
From UML Sequence Diagrams to ECATNets: a Graph
Transformation based Approach for modelling and analysis

Allaoua Chaoui

Department of Computer Science, University Mentouri Constantine, Algeria

 a_chaoui2001@yahoo.com

Raida ElMansouri
Department of Computer Science, University Mentouri Constantine, Algeria

raidaelmansouri@yahoo.fr

Wafa Saadi
Department of Computer Science, University of Biskra, Algeria

saadiwafa07@yahoo.fr

Elhillali Kerkouche
Department of Computer Science, University of Oum Elbouaghi, Algeria

 elhillalik@yahoo.fr

ABSTRACT

It is now recognized that UML is considered nowadays as the standardized language for object oriented
modeling and analysis. However, UML cannot be used for automatic analysis and simulation. So, UML
needs a well-defined semantic base for its notation. Petri nets are a formal and graphical language
appropriate for systems modelling and analysis. ECATNets are a category of Petri nets based on a safe
combination of algebraic abstract types and high level Petri Nets. ECATNets’ semantic is defined in terms
of rewriting logic allowing us to built models by formal reasoning. Furthermore, the rewriting logic
language Maude gives to ECATNets dynamic aspects which are not measurable without simulation. In
this paper we propose an approach to generate ECATNets models from UML sequence diagrams. Then
the resulting models are mapped to Maude language for analysis purposes. The approach is illustrated by
two examples.

Key Words: UML, Graph transformation, graph grammars, colored Petri nets

1. Introduction
The Unified Modeling Language (UML) [24] is
widely accepted by the Software Engineering
community as a standard software modelling
language. It consists of many diagrams. The most
important ones are use cases diagrams, class

diagrams, sequence diagrams, collaboration
diagrams, state chart diagrams, etc… Some diagrams
are used to model the structure of a system (use cases
diagrams, class diagrams, etc…) while others are
used to model the behaviour of a system (state charts
diagrams, collaboration diagrams, etc…). UML
Sequence diagrams model the interaction between a

set of objects through the messages (or events) that
may be dispatched among them.
Petri nets [20] were introduced firs by Carl Adam
Petri in the early 1960s as a mathematical tool for
modeling distributed systems supporting the notions
of concurrency, non determinism, communication
and synchronization. There are many varieties of
Petri nets from simple net [20] to more complex nets
(high level Petri Nets) such as colored nets [13],
ECATNets [3], Predicate/Transition nets [12], object
Petri nets [16], G-Nets [10], etc ...

ECATNets are an algebraic Petri net category based
on a safe combination of algebraic abstract types and
high level Petri Nets [3]. In addition to modelling,
ECATNets allow the verification and simulation of
concurrent systems [4, 18]. The most distinctive
feature of ECATNets is that their semantic are
defined in terms of rewriting logic [19], allowing us
to built models by formal reasoning. The rewriting
logic Maude [19] is considered as one of very
powerful languages in the specification and
verification of concurrent systems. Rewriting logic
gives to ECATNets a simple, more intuitive and
practical textual version to analyse, without loosing
formal semantic (mathematical rigor, formal
reasoning). Furthermore, high level abstraction of this
logic makes ECATNets, in spite of their complexity,
to be dealt as simple as possible. The power of
Maude in terms of specification, programming,
simulation and verification in plus of the ECATNets’
integration in Maude, implies that there is no need to
translate ECATNets in several languages and thus
any risks about their semantic loss [4].

In this paper, we propose an approach to translate
UML sequence diagrams models to their equivalent
ECATNets models. The resulting models can be
subjected to various Petri net analysis techniques.
This helps in the validation of UML behavioral
specifications. Our approach is based on graph
transformation since UML sequence diagrams and
ECATNets models are graphs.
The rest of the paper is organized as follows: In
section 2, we present some related work. In section 3,
we recall some basic notion about ECATNets and
their integration in rewriting logic. In section 4, we
recall some concepts about Graph Grammars and
give an overview of the AToM3 tool [1]. In section 5,
we describe our approach that transforms UML
sequence diagrams models to their equivalent
ECATNets models. In section 6, we illustrate our
generated tool through two examples. Finally
concluding remarks are drawn from the work and
perspectives for further research are presented in
section 7.

2. Related Work
AToM3 has been proven to be a very powerful tool
allowing the meta-modeling and the transformations
between formalisms. In [5] the authors proposed a
transformation of non deterministic finite state
automata to their equivalent deterministic finite state
automata. In [6] the authors presented a
transformation between Statecharts (without
hierarchy) and Petri Nets. In [2] a transformation
between Statecharts and DEVS is given. In [7] the
authors used meta-modeling and graph grammars to
process GPSS models. The processing of UML Class
Diagrams, Activity Diagrams, and many others using
graph transformation can be found in [1,2,9]. In UML
Activity Diagram for example, the authors were
defined a graph grammar to transform UML Activity
Diagram models into theirs equivalent Petri Nets
models. Whereas in GPSS, the authors were defined a
graph grammar to generate textual code for the
HGPSS simulator from GPSS models. In [14], the
authors have presented an approach that generates
automatically a Maude specification from ECATNets
models. First they have proposed an ECATNets
meta-model in the UML Class Diagram formalism
with the meta-modelling tool AToM3, and use it to
generate automatically a visual modelling tool to
process models in ECATNets formalism. They also
defined a graph grammar to translate the models
created in the generated tool to a Maude
specification. Then the rewriting logic language
Maude is used to perform the simulation of the
resulted Maude specification. In [11], the authors
have provided the INA Petri net tool with a graphical
environment. First, they have proposed a meta-model
for Petri net models and used it in the meta-modelling
tool AToM3 to generate automatically a visual
modelling tool to process models in INA formalism.
Then they defined a graph grammar to translate the
models created in the generated tool to a textual
description in INA language (INA specification).
Then the INA is used to perform the analysis of the
resulted INA specification. In [15], the authors have
presented a formal framework (a tool) based on the
combined use of Meta-Modeling and Graph
Grammars for the specification and the analysis of
complex software systems using G-Nets formalism.
Their framework allows a developer to draw a G-
Nets model and transform it into its equivalent PrT-
nets model automatically. In order to perform the
analysis using PROD analyzer, their framework
allows a developer to translate automatically each
resulted PrT-Nets model into PROD’s net description
language. To this end, they have defined a Meta-
Model for G-Nets formalism and another for PrT-
Nets formalism. Then the Meta-Modeling tool
AToM3 is used to automatically generate a visual
modeling tool for each formalism according to its

proposed Meta-Model. They have also proposed two
graph grammars. The first one performs the
transformation of the graphically specified G-Nets
models to semantically equivalent PrT-Nets models.
The second one translates the resulted PrT-Nets
models into PROD’s net description language.

In this paper, we propose an approach that translates
UML sequence diagrams models to their equivalent
ECATNets models. The resulting models can be
subjected to various Petri net analysis techniques.
This helps in the validation of UML behavioral
specifications. Our approach is based on graph
transformation since UML sequence diagrams and
ECATNets models are graphs.

3.ECATNets,Graph transformation,
and ATOM3
In this section we recall some main concepts about
ECATNets, graph transformation, and ATOM3 tool.

3.1 ECATNets

ECATNets [3] are a kind of net/data model
combining the strengths of Petri Nets with those of
abstract data types. The most distinctive feature of
ECATNets is that their semantic is defined in terms
of rewriting logics [19]. Motivating ECATNets
(Extended Concurrent Algebraic Terms Nets) leads to
motivating Petri Nets, abstract data types, as well as
their combination into a unified framework [4]. Petri
net are used for their foundation in concurrency and
dynamics, while abstract data types are used for their
data abstraction power and solid theoretical
foundation. Their association into a unified
framework is motivated by the need to explicitly
specify process behaviour and complex data structure
in real systems [3]. For more details see [3].

3.2 Graph Grammars and ATOM3
This section recalls some fundamental notions about
graph transformation and ATOM3 tool.

3.2.1 Graph Grammars
The research area of Graph Grammars is a discipline
of computer science which dates back to the early of
seventies. Methods, techniques, and results from the
area of graph transformations have already been
applied in many fields of computer science such as
formal language theory, concurrent and distributed
systems modelling, software engineering, visual
modelling, etc. The wide applicability is due to the
fact that graphs are a very natural way of explaining
complex situations on an intuitive level. Hence, they
are used in computer science almost everywhere. On
the other hand, Graph grammars provide dynamic

aspect to these descriptions since it can describe the
evolution of graphical structures. Graph grammar
[24] is a generalization of Chomsky grammar for
graphs. It is a formalism in which the transformation
of graph structures can be modelled and studied. The
main idea of graph transformation is the rule-based
modification of graphs as shown in figure 1.

 Figure 1. Rule-based Modification of Graphs

Graph grammars are composed of production rules;
each having graphs in their left and right hand sides
(LHS and RHS). Rules are compared with an input
graph called host graph. If a matching is found
between the LHS of a rule and a subgraph in the host
graph, then the rule can be applied and the matching
subgraph of the host graph is replaced by the RHS of
the rule. Furthermore, rules may also have a
condition that must be satisfied in order for the rule to
be applied, as well as actions to be performed when
the rule is executed. A rewriting system iteratively
applies matching rules in the grammar to the host
graph until no more rules are applicable.

3.2.2 AToM3 :An Overview [1]
AToM3 is a visual tool for multi-formalism modelling
and meta-modelling. As it has been implemented in
Python [Python], it is able to run (without any
change) on all platforms for which an interpreter for
Python is available: Linux, Windows and MacOS.
The two main tasks of AToM3 are meta-modelling
and model transformation.
In the next sections, we will discuss how we use
AToM3 to meta-model sequence diagrms and
ECATNets formalism and how to generate the
ECATNets models from sequence diagrams.

4. The Approach
4.1 UML Sequence diagram Meta-Model
To build UML sequence diagrams models in AToM3,
we have to define a meta-model for them. The meta-
formalism used in our work is the UML Class
Diagrams and the constraints are expressed in Python
[Python] code.

Figure 2. Meta-model of sequence diagrams

Since a sequence diagram is composed of classes and
messages, we have proposed to meta-model sequence
diagrams 3 main classes (see figure 2):

- The class PointDeDepart
This class represents the start of a sequence diagram.
It is represented visually through a Gray square (see
figure 6) and connected with the class
PeriodeActivite by an association MessageDeDepart.
The association has an attribute called Nom and
connects a single instance of the class PointDeDepart
with a single instance of the class PeriodeActivite. It
is represented graphically by a blue arrow.

 - The class ObjetInstance
it represents the interacting objects in the sequence
diagram. Each object has its name and the name of
his class. The class ObjetInstance is linked by the
association ObjetLigneDeVie with the class
PeriodeActivite. it connects with an object not more
than one instance of the class PeriodeActivite. An
object is viewed through a blue rectangle that bears
his name and the name of his class (Figure 6).

- The class PeriodeActivite
This is the class that determines the period of the
activity of an object. It has an attribute
ConnecteurLVie of type Port which acts as a
connector between the various segments of the period
of activity of an object. Two periods of activity
coming from different objects may be linked either:

• By a message (the association MMessage)
wich has a name (attribute Message) and a
type. If the type is a condition then it should
be set in the attribute condition. It may also
be a message of destruction if the Destroy
attribute has the value true. In our meta-
model, two periods of activity may be linked
to at most one message.

• By a signal (the sssociation Signal) that has
an attribute signal. It can have at most one
instance between two period of activities.

• By an association MessageDeRetour that has
an attribute ValeurDeRetour. A return
message is a response to a given message.

• And finally by an association LigneDeVie.

 An instance of the class PeriodeActivite is
represented graphically by a blue rectangle. It can be
linked with an instance of the class ObjetInstance
through a creation message (MessageDeCreation
Association) which has a name and whether it exists
is unique.
The meta-model shown in Figure 2 will enable us to
generate a modeling tool for different models of
sequence diagrams by only clicking on GEN button.
Figure 3 presents the tool generated with an example
of a sequence diagram.

4.2 Meta-Modelling of ECATNets
To build models of ECATNets formalism in AToM3,
we have to define a meta-model for ECATNets. The
meta-formalism used in our work is also the UML
Class Diagrams and the constraints are also expressed
in Python code.
Since ECATNets models consist of places,
transitions, and arcs from places to transitions and
from transitions to places, we have proposed to meta-
model ECATNets two Classes to describe Places and
Transitions, and two associations for Input Arcs and
Output Arcs as shown in Figure 4. We have also
specified the visual representation of each component
according to ECATNets notation. To fully define our
meta-model, we have added two constraints
“MoreThanOneInputArc” and
“MoreThanOneOutputArc” in places class. The
former is used to don’t allow more than one input arc
to a given transition, whereas the latter is used to
don’t allow more than one output arc from a given
transition.

Figure3. Generated tool to process ECATNets

Figure 4. ECATNets Meta-Model

Given our meta-model, we have used AToM3 tool to
generate a visual modelling environment for
ECATNets models. The generated ECATNets
modelling tool is shown in figure 3.
The following sub section describes the grammar
proposed to perform the transformation between
sequence diagrams and ECATNets models.

4.3 The graph grammar
To perform the transformation between sequence
diagrams and ECATNets models, we have proposed a
grammar called SequenceDiagVEcatNet composed of
rules divided into five categories.

Category 1. Rules that transforms all messages: This
category includes three rules that aim to transform the
messages in the source model.
Rule 1:Transforming a message

 Name: RtransformerMS Priority: 1
 Role: This rule allow us to transform a message
from the sequence diagram to two places and a
transition in ECATNets formalism. The first place
represents the message during its emission, the
second one represents it during its reception and the
transition symbolizes the sending of the message. The
node number 4 on the right hand side (RHS) of the
rule gives the marking of the message. Sending the
message is simulated by the destruction of the input
place of the transition (DT of the input arc) and its
reception by its creation (CT arc output) in the output
place. If the message is conditioned, the Transition
Condition (TC) receives the condition of the
message. The node number four (emission place) is
named “PSend.[Message]”, the node number five
(reception place) is called "PReceive.[Message]"
and number six (transition : transmettre) is named
"Send.[Message]" (Figure 5).

Rule 2: Transformation of an initial message
 Name: RMsInitial Priority: 2
 Role: It allows us to transform the original message
in a sequence diagram to a place and a transition in
the equivalent ECATNets formalism, the place is
named "Departure" and its marking is initialized by
the starting message. The transition symbolizes the
reception of the sent query in the message. It is
named "Receive.[MessageDeDepart]." (Figure 5.b).

Figure 5. Rules that transform messages

Rule 3: Transform a message creation
 Name: RMsCreate Priority: 2
 Role: This rule allows us to transform a message
that creates an object. A message that creates an
object can be received by an object to start its activity
(beginning of its life line). In our case, a message of
creation is seen as a place that models its sending and
a transition representing its reception by the created
object. The place is called
"PSend.[MessageDeCréation]" and the transition
"Receive.[MessageDeCréation]" (see Figure 5.c).

Category 2: Rules that rename all transitions and
create the reception transition
Category 3: Rule that renames all places
Category 4: Rule that process a return message
Category 5: Rules of suppression of periods of
activity
For lack of space, we have not presented all the rules.

6. Examples
Let us apply our approach on the two following
examples.

6.1 Example 1
Let us consider an example of sequence diagram
from a system describing an internet commerce
system as shown by figure 6. We have applied our
automatic approach on this example and we have
obtained the equivalent ECATNets shown in Figure
7.

Figure 6. Sequence diagram of the example 1

Figure 7. The obtained ECATNets of the example 1

6.2 Example 2
We have also applied our automatic approach on the
example described by the sequence diagram shown in
figure 8 and obtained the equivalent ECATNets
shown in Figure 9.

Figure 8. Sequence diagram of the example 2

Figure 9. The obtained ECATNets of the example 2

 We have then applied our previous tool [14] on the
resulted ECATNets of figure 9 and obtained the
Maude specification in of figure 10.
Now the process of verification using Maude system
can be used.

7. Conclusion and Future Work
In this paper, we proposed an approach to translate
UML sequence diagrams models to their equivalent
ECATNets models. The resulting models can be
subjected to various Petri net analysis techniques.
This helps in the validation of UML behavioral
specifications. Our approach is based on graph
transformation since UML sequence diagrams and
ECATNets models are graphs. We have illustrated
our approach using two examples. In a future work
we plan to translate other UML diagrams to
ECATNets and perform some verification.

in project
in basic-ecatnet

mod ECATNET-SYSTEM is

ops C1.O1.M1 C2.O2.M1 C2.O2.M2(t) C3.O3.M2(t)
C1.O1.M3 C2.O2.M3 C2.O2.Destroy C3.O3.Destroy Depart :
-> Place .

crl[C1.O1.Send.M1] : <C1.O1.M1;M1> => <C2.O2.M1;M1>
if (M1) .
crl[C2.O2.Send.M2(t)] : <C2.O2.M2(t);M2(t)> =>
<C3.O3.M2(t);M2(t)> if (t>=0) .
rl[C1.O1.Send.M3] : <C1.O1.M3;M3>.<C1.O1.M3;R2> =>
<C2.O2.M3;M3> .
rl[C2.O2.Send.Destroy] : <C2.O2.Destroy;Destroy> =>
<C3.O3.Destroy;Destroy> .
rl[C1.O1.Receive.RequetteInitial] : <Depart;RequetteInitial>
=> <C1.O1.M1;M1> .
rl[C2.O2.Receive.M1] : <C2.O2.M1;M1> =>
<C2.O2.M2(t);M2(t)> .
rl[C3.O3.Receive.M2(t)] : <C3.O3.M2(t);M2(t)> =>
<C1.O1.M3;R2> .
rl[C2.O2.Receive.M3] : <C2.O2.M3;M3> =>
<C2.O2.Destroy;Destroy> .
rl[C3.O3.Receive.Destroy] : <C3.O3.Destroy;Destroy> => .

endm .

rew <C1.O1.M3;M3>.<Depart;RequetteInitial>.

Figure 10 : Maude specification of the example

8. References
[1] Home page: http://atom3.cs.mcgill.ca/
[2] Bardohl, R., H. Ehrig, J. De Lara and G. Taentzer
(2004). "Integrating Meta Modelling with Graph
Transformation for Efficient Visual Language
Definition and Model Manipulation". Lecture Notes
in Computer Science 2984, pp.: 214-228.
[3] Bettaz, M and M. Maouche (1992). How to
specify Non Determinism and True Concurrency with
Algebraic Term Nets. Lecture Notes in Computer
Science, N 655, Spring Verlag, Berlin, p. 11-30.
[2] Borland, S., Vangheluwe, H (2003):
Transforming Statecharts to DEVS. A. Bruzzone and
Mhamed Itmi, editors, Summer Computer Simulation
Conference, Student Workshop, pp. S154-- S159,
Society for Computer Simulation International (SCS),
Montréal, Canada (2003).
[5] De Lara, J., Vangheluwe, H (2002): AToM3: A
Tool for Multi- Formalism Modelling and Meta-
Modelling. Lecture Notes in Computer Science 2306,
pp.174--188. Presented also at Fundamental
Approaches to Software Engineering - FASE'02, in
European Joint Conferences on Theory And Practice
of Software - ETAPS'02, Grenoble, France, (2002).
[6] De Lara, J., Vangheluwe, H.(2002): Computer
aided multi-paradigm modelling to process petri-nets
and statecharts. In International Conference on Graph
Transformations (ICGT), Lecture Notes in Computer
Science, vol. 2505, pp. 239--253, Springer-Verlag,
Barcelona, Spain(2002).
[7] De Lara, J., Vangheluwe, H. (2002): Using meta-
modelling and graph grammars to process GPSS
models. Hermann Meuth, editor, 16th European
Simulation Multi-conference (ESM), pp. 100--107,
Society for Computer Simulation International (SCS),
Darmstadt, Germany (2002).
[8] De Lara, J and H. Vangheluwe (2004). "Meta-
Modelling and Graph Grammars for Multi-Paradigm
Modelling in AToM3". Manuel Alfonseca. Software
and Systems Modelling, Vol 3(3), pp.: 194-209.
Springer-Verlag. Special Section on Graph
Transformations and Visual Modeling Techniques.
[9] De Lara, J., Vangheluwe, H. (2005): Model-
Based Development: Meta- Modelling,
Transformation and Verification, The Idea Group Inc,
pp. 17 (2005).
[10] Y.Deng et.al. “Integrating Software Engineering
Methods and Petri nets for the specification and
prototyping of complex information systems”.
Application and Theory of Petri nets 1993, 14th
International Conference proceedings, Chicago, pp
203-223, June 1993.
[11] R. Elmansouri, E. Kerkouche, and A. Chaoui, A
Graphical Environment for Petri Nets INA Tool
Based on Meta-Modelling and Graph Grammars,
Proceedings offing and Technology, ISSN 2070-
3740, Vol 34 October 2008,.

[12] Genrich, H. J., Lautenbach, K.System Modelling
with High-Level Petri Nets. Theoretical Computer
Science, vol. 13 (1981)

[13] K. Jensen, Coloured Petri Nets, Vol 1: Basic
Concepts, Springer-Verlag 1992.

[14] E. Kerkouche, and A. Chaoui, On the use of
Meta-Modelling and Graph Grammars to process and
simulate ECATNets model, proceeding of MS'2008,
Port Said, April 8-10, 2008, EGYPT.

[15] E. Kerkouche, and A. Chaoui, A Formal
Framework and a Tool for the specification and
analysis of G-Nets models based on graph
transformation, To appear in V. Garg, R.
Wattenhofer, and K. Kothapalli (Eds.): ICDCN 2009,
LNCS 5408, pp. 206–211, 2009, Springer-Verlag
Berlin Heidelberg 2009
[16] C.A.Lakos. Object Petri nets – Definition and
relationship to colored nets. Technical Report TR 94-
3, Computer Science Department, University of
Tasmania.
[17] M. Clavel and AL. “Maude : Specification and
Programming in Rewriting Logic”. Internal report,
SRI International, 1999.
[18] M. Maouche, M. Bettaz, G. Berthelot and L.
Petrucci. “Du vrai parallélisme dans les réseaux
algébriques et de son application dans les systèmes de
production”. MOSIM’97, 1997.
[19] J. Meseguer, “Conditional Rewriting Logic as a
unified model of concurrency”. Theoretical Computer
Science, 1992.
[20]. T. Murata, "Petri Nets: Properties, Analysis and
Applications", Proceedings of the IEEE, Vol.77,
No.4 pp.541-580, April 1989.
[21] Python home page: htpp://www.python.org
[22] Roch S. and Starke P.H. (2002). Integrated Net
Analyze, User manual, 2002.
[23] Grzegorz Rozenberg: Handbook of Graph
Grammars and Computing by GraphTransformation,
World Scientific, 1999.
[24] G. Booch, J. Rumbaugh and I. Jacobson. The
Unified Modeling Language User Guide, Addison-
Wesley.

