

Challenges and Discussion of Software Redesign

Marija Katić
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

marija.katic@fer.hr

Krešimir Fertalj
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

kresimir.fertalj@fer.hr

ABSTRACT
Software design complexity is increased while software is developing and therefore a
management of the design complexity is an important issue. In order to accomplish this task
various methods have been developed so far. Some methods propose crucial places where the
software might be too complex leaving redesign to be accomplished manually. Other methods try
to automate the redesign process as much as possible. This paper presents main definitions and
terms concerning software redesign, current research in this area and challenges that might be
potential candidates for the further research.

Key Words: software redesign, refactoring, reengineering, challenges

1. Introduction
Software evolves and its complexity is
increased over the time. When project fails
for reasons that are primarily technical, the
main reason is often uncontrolled
complexity [4]. Therefore it is crucial to
maintain software design as simple as
possible in order to ensure preservation of
software quality. On the one hand, software
redesign means improvement of structural
integrity (internal structure), in other words
restructuring (Figure 1). According to
Chikofsky and Cross [3] restructuring is the
transformation from one representation form
to another at the same relative abstraction
level, while preserving the system's external
behaviour (functionality and semantics).
When this transition is done in object
oriented systems, it usually requires
changing the abstractions built in classes and
the relationships among them, and in this
case it is referred to as refactoring [8]. On
the other hand, when it is observed from the
more general view, which means changing
software system, redesign is designated as
reengineering. Therefore the term of

redesign is closely related to the
reengineering and refactoring terms and its
definition is somewhere in between
reengineering and refactoring or
restructuring. Reengineering is a wider term
than restructuring and it involves
restructuring which shows how these terms
are interrelated.

Figure 1

This paper gives more attention to the
redesign as refactoring and it is organized in
the following way. First of all, it is
emphasised that the redesign can be
performed on all software artefacts. Main
redesign activities and the current research
are given in the further text. Finally, there
are challenges that should be concerned
when thinking about further research.

mailto:marija.katic@fer.hr
mailto:kresimir.fertalj@fer.hr

2. Software artefacts
All software artefacts in software
development, such as documentation, design
models, database schemas, source code, or
test cases can be exposed to the redesign
process. Only those related to programs
(source code) and design models are
considered in this paper. With respect to
programs, refactoring is referred to the
source code and transformations of its
structure. Those programs that are not
written in an object-oriented language are
much more difficult to restructure because
data flow and control flow are tightly
interwoven [2]. At design level, refactoring
can be performed in the same way as
program refactoring, but it is referred to as
model refactoring. For instance Astels [10]
proposes using an UML tool as an aid in
finding parts that need redesign and
performing appropriate redesign method.

3. Examples of source code redesign
methods
M. Fowler gives a list of refactorings that
can be useful for developers to improve the
design of their code, in other words source
code redesign methods [1]. Some
representative examples are as follows:

Composing methods

• Extract Method. Extraction of a piece
of code into a separate method.

• Replace Temp with Query.
Replacement of references to the
temporary variable with the method
calls. It facilitates method extraction.

Moving features between objects:
• Move Method. Moving method to

another class when a class has too
much behaviour or when classes
collaborate a lot and are too highly
coupled. Moving method is the bread
and butter of refactoring.

• Extract Class. Creation of new
classes with methods and fields from
old classes.

Organizing data:
• Replace Type Code with Class.

Replacement of state constants with
type safe Enum.

• Change Value to Reference. When a
class has many equal instances then
is better to replace it with a single
object or turn the object into a
reference object.

Simplifying Conditional Expressions:
• Replace Conditional with

Polymorphism. Whenever it is
possible it is good to avoid writing an
explicit conditional when object's
behaviour varies depending on their
types.

• Decompose Conditional. Method
extraction from conditional
statements.

Big Refactorings:
• Convert Procedural Design to

Objects. Conversion of a procedural
code into object oriented code.

• Extract Hierarchy. If a class is doing
too much work, maybe it is good to
extract special cases into their own
subclasses.

4. Redesign activities
Redesign is a method applied on an existing
part of software and therefore it is crucial to
identify places and situations when it should
be applied. When considering source code,
M. Fowler [1] calls these places bad smells
(duplicated code, long method, large class,
and so on). The main two steps in the
redesign process are identification of places
that are in need for redesign – bad smells
identification and determination of
appropriate redesign method – restructure
execution.

5. Current Research
The term refactoring was first introduced in
literature by William F. Opdyke in his PhD
dissertation in 1990 [11], where he defined it
as a program restructuring operations. His
focus was on the automation of those
operations. The next breakthrough was when
Roberts, Brant and Johnson [12] built the
real first refactoring tool for Smalltalk,
Smalltalk Refactoring Browser. However,
the main interest in this area has started in
the late '90s with the book of Martin Fowler
[1] and with the agile movement. Fowler
defines refactoring as a changing of the
software internal structure in such a way that
preserves its observable behaviour [1]. At
first research was focused at finding
individual problems and applying
transformations manually [9] [13]. Over the
time, the main focus was moved to the
automation of refactoring and to the
development of tools capable to perform an
identification of program parts that need
refactoring and proposals and application of
refactorings [14]. All modern integrated
development environments (IDEs)
implement refactoring support at the base
level (Move Method, Extract Method,
Rename Class …). Most of them provide
even advanced refactoring support. For
example, when with only one keyboard
shortcut it is possible to invoke contextual
availability-checking system to determine
which refactorings are currently available
[24]. More recently refactoring has been
applied on more abstract levels, but not only
on the source code. More research have
appeared with respect to refactoring at the
design level [21] [22], especially in terms of
UML models, after survey on software
refactoring had published [2] [21]. For
automatically performing redesign in two
steps, bad smells identification and
refactoring execution, a set of formalisms,
techniques and tools is needed. Therefore in
the further text all of them are discussed.

5.1. Formalisms and techniques
There are varieties of formalisms to deal
with redesign methods. Some of them are
graph transformations, software metrics,
program analysis, clustering and Meta
modelling.

Graph transformation. Software artefacts
can be represented as graphs and
refactorings as transformation rules. Bottoni,
Parisi-Presicce and Taentzer [15] maintain
consistency of code and specification during
refactoring by describing refactoring by
distributed graph transformation. Van
Eetvelde and Janssens [16] use a hierarchical
representation of object-oriented programs.

Software metrics. Software metrics can be
used for measuring quality of software
before and after software redesign.
O'Keeffee and Cinneide [6] tend to improve
the structure of inheritance hierarchies by
treating object oriented design as a
combinatorial optimization of metrics.
Redesign in this case is a search through the
space of alternative designs for those that are
superior to the original, judging by the
metric values [6].

Program analysis. Program analysis is a
technique that can help in discovering bad
smells, no matter whether it is static or
dynamic. Static code analysis plus automatic
refactoring equals painless coding [17].
Dynamic program analysis is useful when
not all desired preconditions of a refactoring
can be statically computed in a reasonable
time and computation effort [2].

Clustering. Clustering is a data mining
activity. It is an unsupervised learning of a
hidden data concept where data are
distributed into groups called clusters and
each group consists of objects that are
similar between themselves and dissimilar to
objects of other groups [20]. Czibula and
Serban use clustering in order to recondition

a class structure of a software system [5]
[19].

Meta modelling. Meta modelling is the
mapping of specification concepts onto
entities, relations and attributes of a specific
domain [21]. It enables redesign that does
not depend on implementation language. On
the other hand, there is an approach to deal
with the transformation of models from a
source model to a destination model without
changing the observable behaviour [23].

5.2. Tools
As it has already been stated above, redesign
can be performed manually, but the main
focus in researches is the redesign process
automation and the development of tools
that support such a process. Redesign is
closely connected with testing. Although one
can say that for example a source code
redesign belongs to the implementation
phase, tests are needed to ensure that the
behaviour is not changed. It can be said that
the redesign without testing does not have
sense. Therefore in the context of the
redesign testing tools also should be
considered. Generally tools can be divided
into semi-automated and fully-automated.
First refactoring tool Refactoring browser is
an example of semi-automated tool [12] and
approach that can be stated as fully is
developed in [7]. Fully-automated approach
is an add-in for Microsoft Visual Studio
whose developers [24] were focused on the
most common barriers between
programmers and refactoring tools:
discoverability, lack of trust and
productivity. For example to enhance
discoverability, they have added background
code analysis and highlight mechanism to
highlight code smells where powerful, but
less well-known refactorings are available
[24]. Project Analyzer and Visustin are
examples of semi-automated tools [25].

6. Current challenges
Although lots of problems have been
realized, also there are lots of challenges to
deal with in the area of software redesign:

Challenge 1: Redesigning an existing
software system is actually the start of a new
project. When it is necessary to deliver a
business value as soon as possible as well as
to improve the existing system, agile
development seems to be useful method to
apply. Although there are some experiences
[26], there is no generic approach to
accomplish this task certainly successfully,
especially when redesigning of big legacy
software is done in the agile way.

Challenge 2: At the lower levels there are
many successful researches on how to
perform low-level refactoring [9] [12] [13],
however it is not the same with respect to a
high-level refactoring [19]. Those are
sequences of refactoring rules that consist of
several low-level refactorings, for example
in order to support the implementation of
certain design pattern. They are especially
useful when it is about performance
improvement, higher modularity and so on.
The challenge is to explore how the design
will look if such rules are applied or what is
the appropriate redesign degree for the
performance that seems to be sufficiently
improved. Also there is a lack of such tools.
It would be good to have a generic solution
that is independent on implementation
language and that can estimate to which
extent it is the most useful to apply redesign
methods for the certain benefit.

Challenge 3: With respect to the model
refactoring, for example refactoring of class
diagrams has been investigated by various
researchers [10] [21] [22] [23], but certainly
more work is needed for refactoring of
behavioural models, especially because of an
ambiguity of UML.

Challenge 4: If the redesign is performed at
the lower levels such as source code or
models, metrics can be applied to estimate a
given value [18]. On the other hand, if it is
performed more generally, on the whole
software system, the challenge is to estimate
the given value of redesign. Related
problem is maintaining consistency between
models, source code, documentations as well
as other software artefact.

Challenge 5: It is a challenge to make a
categorization with respect to redesign
formalisms and techniques that are best
suited for a certain purpose. The purpose can
be related to project types (business,
scientific …), application types (web,
desktop …) as well as project size or some
other type of software that is considered
useful.

Challenge 6: The increase of refactoring
tools should not be questionable at all.
However, a good comparison of those tools
integrated into IDEs [12] [17] [24] [27] as
well as standalone tools [25][27] is needed
in order to reveal their actual value.
Therefore it is necessary to search for them
and identify whether and how they can be
combined to act more efficiently. We think
that each of them should be tested on all
different aspects that actually support
(different implementation languages,
different architectures, different platforms
…). The search should consider commercial
and research tools, investigate their
directions, reliability, configurability,
scalability and propose their possible
combination.

Challenge 7: Programming paradigms is not
changed every day, but new principles are
evolved, we presume to say, every day.
Therefore, we believe, it could be useful to
have a solution that can learn from new
principles, using some data mining concept,
and propose places in software that should
be redesigned. In accordance with this idea,

the real challenge would be the redesign
conduction.

Challenge 8: Software security is an
important issue that should be considered
when refactoring activities are performed,
especially in the context of web applications.
There are identified some refactoring
transformations that could affect the security
of an existing software [28]. It is needed to
ensure that whenever the software is
redesigned the security of software must not
be undermined and disorganized. Moreover,
redesign is supposed to reduce software
vulnerabilities. Research with respect to this
topic is still in infancy.

7. Conclusion and Future Work
This paper briefly presents the software
redesign process and methods that are used
in achieving that process. Some of the used
formalisms and techniques are also briefly
described. Research has shown that redesign
process had been applied on more abstract
levels and not only on the source code.
Although there are lots of different
approaches, current challenges are stated
showing the places that need more research.
Our future work will continue in the
direction of improvements of the source
code redesign methods. We plan to search
for the differences between the redesign of
legacy code and the redesign in the agile
development environment. Our first step is
to face with the challenge 6.

References:
[1] M. Fowler, and K. Beck, J. Brant, W.

Opdyke, D. Roberts, Refactoring:
Improving the Design o Existing Code,
Addison Wesley, 1999.

[2] T. Mens and T. Tourwe, "A Survey of
Software Refactoring", IEEE
Transactions on Software Engineering,
IEEE Press, USA, 2004, pp.126-139.

[3] E. J. Chikofsky and J. H. Cross,
"Reverse engineering and design
recovery: A taxonomy", IEEE
Software, 1990, pp. 13–17.

[4] S. McConnell, Code Complete,
Second Edition, Microsoft Press, 2004.

[5] I.G. Czibula and G. Serban,
"Hierarchical Clustering for Software
Systems restructuring", INFOCOMP
Journal of Computer Science, Brazil,
2007, pp.43-51.

[6] M. O'Keeffe and M. O Cinneide,
"Towards Automated Design
Improvement Through Combinatorial
Optimization", Workshop on
Directions in Software Engineering
Environments, Scotland, UK, 2004.

[7] M. O Cinneide, "Automated
Application of Design Patterns: A
Refactoring Approach", PhD thesis,
University of Dublin, Trinity College,
2001.

[8] W. F. Opdyke, "Refactoring object-
oriented frameworks", PhD
dissertation, University of Illinois at
Urbana-Champaign, 1992.

[9] S. Ducasse, M. Rieger and S.
Demeyer, "A language independent
approach for detecting duplicated
code", Proceedings of the IEEE
International Conference on Software
Maintenance, IEEE Computer Society,
USA, 1999, pp. 109–118.

[10] D. Astels, "Refactoring with UML",
Proc. Int'l Conf. eXtreme
Programming and Flexible Processes
in Software Engineering, Italy, 2002,
pp. 67-70.

[11] W. F. Opdyke and R. E. Johnson,
"Refactoring: An aid in designing
application frameworks and evolving
object-oriented systems" Proceedings
of the Symposium on Object-Oriented
Programming Emphasizing Practical
Applications, New York, September
1990.

[12] D. Roberts, J. Brant and R. E. Johnson,
“A refactoring tool for Smalltalk”,

Theory and Practice of Object
Systems, John Wiley & Sons, USA ,
1997, pp. 253–263.

[13] M. Balazinska, E. Merlo, M. Dagenais,
B. Lague and K. Kontogiannis,
"Advanced clone-analysis to support
object oriented system refactoring",
Proceedings of the Seventh Working
Conference on Reverse Engineering,
IEEE Computer Society, USA, 2000,
pp. 98-107.

[14] J. Pérez, "Overview of Refactoring
Discovering Problem", ECOOP 2006,
Doctoral Symposium and PhD
Students Workshop, Nantes, France,
2006.

[15] P. Bottoni, F. Parisi-Presicce and G.
Taentzer "Coordinated distributed
diagram transformation for software
evolution", Electronic Notes in
Theoretical Computer Science,
Elsevier B.V, 2002, pp. 59-70.

[16] N. Van Eetvelde and D. Janssens, "A
hierarchical program representation for
refactoring", Electronic Notes in
Theoretical Computer Science,
Elsevier B.V., 2003, pp. 91-104.

[17] Available at
http://submain.com/products/codeit.rig
ht.aspx, on 15.02.2009.

[18] F. Simon, F. Steinbruckner and C.
Lewerentz, "Metrics based
refactoring", Proc. European Conf.
Software Maintenance and
Reengineering, IEEE Computer
Society, USA, 2001, pp. 30–38.

[19] I. G. Czibula and G. Serban,
"Improving Systems Design using a
Clustering Approach", IJCSNS
International Journal of Computer
Science and Network Security 6, 2006,
pp.40-49.

[20] P. Berkhin, "A Survey of Clustering
Data Mining Techniques", Springer,
2006, pp. 25-71.

[21] J. Zhang, Y. Lin and J. Gray, "Generic
and Domain-Specific Model
Refactoring using a Model

http://submain.com/products/codeit.rig

Transformation Engine", Springer,
2005, pp. 199-217.

[22] T. Massoni, R. Gheyi and P. Borba,
"Formal Refactroing for UML Class
Diagrams", 19th Brazilian Symposium
on Software Engineering (SBES),
Brazil, 2005, pp. 152-167.

[23] O. Ben Hadj Alaya, W. Charfi, M.
Romdhani and M. Maddeh,
"Metamodel refactoring Library of
primitives of transformations",
INSAT, Tunisia, 2008.

[24] D. Campbell and M. Miller,
"Designing RefactoringTools for
Developers", Second ACM Workshop
on Refactoring Tools, Nashville,
Tennessee, 2008.

[25] Refactoring tools, available at
http://www.aivosto.com/vbtips/refacto
ring.html, on 15.02.2009.

[26] C.Stevenson and A. Pols, "An agile
approach to a legacy system", Extreme
programming and agile processes in
software engineering, Springer, 2004,
pp.123-129.

[27] Jrefactory, available at
http://jrefactory.sourceforge.net/, on
20.02.2009.

[28] K. Maruyama and K. Tokoda,
"Security-Aware Refactoring Alerting
its Impact on Code Vulnerabilities",
Software Engineering Conference,
2008. APSEC '08. 15th Asia-Pacific,
Beijing, 2008, pp. 445-452.

http://www.aivosto.com/vbtips/refacto
http://jrefactory.sourceforge.net/

