
Evaluating Agent-Oriented Software Engineering
Methodologies

Abdulsalam Alarabeyyat
Information Technology Department (IT)

Faculty of Prince Abdullah Bin Ghazi of Science and Information Technology
Al-Balqa Applied University - Jordan

Email: aw arabiat@hotmail.com

Abstract—This paper contributes to the evolution of Agent
Oriented Software Engineering Approach (AOSE) by proposing
a new framework called Multilevel Features Analysis Framework
(MFAF) for software evaluation in general and Role-Based AOSE
methodologies evaluation in particular. MFAF is a general-
purpose framework that can be adopted and adapted to evaluate
software-related products (e.g., programming languages, software
engineering methodologies, software development tools, Interac-
tion communications protocols, etc.). This evaluation framework
is applied to a number of role-based AOSE methodologies. In
this paper we also document the results of applying MFAF on
the CASSIOPEIA method.

Keywords- AOSE Methodologies Evaluation , Comparing
Agent Development Methodologies, AOSE.

I. INTRODUCTION

Agent-based computing technology has become one of the
most important emerging technologies of the decade [15].
The concept of an agent can be traced back to the early
days of research into Distributed AI in the 1970s - indeed,
to Carl Hewitts concurrent Actor model [6] and it has been
accepted that it came originally from the Artificial Intelligence
Community (AI), where an Agent has been defined as an
integrated system performing some tasks on behalf of a user.
Agents are highly situated, autonomous, interactive software
entities that have been introduced as the next significant
breakthrough in software development, the new revolution in
software [4]. Software agents (often simply termed agents) are
critically needed to meet the dynamic changes in information
technology, which inhabits vast amounts of discrete informa-
tion that require complex processing under risky and uncertain
conditions in order to extract knowledge and make decisions
on behalf of their users. As a consequence, Agent-Oriented
Software Engineering (AOSE) methodologies have been de-
veloped in order to assist in modeling and developing agent-
based systems and applications. Many diverse Agent Oriented
Software Engineering (AOSE) approaches and methodologies
have been proposed. Each of the methodologies has different
strengths and weaknesses, and different specialized features to
support different aspects of their intended application domains.
The usage of this technology in industry has demonstrated that
agent oriented techniques lead to improve in distributed com-
plex system developments. However, the benefits promised
by agents technology cannot be fully achieved yet because

although many AOSE methodologies have been developed,
there is no universally accepted definition of what exactly
determines agent systems requirement [16]. Therefore, there is
no standardized development method to build agent oriented
applications. As a result, it is clear that appropriate Evalu-
ation Framework is needed to evaluate and standardize the
common elements of the existing methodologies. As a step
towards evaluating the current agent-based methodologies, we
propose a new framework called Multilevel Features Analysis
Framework (MFAF) for software evaluation in general and
Role-Based AOSE methodologies evaluation in particular.

The paper is organized as follows. The following section
presents an overview of the current evaluation frameworks.
Section 3 and 4 present the Multilevel Features Analysis
Framework. Section 5 presents the main features of MFAF.
Finally, the paper ends with the conclusions and pointers to
future work.

II. RELATED WORK

Q. Tran, G. Low, and M. Williams [14] present a pre-
liminary comparative feature analysis framework, which they
used to compare ten AOSE methodologies. They actually
considered the three major components of a system devel-
opment methodology (process, models and techniques) as
defined by one of the most leading public-domain and process-
focused full lifecycle methodologies (Object-oriented Process,
Environment and Notation (OPEN)). OPEN was mainly de-
signed for the development of software intensive applications,
especially object oriented and component-based developments
[5].

O. Shehory and A. Sturm [11] carried out an experimental
study to compare and evaluate the modeling technique existing
in three agent-based methodologies: AOM , ADEPT and DE-
SIRE . Their evaluation criteria assess both generic software
engineering features (such as, ease of use and understanding,
expressiveness, modularity, analyzeability, complexity man-
agement, testability, refinability and open system architecture)
and specific agent-oriented features of an AOSE methodology
(such as autonomy, complexity and communication). This
framework offers a well-defined, structured set of features that
an agent-oriented methodology should include. They examined
the evaluation criteria via applying a case study that utilizes



a single-agent, auction agent, which participates and bids in
web-based auctions on behalf of its user to perform a number
of tasks to purchase specific items based on some given
parameters.

Silva et al. [13] proposed a Non-Functional Requirements
(NFR) framework to describe the internal properties of agent-
oriented systems and to evaluate the agent-based method-
ologies based on these properties. The NFR framework is
derived from studying and identifying the key properties of
agents, such as autonomy, deliberativity, reactivity, sociability,
organization and negotiation. Such properties characterize the
agent-oriented paradigm, which provides a higher level of
abstraction to handle the major features and behaviors of
complex software systems.

Dam and Winikoff [2] proposed an attribute-based frame-
work to evaluate a number of agent-based methodologies(
MESSAGE, Gaia, MaSE, Tropos and Prometheus). How-
ever, they selected only the most prominent three AOSE
methodologies to carry out their task, MaSE, Prometheus and
Tropos. These methodologies have been chosen since they
were presented in the literature with sufficient details, having
significant impact on the agent community, and have been
developed and used over an extended period of time. After
that, the comparison has been made based on four major
criteria: concepts, modeling language, process and pragmatics.
In addition, some business-related and software engineering
issues have been considered and added to the evaluation
criteria. In fact, the evaluation framework of Dam et al.
was mainly based on the properties derived from a number
of surveys on comparing Object Oriented (OO) and AOSE
methodologies.

O’Malley and DeLoach’s [8] framework evaluates both the
project requirements and management features of an AOSE
methodology. They provide some technique to assist software
engineers with the selection of a software engineering method-
ology based on the criteria provided by their framework.

Sabas et al. [10] presented a framework called MUCCMAS
(MUltidimensional framework of Criteria for the Comparison
of MAS methodologies) for the comparative analysis of AOSE
methodologies. The MUCCMAS framework is defined in
terms of six dimensions:
• The Methodology Dimension involves a number of eval-

uating criteria, including models, process phases, devel-
opment approach, user implication and the availability of
the tools that support the methodology.

• The Representation Dimension describes the formalisms
and principles used during the methodology’s modeling
phase, such as abstractions levels.

• The Agent Dimension characterizes the agents’ main
properties that determine their social and cooperative
behaviors.

• The Organization Dimension involves the structure de-
scribing how individual agents in MAS are in relation
with one another and how they interact to achieve com-
mon goals.

• The Cooperation Dimension involves a number of evalu-

ating criteria that determine the influence of the agents’
social behavior on the overall system performance.

• The Technology Dimension describes the characteristics
of the potential MAS on which the methodology can be
applied, such as application type.

A. General Limitation & Drawbacks of the Current AOSE and
OO Evaluation frameworks

Although Agent-Oriented Programming was proposed as
early as in 1993 [12], agent abstraction is not clear even
today. Part of the reason is attributed to the fact that an agent
is far more complicated than an object, which forms the center
of object-oriented programming (OOP). So, it is important
to recognize and understand the relationship between agent’s
technology and Object Oriented technology because of the
importance and motivation of both technologies in modeling
and developing software systems. In fact, there is a real need
for both approaches to become integrated, so that agents and
objects interact with each other [9]. The general limitations
of the current AOSE and OO Evaluation frameworks are as
follows:
• Most of the current evaluation frameworks are limited to

a specific number of features.
• Most of the evaluation frameworks provide partial feed-

back when selecting a limited number of evaluation crite-
ria to compare a small number of AOSE methodologies.

• The current evaluation frameworks lack the practical
extent to which many other aspects and features must
be considered and addressed, such as the software engi-
neering aspects that describe and assess the development
process of the individual agents and their environment,
features that describe and examine the possibility of
future expansions and upgrade-ability, features that assess
field history, domain applicability and maturity of the
evaluated AOSE methodology.

III. MULTILEVEL FEATURES ANALYSIS
FRAMEWORK(MFAF)

In this section we present a new framework called Multilevel
Features Analysis Framework (MFAF) for software evaluation
in general and Role-based AOSE methodologies evaluation in
particular. MFAF is a general-purpose framework that can be
adopted and adapted to evaluate software-related products (e.g.
programming languages, software engineering methodologies,
software development tools, Interaction communications pro-
tocols, Modeling notations, etc.). The proposed evaluation
framework addresses some of the problems and disadvantages
of the previous approaches that were discussed in the related
work section.

A. Fundamental components of MFAF

The MFAF consists of three basic components levels ,
attributes and Metrics. The framework contains a number of
levels, each of which represents one of the major criteria that
will be considered when evaluating software. Attributes are the
different features pertaining to each criterion to best describe



it in terms of definite questions. Metrics are the values that are
given to measure the attributes. When applying MFAF, the data
upon which we carry out our evaluation are collected through
the available documents about each methodology. To enable
ranking the properties examined in the evaluation process, we
use the same scale in [11] as follows:
• “1” Indicates that the methodology does not address the

property.
• “2” Indicates that the methodology refers to the property

but no details are provided.
• “3” Indicates that the methodology addresses the property

to a limited extent. That is, many issues that are related
to the specific property are not addressed.

• “4” Indicates that the methodology addresses the prop-
erty, yet some major issues are lacking.

• “5” Indicates that the methodology addresses the prop-
erty, however, it lacks one or two major issues related to
the specific property.

• “6” Indicates that the methodology addresses the property
with minor deficiencies.

• “7” Indicates that the methodology fully addresses the
property.

B. Identifying levels

In this step, we will implement our Framework (MFAF) by
first identifying the appropriate levels that describe the major
evaluation criteria, as well as their descended attributes. For
better explanation, we will utilize a set of multi-level diagrams
to model this framework. In this sense, we studied the cur-
rent role-based methodologies comprehensively to identify the
most important and common dimensional characteristics that
will be used as evaluation criteria, and we came up with eight
major criteria or measures that will be expressed as levels. As
a consequence of this step, we came up with the following
eight levels:
• L1: Role-related features
• L2: Agency-related features
• L3: Modeling-related features
• L4: Interaction-related features
• L5: Process-related features
• L6: Upgrade-related features
• L7: Application-related features
• L8: Supporting features

IV. EVALUATING CASSIOPEIA

In order to demonstrate the MFAF framework in the
following sections we will undertake the evaluation of the
CASSIOPEIA methodology. The CASSIOPEIA method is a
way to address a type of problem-solving where collective
behaviors are put into operation through a set of agents. It
is a methodological (bottom-up) approach that distinguishes
three main steps for designing a MAS, elementary, relational,
and organizational. It is not targeted at a specific type of
application nor does it require a given architecture of agents
[1], [3].

• The elemental agent behaviors are listed using functional
or object oriented techniques. The goal of this step is
to identify all the individual roles that are required to
achieve the collective task, by grouping together the
elementary behavior needed to fulfil the task, and thus
determines the individual roles that the agents can play.
Agents classes are subsequently defined as sets of the
identified roles. Each agent may assign a particular role
to act as its ”active” role at a given time while other roles
are ”idle”.

• Then the relational behaviors are analyzed, that is, the
dependencies between the agents classes are analyzed
by using a coupling graph. This step also consists in
analyzing the structure of the organization based on the
dependencies between the individual roles being consid-
ered.

• Finally, the dynamics of the organization structure are
described by analyzing the coupling graph. It consists in
specifying the organizational roles that will enable the
agents to manage the formation and dissolution of the
defined groups.

A. Level-1: Role-related features
This level contains attributes that address features involving

the internal properties and basic architecture of Roles. The
hierarchical structure of this level is shown in Figure 1

L1 Role


1.2.1 Explicit Specification

of roles


1.1.2 Distributive


1.1.1 Organization


1.3 Advanced Properties


1.2 Basic Properties


1.1 Architectural properties


1.3.1 Role’s Qualifications


1.2.4 Cardinality of roles


1.2.3 Dynamics of roles


1.2.2 Role’s Assignment


1.3.3 Role’s Conflict


1.3.2 Role’s Relations


Fig. 1. Hierarchical structure of level 1

1) Architecture properties
• Role Organization: Jennings [7] defined organi-

zation as the process of identifying and managing
the inter-relationships between the various problem-
solving components. CASSIOPEIA supports role
organization implicitly through the ”Definition of
Organization Roles” step, which addresses the dy-
namics of MAS organization by assigning the or-
ganizational roles of ”group initiator” and ”group
participant” to different agents. The ranking grade
is 5.

• Role Distributivity: Roles in dynamic and open en-
vironments could be located in different platforms.



CASSIOPEIA does not support distributive role
modeling since they don’t offer open system support
and they intend to support local and closed MASs.
The ranking grade is 1.

2) Basic Properties
• Explicit Specification of roles: CASSIOPEIA sup-

ports ”The Explicit Specification of roles” via the
modeling of agents as entities with purpose (repre-
sented as roles, goals, tasks and capabilities). The
ranking grade is 4.

• Roles Assignment: CASSIOPEIA supports role as-
signment but it does’t dedicate a special model to
represent this process. it does not provide a tech-
nique to group roles to identify agent classes and it
rely on the developer’s intuition and experience.

• Dynamic of roles: It is outside the scope of CAS-
SIOPEIA. The ranking grade is 1.

• Cardinality of roles: CASSIOPEIA supports ”Car-
dinality of roles” via the specification of roles in the
interaction model provided at the design phase. The
ranking grade is 7.

3) Advanced Properties
• Role Qualifications: CASSIOPEIA provides the ba-

sic element to model roles during the development
phases. It does not model pre/post conditions of
roles in the analysis phase. The ranking grade is
5.

• Role Relationships: CASSIOPEIA supports this at-
tribute via the modeling of roles as the basic element
to form the organization or the agent architecture in
the target system. The ranking grade is 7.

• Roles Conflict: CASSIOPEIA does not provide any
technique to prevent role-tasks conflict. The ranking
grade is 1.

• Roles States: CASSIOPEIA does not provide any
method to model roles states such as active roles
,occupied roles and suspended roles. The ranking
grade is 1.

• Role Operations: CASSIOPEIA does not provide
any method to model roles operations such as clas-
sify, declassify, activate, reclassify and shift opera-
tions. The ranking grade is 1.

B. Level-2: Agency-related features

This level contains attributes that address features involving
the internal properties and basic architecture of agents. A
concept is an abstraction or a notation inferred or derived from
specific instances, within a process. A property is a special
capability or characteristic. With respect to a methodology,
the main properties of agency will be considered: autonomy,
reactiveness, proactiveness and sociability. The following con-
cepts were evaluated: agent, belief, desire, intention, message,
norm, organization, protocol, role, service, society and task.
The evaluation will check whether the methodology under
study defines the concepts and properties above according with

their theoretical meaning, and if not, on what extent these
items are fulfilled.

1) Architecture properties
• Agents Organization: CASSIOPEIA were found to

support Agent organization through the support of
role organization as the building block of the agent
organization of the target system via the specifica-
tion of explicit Architectural /Organizational/Agent
models. The ranking grade is 7.

• Agents Mobility: The distribution and Mobility of
agents is not supported by CASSIOPEIA. The rank-
ing grade is 1.

2) Basic Properties
• Autonomy: CASSIOPEIA were found to support

this attribute via the modeling of agent classes as en-
tities with purpose (represented as roles, goals/tasks
and capabilities) or entities with internal control
(represented as knowledge/belief, plans and problem
solving methods). The ranking grade is 7.

• Reactivity: In CASSIOPEIA, the reactiveness is
expressed by the agent’s actions in responding to
the environments events. The ranking grade is 5.

• Reasoning: Agent reasoning cannot be realized in
CASSIOPEIA, since CASSIOPEIA does not ad-
dress how agents’ knowledge (such as agents’ plans
and actions) relates to agents’ ontology knowledge
model. The ranking grade is 1.

• Life Span: CASSIOPEIA does not model the agents’
life span and it does not specify the active agents
nor the active roles during the interaction process.
The ranking grade is 1.

• Cooperative Behavior: CASSIOPEIA were found to
support this feature via the specification of agent
classes interaction in the interaction model. The
ranking grade is 7.

3) Advanced Properties
• knowledge: CASSIOPEIA were found to support

”Agent’s Knowledge” via the specification of agent
beliefs/knowledge, Agents plans, goal achievement
methods and agent behavioral knowledge. The rank-
ing grade is 7.

• Goals/Tasks. CASSIOPEIA were found to support
this feature via the specification of role tasks at the
analysis phase. The ranking grade is 7.

• Actions: CASSIOPEIA were found to support this
feature via the specification of agent classes actions
at the design phase. The ranking grade is 7.

C. Level-3: Modeling-related features

This level includes attributes that address and examine
specific features to describe the most common and important
aspects in modeling agents. A modeling technique is a set of
models that depict a system at different levels of abstraction
and different system’s aspects. Regarding with notations and
models, evaluation will focus on the following aspects:



• Notation: CASSIOPEIA has its own notation to model
the target system and it provides a clear definition of the
semantics and syntax of the notation.

• Ease of Use and Understanding: CASSIOPEIA’s notation
is not a standard notation but it is not hard to understand.
The ranking grade is 6.

• Expressiveness/Completeness: CASSIOPEIA’s notation is
not expressive and can’t handle a large variety of agent
systems due to its domain applicability. The ranking grade
is 1.

• Level of Abstraction: CASSIOPEIA doesn’t offer a level
of abstraction. It is considered as step-by-step method-
ology. These types of methodologies merely present
guidelines on what to be modeled and not how these can
be represented. The ranking grade is 1.

• Derivation and Reusability: CASSIOPEIA has the ability
to transfer models into other models and to make reuse
of the created models. The ranking grade is 7.

• Complexity Management: the modeling notation of CAS-
SIOPEIA contains a techniques that facilitate the decom-
position, assignment and management of tasks among
agent classes. The ranking grade is 5.

D. Level-4: role interaction-related features

This level addresses features that are related to different
possible interactions and interfacing of role classes.

1) Local Interaction
• Cooperation, Coordination, Competition and Nego-

tiation: CASSIOPEIA supports these features via
the modeling of the interacted agent classes in the
interaction model not on the role level. The ranking
grade is 5.

• Multiple Role Interaction: CASSIOPEIA doesn’t
model Multiple Role Interaction since it model only
the interacted agent classes. The ranking grade is 1.

2) External Interaction
• Interaction with the external environment, Sub sys-

tem Interaction and User Interaction: CASSIOPEIA
support these features but at the agents level not at
roles level. The ranking grade is 5.

3) Protocol-related features
CASSIOPEIA does not model Message Multiplicity,
End/Start of Role, Role Status, Role Instances, Roles
Constraints or Input/Output of roles in its interaction
model. The ranking grade is 1.

E. Level-5: Process-related features

This Level encompasses attributes that address and examine
a number of important issues that identify the development
process of agents and MAS.
• Interaction with the external environment: CASSIOPEIA

doesn’t Support this attributes since it does not contain
an ontology model that facilitate the process of external
interactions with agent and non-agent entities.

• Support for verification and validation: CASSIOPEIA
doesn’t provide any method for verification and valida-
tion. The ranking grade is 1.

• Specification of steps for the development process: CAS-
SIOPEIA provides a full Specification of steps for the
development process. The ranking grade is 7.

• Specification of model types and/or notational compo-
nents: CASSIOPEIA were found to support this feature
via the specification of the model definition produced at
the analysis and design phases. The ranking grade is 7.

• Definition of inputs and outputs for steps: CASSIOPEIA
provides examples to most of the development steps. The
ranking grade is 6.

• Ease of understanding of techniques and Usability of
techniques: CASSIOPEIA does not use any kind of
formal methods to present role and agents task. So it
considered as it is easy to follow since the designer does
not need to know any formal languages. The ranking
grade is 7.

• Usability of the development process: CASSIOPEIA’s
support for reusability is considered to be limited support,
because it can’t show how heterogeneous components
(Agent and Non-Agent) can be reused. The ranking grade
is 5.

• Support for refinability: CASSIOPEIA supports for refin-
ability via the specification of the notation produced to
represent its model types. The ranking grade is 7.

F. Level-6: Upgrading-related features

This level includes attributes that examine some features
involving upgrading software agents in order to meet the future
expansion needed for potential MAS.
• Modifiability: CASSIOPEIA has a limited support for this

feature due to its limited support for ontology model and
Ontology-Agent Role. The ranking grade is 5.

• Scalability: CASSIOPEIA does’t support scalability due
to its lake in supporting level of abstraction. This method-
ology merely present guidelines on what to be modeled
and not how these can be represented. But it does’t
present any method for subsystems development. The
ranking grade is 1.

• Dynamic System Support: CASSIOPEIA has the ability to
support dynamic systems since it defines agent’s behavior
in dynamically manner in forming, joining and dissolving
of agent groups. The ranking grade is 5.

G. Level-7: Application-related features

This level includes attributes that address and assess some
aspects involving the methodology’s applicability in practice,
and examine some factors that affect the decision of recom-
mending and adopting a role-based AOSE methodology.
• Applicability: CASSIOPEIA is a general-purpose

methodology for developing and constructing MAS. The
ranking grade is 5.

• Maturity: CASSIOPEIA lakes an implementation phase
and early requirement phase. the methodology is merely



developed for the analysis and design of MAS. The
ranking grade is 5.

• Field history: CASSIOPEIA is illustrated by the design
of a RoboCup soccer team. The ranking grade is 7.

H. Level-8: Supporting features

This level encompasses three attributes (ontology, security,
and collaborative services) that describe additional features for
an AOSE methodology.
• Ontology-support: In CASSIOPEIA, There is a need for

an ontology model. The ranking grade is 1.
• Security-aspects: In CASSIOPEIA, there is no security

model or even a method and they leave the security
aspects for the developer at the implementation phase.
The ranking grade is 1.

• Collaborative Services: CASSIOPEIA supports the well
known FIPA architecture. It can be used to model Fipa-
BASED Systems. The ranking grade is 7.

V. MAIN FEATURES AND ADVANTAGES OF MFAF

The Main Features and Advantages of MFAF over the
existing evaluation frameworks presented in the related work
section are as follow:
• Compatibility: MFAF completes, integrates and over-

comes drawbacks existing in other frameworks. This is
because it has been built upon recognizing the most
important features of other frameworks, completes any
obvious deficiencies, and adopts new features that gen-
eralize and extend its usability. As a consequence, this
framework is also capable to adopt similar evaluation
studies to many cases presented in specialized literature,
such as [14], [13], [11], [10], and provide relief for such
drawbacks discussed in previous sections.

• Structure: the framework can be represented by an effec-
tive hierarchical structure, which derives its power from
the principle of ’divide and conquer’ that contributes to
successfully analyzing a complete taxonomy of evalua-
tion attributes. Moreover, the structure of MFAF allows
for computational processing by converting it to any
formats, such as, tree structures or Graph structure or
Analytical Hierarchy Process structures.

• Scalability: the framework is flexible to scaling up or
down in order to expand or reduce its levels and/or
attributes.

VI. CONCLUSION

This paper has proposed a new framework called Multilevel
Features Analysis Framework (MFAF) for software evaluation
in general and Role-based AOSE methodologies evaluation
in particular. MFAF is a general-purpose framework that can
be adopted and adapted to evaluate software-related products
(e.g. programming languages, software engineering method-
ologies, software development tools, Interaction communi-
cations protocols, Modeling notations, etc.). This paper has
also documented the process of evaluating CASSIOPEIA , by
applying the Multilevel Feature Analysis Framework(MFAF).

The results showed that the methodology is lacking in one or
more of the following areas of MAS development:
• The CASSIOPEIA’s elementary step only specifies roles

for each agent, without supporting the agent internal de-
sign. The methodology also does not provide any formal
set of model types, except for the Coupling Graph which
captures agents roles and agents relationships. Moreover,
CASSIOPEIA doesn’t provide a graphical or formal
notation to model MAS within a changing environment.

• There is no systematic method for identifying Role in
agent-oriented methodologies.

• Most of the role based methodologies for MAS develop-
ment doesn’t support the requirement elicitation process.

• In the design phase for role based methodologies there is
no defined method for allocates roles to agents, especially
when there is more than one role to allocate to the same
agents.

• There is no method to identify agent type and how to use
the identified roles to determine the agent-type.

REFERENCES

[1] Aose methodologies. Available at http://www.science.unitn.it/ re-
cla/aose/ (accessed March 06, 2008).

[2] K. Dam and M. Winikoff. Comparing agent-oriented methodologies. In
Proceedingsof the 5th Int’l Bi-Conference Workshop on AgentOriented
Information Systems (AOIS), Melbourne, Australia, 2003., 2003.

[3] A. Drogoul and J. Zucker. Methodological issues for designing multi-
agent systems with machine learning techniques: Capitalizing experi-
ences from the robocup challenge, 1998.

[4] C. Guilfoyle and E. Warner. Intelligent agents: The new revolution in
software. Technical report, OVUM, 1994.

[5] Henderson-Sellers, A. Simons, and H. Younessi. The OPEN toolbox
of techniques. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1998.

[6] C. Hewitt. Viewing control structures as patterns of passing messages.
Artif. Intell., 8(3):323–364, 1977.

[7] N. R. Jennings. On agent-based software engineering. Artificial
Intelligence, 177(2):277–296, 2000.

[8] S. A. O’Malley and S. A. DeLoach. Determining when to use an agent-
oriented software engineering paradigm.

[9] S. Poslad, P. Buckle, and R. Hadingham. Fipa-os agent platform: Open
source for open standards. In the Practical Application of Intelligent
Agents and Multi- Agent Systems (PAAM2000), pages 355–368, 2000.

[10] A. Sabas, M. Badri, and S. Delisle. A multidimentional framework
for the evaluation of multiagent system methodologies. In the 6 World
Multiconference on Systemics, Cybernetics and Informatics (SCI-2002),
pages 211–216, 2002.

[11] O. Shehory and A. Sturm. Evaluation of modeling techniques for agent-
based systems. In AGENTS ’01: Proceedings of the fifth international
conference on Autonomous agents, pages 624–631, New York, NY, USA,
2001. ACM.

[12] Y. Shoham. Agent-oriented programming, 1993.
[13] C. Silva, P. Tedesco, J. Castro, and R. Pinto. Comparing agent-oriented

methodologies using NFR approach, 2004.
[14] Q.-N. N. Tran, G. Low, and M.-A. Williams. A preliminary comparative

feature analysis of multi-agent systems development methodologies. In
AOIS, Lecture Notes in Computer Science, pages 157–168. Springer,
2004.

[15] M. Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering:
The State of the Art. In P. Ciancarini and M. Wooldridge, editors, First
Int. Workshop on Agent-Oriented Software Engineering, volume 1957,
pages 1–28. Springer-Verlag, Berlin, 2000.

[16] F. Zambonelli, N. Jennings, and M. Wooldridge. Organisational abstrac-
tions for the analysis and design of multi-agent systems, 2000.


