be removed 
because it is obsolete (edge ݁ = (A,B) in 
Figure 3 is removed since A is a transitive 
predecessor of B via C).  

 
Figure 3: Removing obsolete edge from A to B 

After the edge reducing algorithm, two 
new vertices have to be added to the graph: 
Start and End. Start vertex will be 
connected to all vertices having inbound 
degree equal to zero (in such way that Start 
is theirs predecessor) and all vertices 
having outbound degree equal to zero will 
be connected with the End vertex (in such 
way that End is theirs successor). That 
way, it has been assured that graph is 
connected which is essential for the 
labelling process illustrated in the next 
section. 
 
3.2 The vertex labelling algorithm 
The vertex labelling algorithm can be 
applied to the directed graph G=( ࣰ, E) 
with the set of nodes ࣰ, and set of directed 
arcs E with the following presumptions: 
• Graph G is connected and there are no 

cycles in the graph 
• There is only one start ver א   ࣰ 

such that its inbound degree in 0 
tex v
(v) = 

• There is only one end vertex v א  ࣰ such 
that its outbound degree out(v)=0 

• For each pair of nodes v1 and v2 such 
that exist ݁  E and such that ݁ = (v1,v2) א
there is no any other path v1,va,vb,...v2 
from v1 to v2. 

 
The labelling function L: ࣰ  ࣦ where ࣦ 
is set of labels (strings that contain only 
numbers and dots) will assign one or more 
labels to each vertex in the graph. 
Labelling algorithm starts from the graph 
end vertex. Labels of vertex that has only 
one predecessor are added to the set of the 
predecessor’s labels without being 
changed. If a vertex has two or more 
predecessor then its set of labels is added 
(with modifications) to the set of each 
predecessor labels. During that process 
each label is concatenated with dot and 
order number, where the order number 
goes from 1 to the number of predecessors. 
Formally these steps can be written as 
follows. 
 
1. Set the end vertex as the current vertex 

curr and label it with ‘1’  
(L(curr) = {‘1’}) and set O ={ curr } 
 

2. Set the curr vertex to b the first node 
from the set O.  Let the  

e 

S = { v | such that exists  ݁ =(v, curr)}. 
Set O = (O  S) \ {curr}  

a. If the |S| = 1 then L(v) = L(v  
L(curr) wher  Sא

) 
e v

b. If the |S| > 1 then for each  v א S 
L(v) = L(v)  concat(L(curr), '.i’) 
where i goes from 1 to |S| 
respectively  
 

3
 
. Repeat step 2 until O =   

3.3 The label reduction algorithm 
Function level: ࣦ  ՜  Գ is defined as the 
number of the dots inside a label. Label l is 
the parent of label m if level(m) = level(l) + 
1 and m and l are the same until the last dot 
in both labels. The label reduction 
algorithm takes labels in the defined order 
and for each label l finds the nodes that 
contain all labels that have l as parent. For 
such nodes those labels are replaced with 
label l. Formally, the algorithm steps can 
be written as follows.    



1. curr_level = א ࣦ ݒ ݈ሺ݈ሻ   - 1 max ݈݁ ݁

2. Let the ࣦᇱ = {l  ࣦ | level(l) = 
curr_level}

 
א

Fo c from ࣦᇱ do 
  

r e l l 
 ᇱ  l i ar m

a h labe
Ԣࣦ  = {m א ࣦᇱ | s p ent of  }  

If ࣦᇱԢ ് 
ࣰᇱ ൌ ሼ   ( א   ࣦᇱᇱሽ 

 then  
ࣰ

For eac ݒ
ݒ  א  | m א L , ሻݒ m 
h א  ࣰᇱ do 

L(ݒሻ ൌ  Lሺݒሻ \ ࣦᇱԢ   ሼ݈ሽ 
 

3. curr_level = level – 1  curr_
if curr_level  0 repeat step 2 

 
After the labels have been reduced, a 
workflow model can be created. For each 
vertex, its labels represent the names of the 
parallel branches in the workflow model. 
Cardinality of particular labels set 
determines how many clones of each 
vertex should be created and added to 
corresponding parallel branches. 
 
 
4. An example 
For the sake of simplicity enumeration 
function will be skipped and courses will 
be named with numbers from 1 to 10. 
Relationships between courses are as 
follows.  
• To take course 1 course 4 must be taken 
• To take course 2 courses 1 and 4 must 

be taken 
• To take course 3 course 5 must be taken 
• To take course 5 courses 1, 2 and 8 must 

be taken 
• To take course 6 courses 5 and 10 must 

be taken 
• To take course 7 courses 4, 5, 8 and 10 

must be taken 
• To take course 8 course 1 must be taken 
• To take course 10 courses 5 and 9 must 

be taken 
 
Matrix shown in Figure 4 is the incidence 
matrix for these relationships. 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 െ1   0   1 െ1 0 0 െ1   0 0

1 0 0 1 െ1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

െ1 െ1 0 0 0 0 െ1 0 0 0

1 1 െ1 0 0 െ1 െ1 1 0 െ1

0 0 0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 1 0 1

1 0 0 0 െ1 0 െ1 0 0 0

0 0 0 0 0 0 0 0 0 െ1

0 0 0 0 1 െ1 െ1 0 1 ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
Figure 4: Incidence matrix before the edge 

reducing algorithm 

 
The edge reduction algorithm removes the 
following edges: edge from 1 to 5 because 
there exits alternative path (1→8→5), edge 
from 4 to 2 (because of 4→1→2), edge 
from 4 to 7 (because of 
4→1→8→5→10→7), edge from 5 to 6 
(because of 5→10→6), edge from 5 to 7 
(because of 5→10→7) and edge from 8 to 
7 (because of 8→5→10→7). The matrix 
from Figure 5 is the new incidence matrix 
after the aforementioned edges have been 
removed. 

ۏ
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Figure 5: Incidence matrix after the edge 
reducing algorithm 

 
 



Figure 6: Labelled graph after vertex labelling 
algorithm (before label reduction algorithm) 

 
Figure 7: Labelled graph after label reduction 

algorithm 
 

Nevertheless, as shown in Figure 1 for 
already simple models it can be impossible 
to directly transform them into a real 
workflow model in an existing workflow 
modelling language. The paper presented 
an algorithm for the integration of partially 
defined workflows, which define a 
prerequisite course model in an LMS or in 
a study curriculum.  

A newly created vertex Start is connected 
with vertices having inbound degree equal 
to zero (vertices 4 and 9) and vertices 
having outbound degree equal to zero (3, 6 
and 7) are connected with the End vertex. 
One of the possible topological sorts is: 
Start, 4, 9, 1, 2, 8, 5, 3, 10, 6, 7, End.  
Figure 6 and Figure 7 shows the labelled 
graph after the labelling algorithms and 
after the reduction of labels. The resulting 
WF model is presented in Figure 8 where 
elements in the given model are named in 
form C_{node number}. In case some 
nodes had to be cloned, inst_{clone 
instance number} is appended to the node 
name in order to have unique node names. 

Although the research is still in progress 
and only simple parallel splits have been 
used so far, the basic idea of presented 
algorithm, in authors’ opinion, makes a 
solid foundation for the future 
developments. The future work will tend to 
broaden supported set of workflow 
patterns and to establish the framework for 
partially defined models. 

 
 

 5. Conclusion 
Dividing the prerequisite course model in 
an LMS or in a study curriculum into the 
set of partially defined workflows where 
each partially defined workflow represents 
parts of a course order helps maintaining 
course order and increase readability.  



 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: WF model for the graph from Figure 7. 



References 
[1] P. Avgeriou, S. Retalis, N. Papaspyrou, 
Modelling learning technology systems as 
business systems. Software and Systems 
Modelling, Volume 2, Number 2, 2003, pp 
120-133 
 
[2] I. Botički, B. Milašinović, Knowledge 
Assessment at the Faculty of Electrical 
Engineering and Computing, In the 
Proceedings of the 30th International 
Conference on Information Technology 
Interfaces, Cavtat, Croatia, 2008, pp 111-
116 
 
[3] M. Cesarini, M. Monga, R. Tedesco, 
Carrying on the e-Learning process with a 
Workflow Management Engine, In the 
Proceedings of the 2004 ACM symposium 
on Applied computing, Nicosia, Cyprus, 
2004, pp 940-945 
 
[4] J. Lin, C. Ho, W. Sadiq, M.E. 
Orlowska, Using Workflow Technology to 
Manage Flexible e-Learning Services, 
Educational Technology & Society 5(4), 
2002, pp 116-123 
 
[5] B. Milašinović, K. Fertalj, I. Nižetić, 
On some Problems while Writing an 
Engine for Flow Control in Workflow 
Management Software, In the Proceedings 
of the 29th International Conference on 
Information Technology Interfaces, Cavtat, 
Croatia, 2007, pp 489-494 

 
[6] B.R. Preiss, Testing for Cycles in a 
Directed Graph, Data Structures and 
Algorithms with Object-Oriented Design 
Patterns in C#, 
http://www.brpreiss.com/books/opus6/html
/page565.html [2009/04/24] (original 
content from Data Structures and 
Algorithms with Object-Oriented Design 
Patterns in C++, John Wiley & Sons, 
1998) 
 
[7] B.R. Preiss, Topological Sort, Data 
Structures and Algorithms with Object-
Oriented Design Patterns in C#,  
http://www.brpreiss.com/books/opus6/html
/page558.html [2009/04/24] (original 
content from Data Structures and 
Algorithms with Object-Oriented Design 
Patterns in C++, John Wiley & Sons, 
1998) 
 
[8] SCORM, Home Page 
http://www.adlnet.org/Technologies/scorm
/default.aspx [2009/04/24] 
 
[9] Standard formats for courseware, 
Croatian Academic and Research Network 
Reference Centre, Evaluation of 
courseware, 
http://wwww.carnet.hr/referalni/obrazovni/
en/oca/standards [2009/04/24] 
 
[10] Windows Workflow Foundation, 
http://msdn.microsoft.com/en-
us/netframework/aa663328.aspx 
[2009/04/24] 
 
 
 
 
 
 


