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ABSTRACT 
 
It is now recognized that UML is considered nowadays as the standardized language for object oriented 
modeling and analysis.  However, UML cannot be used for automatic analysis and simulation. So, UML 
needs a well-defined semantic base for its notation. Petri nets are a formal and graphical language 
appropriate for systems modelling and analysis. ECATNets are a category of Petri nets based on a safe 
combination of algebraic abstract types and high level Petri Nets. ECATNets’ semantic is defined in terms 
of rewriting logic allowing us to built models by formal reasoning. Furthermore, the rewriting logic 
language Maude gives to ECATNets dynamic aspects which are not measurable without simulation. In 
this paper we propose an approach to generate ECATNets models from UML sequence diagrams. Then 
the resulting models are mapped to Maude language for analysis purposes. The approach is illustrated by 
two examples. 
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1. Introduction 
The Unified Modeling Language (UML) [24] is 
widely accepted by the Software Engineering 
community as a standard software modelling 
language. It consists of many diagrams. The most 
important ones are use cases diagrams, class 

diagrams, sequence diagrams, collaboration 
diagrams, state chart diagrams, etc… Some diagrams 
are used to model the structure of a system (use cases 
diagrams, class diagrams, etc…) while others are 
used to model the behaviour of a system (state charts 
diagrams, collaboration diagrams, etc…).  UML 
Sequence diagrams model the interaction between a 



set of objects through the messages (or events) that 
may be dispatched among them.  
Petri nets [20] were introduced firs by Carl Adam 
Petri in the early 1960s as a mathematical tool for 
modeling distributed systems supporting the notions 
of concurrency, non determinism, communication 
and synchronization. There are many varieties of 
Petri nets from simple net [20] to more complex nets 
(high level Petri Nets) such as colored nets [13], 
ECATNets [3], Predicate/Transition nets [12], object 
Petri nets [16], G-Nets [10], etc ... 

ECATNets are an algebraic Petri net category based 
on a safe combination of algebraic abstract types and 
high level Petri Nets [3]. In addition to modelling, 
ECATNets allow the verification and simulation of 
concurrent systems [4, 18]. The most distinctive 
feature of ECATNets is that their semantic are 
defined in terms of rewriting logic [19], allowing us 
to built models by formal reasoning. The rewriting 
logic Maude [19] is considered as one of very 
powerful languages in the specification and 
verification of concurrent systems. Rewriting logic 
gives to ECATNets a simple, more intuitive and 
practical textual version to analyse, without loosing 
formal semantic (mathematical rigor, formal 
reasoning). Furthermore, high level abstraction of this 
logic makes ECATNets, in spite of their complexity, 
to be dealt as simple as possible. The power of 
Maude in terms of specification, programming, 
simulation and verification in plus of the ECATNets’ 
integration in Maude, implies that there is no need to 
translate ECATNets in several languages and thus 
any risks about their semantic loss [4]. 

In this paper, we propose an approach to translate 
UML sequence diagrams models to their equivalent 
ECATNets models. The resulting models can be 
subjected to various Petri net analysis techniques. 
This helps in the validation of UML behavioral 
specifications. Our approach is based on graph 
transformation since UML sequence diagrams and 
ECATNets models are graphs. 
The rest of the paper is organized as follows: In 
section 2, we present some related work. In section 3, 
we recall some basic notion about ECATNets and 
their integration in rewriting logic. In section 4, we 
recall some concepts about Graph Grammars  and 
give an overview of the AToM3 tool [1]. In section 5, 
we describe our approach that transforms UML 
sequence diagrams models to their equivalent 
ECATNets models. In section 6, we illustrate our 
generated tool through two examples. Finally 
concluding remarks are drawn from the work and 
perspectives for further research are presented in 
section 7. 
 

2. Related Work 
AToM3 has been proven to be a very powerful tool 
allowing the meta-modeling and the transformations 
between formalisms. In [5] the authors proposed a 
transformation of non deterministic finite state 
automata to their equivalent deterministic finite state 
automata. In [6] the authors presented a 
transformation between Statecharts (without 
hierarchy) and Petri Nets. In [2] a transformation 
between Statecharts and DEVS is given. In [7] the 
authors used meta-modeling and graph grammars to 
process GPSS models. The processing of UML Class 
Diagrams, Activity Diagrams, and many others using 
graph transformation can be found in [1,2,9]. In UML 
Activity Diagram for example, the authors were 
defined a graph grammar to transform UML Activity 
Diagram models into theirs equivalent Petri Nets 
models. Whereas in GPSS, the authors were defined a 
graph grammar to generate textual code for the 
HGPSS simulator from GPSS models.  In [14], the 
authors have presented an approach that generates 
automatically a Maude specification from ECATNets 
models. First they have proposed an ECATNets 
meta-model in the UML Class Diagram formalism 
with the meta-modelling tool AToM3, and use it to 
generate automatically a visual modelling tool to 
process models in ECATNets formalism. They also 
defined a graph grammar to translate the models 
created in the generated tool to a Maude 
specification. Then the rewriting logic language 
Maude is used to perform the simulation of the 
resulted Maude specification. In [11], the authors 
have provided the INA Petri net tool with a graphical 
environment.  First, they have proposed a meta-model 
for Petri net models and used it in the meta-modelling 
tool AToM3 to generate automatically a visual 
modelling tool to process models in INA formalism. 
Then they defined a graph grammar to translate the 
models created in the generated tool to a textual 
description in INA language (INA specification). 
Then the INA is used to perform the analysis of the 
resulted INA specification.  In [15], the authors have 
presented a formal framework (a tool) based on the 
combined use of Meta-Modeling and Graph 
Grammars for the specification and the analysis of 
complex software systems using G-Nets formalism. 
Their framework allows a developer to draw a G-
Nets model and transform it into its equivalent PrT-
nets model automatically. In order to perform the 
analysis using PROD analyzer, their framework 
allows a developer to translate automatically each 
resulted PrT-Nets model into PROD’s net description 
language. To this end, they have defined a Meta-
Model for G-Nets formalism and another for PrT-
Nets formalism. Then the Meta-Modeling tool 
AToM3 is used to automatically generate a visual 
modeling tool for each formalism according to its 



proposed Meta-Model. They have also proposed two 
graph grammars. The first one performs the 
transformation of the graphically specified G-Nets 
models to semantically equivalent PrT-Nets models. 
The second one translates the resulted PrT-Nets 
models into PROD’s net description language. 
 
In this paper, we propose an approach that translates 
UML sequence diagrams models to their equivalent 
ECATNets models. The resulting models can be 
subjected to various Petri net analysis techniques. 
This helps in the validation of UML behavioral 
specifications. Our approach is based on graph 
transformation since UML sequence diagrams and 
ECATNets models are graphs. 
 
 
3.ECATNets,Graph transformation, 
and ATOM3 
In this section we recall some main concepts about 
ECATNets, graph transformation, and ATOM3 tool. 
 
3.1 ECATNets 

ECATNets [3] are a kind of net/data model 
combining the strengths of Petri Nets with those of 
abstract data types. The most distinctive feature of 
ECATNets is that their semantic is defined in terms 
of rewriting logics [19]. Motivating ECATNets 
(Extended Concurrent Algebraic Terms Nets) leads to 
motivating Petri Nets, abstract data types, as well as 
their combination into a unified framework [4]. Petri 
net are used for their foundation in concurrency and 
dynamics, while abstract data types are used for their 
data abstraction power and solid theoretical 
foundation. Their association into a unified 
framework is motivated by the need to explicitly 
specify process behaviour and complex data structure 
in real systems [3]. For more details see [3]. 

 
3.2 Graph Grammars and ATOM3  
This section recalls some fundamental notions about 
graph transformation and ATOM3 tool. 
 
3.2.1 Graph Grammars 
The research area of Graph Grammars is a discipline 
of computer science which dates back to the early of 
seventies. Methods, techniques, and results from the 
area of graph transformations have already been 
applied in many fields of computer science such as 
formal language theory, concurrent and distributed 
systems modelling, software engineering, visual 
modelling, etc. The wide applicability is due to the 
fact that graphs are a very natural way of explaining 
complex situations on an intuitive level. Hence, they 
are used in computer science almost everywhere. On 
the other hand, Graph grammars provide dynamic 

aspect to these descriptions since it can describe the 
evolution of graphical structures.  Graph grammar 
[24] is a generalization of Chomsky grammar for 
graphs. It is a formalism in which the transformation 
of graph structures can be modelled and studied. The 
main idea of graph transformation is the rule-based 
modification of graphs as shown in figure 1.  

 
   Figure 1. Rule-based Modification of Graphs 

Graph grammars are composed of production rules; 
each having graphs in their left and right hand sides 
(LHS and RHS). Rules are compared with an input 
graph called host graph. If a matching is found 
between the LHS of a rule and a subgraph in the host 
graph, then the rule can be applied and the matching 
subgraph of the host graph is replaced by the RHS of 
the rule. Furthermore, rules may also have a 
condition that must be satisfied in order for the rule to 
be applied, as well as actions to be performed when 
the rule is executed. A rewriting system iteratively 
applies matching rules in the grammar to the host 
graph until no more rules are applicable.  
 
3.2.2 AToM3 :An Overview [1] 
AToM3 is a visual tool for multi-formalism modelling 
and meta-modelling. As it has been implemented in 
Python [Python], it is able to run (without any 
change) on all platforms for which an interpreter for 
Python is available: Linux, Windows and MacOS. 
The two main tasks of AToM3 are meta-modelling 
and model transformation.  
In the next sections, we will discuss how we use 
AToM3 to meta-model sequence diagrms and 
ECATNets formalism and  how to generate the 
ECATNets models from sequence diagrams.  
 
 
4. The Approach 
4.1 UML Sequence diagram Meta-Model 
To build UML sequence diagrams models in AToM3, 
we have to define a meta-model for them. The meta-
formalism used in our work is the UML Class 
Diagrams and the constraints are expressed in Python 
[Python] code. 



 
Figure 2.  Meta-model of sequence diagrams 

 
Since a sequence diagram is composed of classes and 
messages, we have proposed to meta-model sequence 
diagrams 3 main classes (see figure 2):  
 
- The class PointDeDepart   
This class represents the start of a sequence diagram. 
It is represented visually through a Gray square (see 
figure 6) and connected with the class 
PeriodeActivite by an association MessageDeDepart. 
The association has an attribute called Nom and 
connects a single instance of the class PointDeDepart 
with a single instance of the class PeriodeActivite. It 
is represented graphically by a blue arrow. 
  
 - The class ObjetInstance  
it represents the interacting objects  in the sequence 
diagram. Each object has its name and the name of 
his class. The class ObjetInstance is linked by the 
association ObjetLigneDeVie with the class 
PeriodeActivite. it connects with an object not more 
than one instance of the class PeriodeActivite. An 
object is viewed through a blue rectangle that bears 
his name and the name of his class (Figure 6).  
 
- The class PeriodeActivite   
This is the class that determines the period of the 
activity of  an object. It has an attribute 
ConnecteurLVie of type Port which acts as a 
connector between the various segments of the period 
of activity of an object. Two periods of activity 
coming from different objects may be linked either:  

• By a message (the association MMessage) 
wich has a name (attribute Message) and a 
type. If the type is a condition then it should 
be set in the attribute condition. It may also 
be a message of destruction if the Destroy 
attribute has the value true. In our meta-
model, two periods of activity may be linked 
to at most one message.  

• By a signal (the sssociation Signal) that has 
an attribute signal. It can have at most one 
instance between two period of activities.  

• By an association MessageDeRetour that has 
an attribute ValeurDeRetour. A return 
message is a response to a given message.  

• And finally by an association LigneDeVie.  
 

   An instance of the class PeriodeActivite is 
represented graphically by a blue rectangle. It can be 
linked with an instance of the class ObjetInstance 
through a creation message (MessageDeCreation 
Association) which has a name and whether it exists 
is unique.  
The meta-model shown in Figure 2 will enable us to 
generate a modeling tool for different models of 
sequence diagrams by only clicking on GEN button. 
Figure 3 presents the tool generated with an example 
of a sequence diagram. 
 
4.2 Meta-Modelling of ECATNets 
To build models of ECATNets formalism in AToM3, 
we have to define a meta-model for ECATNets. The 
meta-formalism used in our work is also the UML 
Class Diagrams and the constraints are also expressed 
in Python code. 
Since ECATNets models consist of places, 
transitions, and arcs from places to transitions and 
from transitions to places, we have proposed to meta-
model ECATNets two Classes to describe Places and 
Transitions, and two associations for Input Arcs and 
Output Arcs as shown in Figure 4. We have also 
specified the visual representation of each component 
according to ECATNets notation. To fully define our 
meta-model, we have added two constraints 
“MoreThanOneInputArc” and 
“MoreThanOneOutputArc” in places class. The 
former is used to don’t allow more than one input arc 
to a given transition, whereas the latter is used to 
don’t allow more than one output arc from a given 
transition. 



 
Figure3. Generated tool to process ECATNets 

 

 
Figure 4. ECATNets Meta-Model 

Given our meta-model, we have used AToM3 tool to 
generate a visual modelling environment for 
ECATNets models. The generated ECATNets 
modelling tool is shown in figure 3. 
The following sub section describes the grammar 
proposed to perform the transformation between 
sequence diagrams and ECATNets models. 
 
4.3 The graph grammar 
To perform the transformation between sequence 
diagrams and ECATNets models, we have proposed a 
grammar called SequenceDiagVEcatNet composed of  
rules divided into five categories. 
 
Category 1. Rules that transforms all messages: This 
category includes three rules that aim to transform the 
messages in the source model.  
Rule 1:Transforming a message  

  Name: RtransformerMS          Priority: 1  
  Role: This rule allow us to transform a message 
from the sequence diagram to two places and a 
transition in ECATNets formalism. The first place 
represents the message during its emission, the 
second one represents it during its reception and the 
transition symbolizes the sending of the message. The 
node number 4 on the right hand side (RHS) of the 
rule gives the marking of the message. Sending the 
message is simulated by the destruction of the input 
place of the transition (DT of the input arc) and its 
reception by its creation (CT arc output) in the output 
place. If the message is conditioned, the Transition 
Condition (TC) receives the condition of the 
message. The node number four (emission place) is 
named “PSend.[Message]”, the node number five    
(reception place) is called "PReceive.[Message]" 
and number six (transition : transmettre) is named 
"Send.[ Message]" (Figure 5). 
 
Rule 2: Transformation of an initial message 
  Name: RMsInitial     Priority: 2  
  Role: It allows us to transform the original message 
in a sequence diagram to a place and a transition in 
the equivalent ECATNets formalism, the place is 
named "Departure" and its marking is initialized by 
the starting message. The transition symbolizes the 
reception of the sent query in the message. It is 
named "Receive.[MessageDeDepart]." (Figure 5.b). 
 

 
Figure 5. Rules that transform messages 

 
 
 
 



Rule 3: Transform a message creation 
   Name: RMsCreate       Priority: 2  
  Role: This rule allows us to transform a message 
that creates an object. A message that creates an 
object can be received by an object to start its activity 
(beginning of its life line). In our case, a message of 
creation is seen as a place that models its sending and 
a transition representing its reception by the created 
object. The place is called 
"PSend.[MessageDeCréation]" and the transition 
"Receive.[MessageDeCréation]" (see Figure 5.c).    
  
Category 2: Rules that rename all transitions and 
create the reception transition 
Category 3: Rule that renames all places 
Category 4: Rule that process  a return message 
Category 5: Rules of suppression of periods of 
activity 
For lack of space, we have not presented all the rules.  
 
 
6. Examples 
Let us apply our approach on the two following 
examples. 
 
6.1 Example 1 
Let us consider an example of sequence diagram 
from a system describing an internet commerce 
system as shown by figure 6. We have applied our 
automatic approach on this example and we have 
obtained the equivalent ECATNets shown in Figure 
7. 
 

 
 

Figure 6. Sequence diagram of the example 1 
 

 
 
Figure 7. The obtained ECATNets of the example 1 

 
6.2 Example 2 
We have also applied our automatic approach on the 
example described by the sequence diagram shown in 
figure 8 and obtained the equivalent ECATNets 
shown in Figure 9. 
 

 
Figure 8. Sequence diagram of the example 2 

 



 
Figure 9. The obtained ECATNets of the example 2 

 
 We have then applied our previous tool [14] on the 
resulted ECATNets of figure 9 and obtained the 
Maude specification in of figure 10. 
Now the process of verification using Maude system 
can be used.  
 

 

7. Conclusion and Future Work 
In this paper, we proposed an approach to translate 
UML sequence diagrams models to their equivalent 
ECATNets models. The resulting models can be 
subjected to various Petri net analysis techniques. 
This helps in the validation of UML behavioral 
specifications. Our approach is based on graph 
transformation since UML sequence diagrams and 
ECATNets models are graphs. We have illustrated 
our approach using two examples. In a future work 
we plan to translate other UML diagrams to 
ECATNets and perform some verification. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in project 
in basic-ecatnet 
 
mod ECATNET-SYSTEM is 
 
ops C1.O1.M1 C2.O2.M1 C2.O2.M2(t) C3.O3.M2(t) 
C1.O1.M3 C2.O2.M3 C2.O2.Destroy C3.O3.Destroy Depart : 
-> Place . 
 
crl[C1.O1.Send.M1] : <C1.O1.M1;M1> => <C2.O2.M1;M1> 
if (M1) . 
crl[C2.O2.Send.M2(t)] : <C2.O2.M2(t);M2(t)> => 
<C3.O3.M2(t);M2(t)> if (t>=0) . 
rl[C1.O1.Send.M3] : <C1.O1.M3;M3>.<C1.O1.M3;R2> => 
<C2.O2.M3;M3> . 
rl[C2.O2.Send.Destroy] : <C2.O2.Destroy;Destroy> => 
<C3.O3.Destroy;Destroy> . 
rl[C1.O1.Receive.RequetteInitial] : <Depart;RequetteInitial> 
=> <C1.O1.M1;M1> . 
rl[C2.O2.Receive.M1] : <C2.O2.M1;M1> => 
<C2.O2.M2(t);M2(t)> . 
rl[C3.O3.Receive.M2(t)] : <C3.O3.M2(t);M2(t)> => 
<C1.O1.M3;R2> . 
rl[C2.O2.Receive.M3] : <C2.O2.M3;M3> => 
<C2.O2.Destroy;Destroy> . 
rl[C3.O3.Receive.Destroy] : <C3.O3.Destroy;Destroy> =>  . 
 
endm . 
 
rew <C1.O1.M3;M3>.<Depart;RequetteInitial>. 
 

Figure 10 : Maude specification of the example 
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