
Using partially defined workflows for course modelling in a
learning management system

Boris Milašinović

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
boris.milasinovic@fer.hr

Krešimir Fertalj

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
kresimir.fertalj@fer.hr

ABSTRACT
Decoupling the presentation logic, business logic and workflow in a complex system is essential to
keep the system flexible. Modelling workflow in complex systems such as learning management
systems (LMS) could be supported by creating partially defined workflows and producing the
algorithms that will merge them into an integral workflow. This paper presents some issues that arise
in the implementation of a LMS flow control module using partially defined workflows in existing
workflow management software (Windows Workflow Foundation) and proposes an algorithm for its
resolution. The research is still in progress and only the problems with parallel splits and
synchronizations in flow control have been described.

Keywords: Workflow management, partially defined workflows, workflow merge, Windows
Workflow Foundation

1. Introduction
During the development of a learning
management system (LMS) and during its
use there are lots of issues that require
attention. The focus is put mostly on the
graphical design of course materials.
Course authors tend to create graphically
rich and interactive materials and organize
them into appropriate topics and lessons.
In case that something beyond the
presentational tool is being developed, it is
usually the module for knowledge
assessment since a system that has various
assessment types entices a more active
approach to learning [2].
But, after that, one of the important issues
is when, to whom and in which order to
present particular lesson or a course.
Courses are usually organized in a tree
form where the predecessors of a particular
node in the tree are the courses that student
had to pass in order to take the next course.
As an LMS develops through time the flow
logic changes continuously. As noted in
[1] the design of e-learning systems is
largely conducted on an intuitive, ad hoc
basic, resulting in inefficient systems that

defectively support the learning process. In
order to make an e-learning system more
process oriented, to maintain its quality
and manageability, decoupling the
presentation and business logic (what and
how to present, how to manage data) and
workflow (when and in which order to
present) is in authors’ opinion one of the
crucial things that need to be done. One
use of a workflow within an e-learning
system already has already been
demonstrated in [3] and [4] but was limited
mostly to sequence workflows. In contrast
to these practical examples SCORM [8] as
a standard [9] for course material design
includes SCORM Navigation and
Sequencing as a schema definition for
common patterns in LMS flow control, but
leaves the implementation problems to the
system developers.
This paper presents some issues that arise
in the implementation of a LMS flow
control module using existing workflow
management software (Windows
Workflow Foundation [10], in further text
WF) and proposes an algorithm for its
solution.

2. Partially defined workflows
A LMS can be extended with a module for
course workflow management. In this way
course creators could manage course
workflow more easily. In a large LMS, or
during the study curriculum design, it is
reasonable to expect that more than one
person will define courses and manage
relationship between them.
The basic idea behind the partially defined
workflows is that the system should allow
particular course designers to design their
own courses and to connect them with the
prerequisite courses. After all users have
defined their courses and their
prerequisites, the system should merge
them and produce the final workflow. The
situation where courses C and D are
required for course F, courses B and C are
required for course E etc is illustrated in
Figure 1. Course relationships in the
picture are described using directed graphs.

Figure 1: Partially defined relationships between

courses merged into the integral graph model

Transforming the graph representation into
a real workflow model is not a simple task.
Although the graph shown in the Figure 1
is simple, it clearly depicts the problem. It
has one parallel split (A to B, C and D) and
three synchronizations (at vertices E, F and
G). Although it can be supported by the
custom workflow management system (as
shown in [5]) most of the workflow
languages expect that each parallel split is
paired with the corresponding
synchronization. Therefore it is impossible
to support graph from the Figure 1 without
modifications.
For instance, WF, similarly to other
workflow languages, does not allow direct

connections between the elements in two
parallel branches. In this paper the authors
propose cloning common courses and
putting them into more than one parallel
branch. Concrete implementation of the
workflow model will ensure that those
clones are shown as one course during the
runtime. Creation of such workflow is
done using the algorithm described in the
following section.

3. The workflow creation
algorithm
As shown in Figure 2, the algorithm has
several steps. In the beginning partially
defined workflows (graphs) have to be
merged. Courses and their relationships are
shown as a directed graph where an arc
going from node A to node B means that
course A is the predecessor of the course
B.

Figure 2: Phases of the workflow creation

algorithm

The efficient way of doing the initial
merge process is to represent the graph
with an incident matrix. Course names
have to be uniquely translated to the
positive numbers ranging from 1 and the
number of the courses. After that, the
creation of the incidence matrix is quite
easy. Value at row i and column j will be
0, -1, or 1 depending on whether the arc
between vertices i and j does not exist,

goes from i to j, or goes from j to i
respectively.

3.1 The edge reducing algorithm

After the incidence matrix has been created
cycle detection using modification of the
topological sort described in [6] and [7]
must be done. If the directed graph does
not contain cycles, the algorithm can
proceed to the edge reduction process.
Basically, if for some edge ݁ = (A,B) an
alternative path from vertex A to vertex B
exists then the edge ݁ can be removed
because it is obsolete (edge ݁ = (A,B) in
Figure 3 is removed since A is a transitive
predecessor of B via C).

Figure 3: Removing obsolete edge from A to B

After the edge reducing algorithm, two
new vertices have to be added to the graph:
Start and End. Start vertex will be
connected to all vertices having inbound
degree equal to zero (in such way that Start
is theirs predecessor) and all vertices
having outbound degree equal to zero will
be connected with the End vertex (in such
way that End is theirs successor). That
way, it has been assured that graph is
connected which is essential for the
labelling process illustrated in the next
section.

3.2 The vertex labelling algorithm
The vertex labelling algorithm can be
applied to the directed graph G=(ࣰ, E)
with the set of nodes ࣰ, and set of directed
arcs E with the following presumptions:
• Graph G is connected and there are no

cycles in the graph
• There is only one start ver א ࣰ

such that its inbound degree in 0
tex v
(v) =

• There is only one end vertex v א ࣰ such
that its outbound degree out(v)=0

• For each pair of nodes v1 and v2 such
that exist ݁ E and such that ݁ = (v1,v2) א
there is no any other path v1,va,vb,...v2
from v1 to v2.

The labelling function L: ࣰ ࣦ where ࣦ
is set of labels (strings that contain only
numbers and dots) will assign one or more
labels to each vertex in the graph.
Labelling algorithm starts from the graph
end vertex. Labels of vertex that has only
one predecessor are added to the set of the
predecessor’s labels without being
changed. If a vertex has two or more
predecessor then its set of labels is added
(with modifications) to the set of each
predecessor labels. During that process
each label is concatenated with dot and
order number, where the order number
goes from 1 to the number of predecessors.
Formally these steps can be written as
follows.

1. Set the end vertex as the current vertex

curr and label it with ‘1’
(L(curr) = {‘1’}) and set O ={ curr }

2. Set the curr vertex to b the first node
from the set O. Let the

e

S = { v | such that exists ݁ =(v, curr)}.
Set O = (O S) \ {curr}

a. If the |S| = 1 then L(v) = L(v
L(curr) wher Sא

)
e v

b. If the |S| > 1 then for each v א S
L(v) = L(v) concat(L(curr), '.i’)
where i goes from 1 to |S|
respectively

3

. Repeat step 2 until O =

3.3 The label reduction algorithm
Function level: ࣦ ՜ Գ is defined as the
number of the dots inside a label. Label l is
the parent of label m if level(m) = level(l) +
1 and m and l are the same until the last dot
in both labels. The label reduction
algorithm takes labels in the defined order
and for each label l finds the nodes that
contain all labels that have l as parent. For
such nodes those labels are replaced with
label l. Formally, the algorithm steps can
be written as follows.

1. curr_level = א ࣦ ݒ ݈ሺ݈ሻ - 1 max ݈݁ ݁

2. Let the ࣦᇱ = {l ࣦ | level(l) =
curr_level}

א

Fo c from ࣦᇱ do

r e l l
 ᇱ l i ar m

a h labe
Ԣࣦ = {m א ࣦᇱ | s p ent of }

If ࣦᇱԢ ്
ࣰᇱ ൌ ሼ (א ࣦᇱᇱሽ

 then
ࣰ

For eac ݒ
ݒ א | m א L , ሻݒ m
h א ࣰᇱ do

L(ݒሻ ൌ Lሺݒሻ \ ࣦᇱԢ ሼ݈ሽ

3. curr_level = level – 1 curr_
if curr_level 0 repeat step 2

After the labels have been reduced, a
workflow model can be created. For each
vertex, its labels represent the names of the
parallel branches in the workflow model.
Cardinality of particular labels set
determines how many clones of each
vertex should be created and added to
corresponding parallel branches.

4. An example
For the sake of simplicity enumeration
function will be skipped and courses will
be named with numbers from 1 to 10.
Relationships between courses are as
follows.
• To take course 1 course 4 must be taken
• To take course 2 courses 1 and 4 must

be taken
• To take course 3 course 5 must be taken
• To take course 5 courses 1, 2 and 8 must

be taken
• To take course 6 courses 5 and 10 must

be taken
• To take course 7 courses 4, 5, 8 and 10

must be taken
• To take course 8 course 1 must be taken
• To take course 10 courses 5 and 9 must

be taken

Matrix shown in Figure 4 is the incidence
matrix for these relationships.

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 െ1 0 1 െ1 0 0 െ1 0 0

1 0 0 1 െ1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

െ1 െ1 0 0 0 0 െ1 0 0 0

1 1 െ1 0 0 െ1 െ1 1 0 െ1

0 0 0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 1 0 1

1 0 0 0 െ1 0 െ1 0 0 0

0 0 0 0 0 0 0 0 0 െ1

0 0 0 0 1 െ1 െ1 0 1 ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Figure 4: Incidence matrix before the edge

reducing algorithm

The edge reduction algorithm removes the
following edges: edge from 1 to 5 because
there exits alternative path (1→8→5), edge
from 4 to 2 (because of 4→1→2), edge
from 4 to 7 (because of
4→1→8→5→10→7), edge from 5 to 6
(because of 5→10→6), edge from 5 to 7
(because of 5→10→7) and edge from 8 to
7 (because of 8→5→10→7). The matrix
from Figure 5 is the new incidence matrix
after the aforementioned edges have been
removed.

ۏ

ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 െ1 0 1 0 0 0 െ1 0 0

1 0 0 0 െ1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

െ1 0 0 0 0 0 0 0 0 0

0 1 െ1 0 0 0 0 1 0 െ1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

1 0 0 0 െ1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 െ1

0 0 0 0 1 െ1 െ1 0 1 ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Figure 5: Incidence matrix after the edge
reducing algorithm

Figure 6: Labelled graph after vertex labelling
algorithm (before label reduction algorithm)

Figure 7: Labelled graph after label reduction

algorithm

Nevertheless, as shown in Figure 1 for
already simple models it can be impossible
to directly transform them into a real
workflow model in an existing workflow
modelling language. The paper presented
an algorithm for the integration of partially
defined workflows, which define a
prerequisite course model in an LMS or in
a study curriculum.

A newly created vertex Start is connected
with vertices having inbound degree equal
to zero (vertices 4 and 9) and vertices
having outbound degree equal to zero (3, 6
and 7) are connected with the End vertex.
One of the possible topological sorts is:
Start, 4, 9, 1, 2, 8, 5, 3, 10, 6, 7, End.
Figure 6 and Figure 7 shows the labelled
graph after the labelling algorithms and
after the reduction of labels. The resulting
WF model is presented in Figure 8 where
elements in the given model are named in
form C_{node number}. In case some
nodes had to be cloned, inst_{clone
instance number} is appended to the node
name in order to have unique node names.

Although the research is still in progress
and only simple parallel splits have been
used so far, the basic idea of presented
algorithm, in authors’ opinion, makes a
solid foundation for the future
developments. The future work will tend to
broaden supported set of workflow
patterns and to establish the framework for
partially defined models.

 5. Conclusion
Dividing the prerequisite course model in
an LMS or in a study curriculum into the
set of partially defined workflows where
each partially defined workflow represents
parts of a course order helps maintaining
course order and increase readability.

Figure 8: WF model for the graph from Figure 7.

References
[1] P. Avgeriou, S. Retalis, N. Papaspyrou,
Modelling learning technology systems as
business systems. Software and Systems
Modelling, Volume 2, Number 2, 2003, pp
120-133

[2] I. Botički, B. Milašinović, Knowledge
Assessment at the Faculty of Electrical
Engineering and Computing, In the
Proceedings of the 30th International
Conference on Information Technology
Interfaces, Cavtat, Croatia, 2008, pp 111-
116

[3] M. Cesarini, M. Monga, R. Tedesco,
Carrying on the e-Learning process with a
Workflow Management Engine, In the
Proceedings of the 2004 ACM symposium
on Applied computing, Nicosia, Cyprus,
2004, pp 940-945

[4] J. Lin, C. Ho, W. Sadiq, M.E.
Orlowska, Using Workflow Technology to
Manage Flexible e-Learning Services,
Educational Technology & Society 5(4),
2002, pp 116-123

[5] B. Milašinović, K. Fertalj, I. Nižetić,
On some Problems while Writing an
Engine for Flow Control in Workflow
Management Software, In the Proceedings
of the 29th International Conference on
Information Technology Interfaces, Cavtat,
Croatia, 2007, pp 489-494

[6] B.R. Preiss, Testing for Cycles in a
Directed Graph, Data Structures and
Algorithms with Object-Oriented Design
Patterns in C#,
http://www.brpreiss.com/books/opus6/html
/page565.html [2009/04/24] (original
content from Data Structures and
Algorithms with Object-Oriented Design
Patterns in C++, John Wiley & Sons,
1998)

[7] B.R. Preiss, Topological Sort, Data
Structures and Algorithms with Object-
Oriented Design Patterns in C#,
http://www.brpreiss.com/books/opus6/html
/page558.html [2009/04/24] (original
content from Data Structures and
Algorithms with Object-Oriented Design
Patterns in C++, John Wiley & Sons,
1998)

[8] SCORM, Home Page
http://www.adlnet.org/Technologies/scorm
/default.aspx [2009/04/24]

[9] Standard formats for courseware,
Croatian Academic and Research Network
Reference Centre, Evaluation of
courseware,
http://wwww.carnet.hr/referalni/obrazovni/
en/oca/standards [2009/04/24]

[10] Windows Workflow Foundation,
http://msdn.microsoft.com/en-
us/netframework/aa663328.aspx
[2009/04/24]

