
An Approach for Fault Tolerance in Dynamic Multi-Agent 

systems 

 
 Mounira BOUZAHZAH. 

Lire Laboratory, Mentouri University, Constantine, Algeria. 
mbouzahzah@yahoo.fr 

 

Ramdane MAAMRI. 
Lire Laboratory, Mentouri University, Constantine, Algeria. 

rmaamri@yahoo.fr 

ABSTRACT  

Multi-agent systems offer a decentralized and cooperative vision of the problems solving. That means they are 

particularly well adapted to dynamic distributed problems mainly new cooperative applications, such as: e-

commerce and traffic control. In this paper, we introduce an original hybrid approach for fault resistance in 

dynamic multi-agent systems. This approach is based on two concepts which are: replication and teamwork. 

Through this work we propose to evaluate the agent criticality using two different levels: the local level where 

the agent criticality is calculated according to its local plan of actions and the external level that concerns the 

different relations between the concerned agent and the other system's agents. The criticality evaluation makes it 

possible to divide the system's agents into two main groups. The first group called the critical group uses the 

active replication. The non critical group, however, uses the passive replication. Three other agents are added to 

the system in order to guarantee the approach efficiency. 

 

KeyWords: agent local criticality, agent external criticality, hybrid approach, action initial criticality, action 

dynamic criticality. 
 

 

1. Introduction 
 Multi-agent systems are prone to the same failures 

that can occur in any distributed software system. A 

system faults are classified into to main classes: 

• Software faults: those are caused by burgs 

in the agent program or in the supporting 

environment. 

• Hardware faults: these faults are related to 

material failures such as: machine crash, 

communication breakdown… 

Several researches are addressed to solve the 

problem of fault tolerance in multi-agent systems 

using different strategies. The most important ones 

are based on the concept of replication. There are 

different strategies to apply replication, the static 

strategy which decides and applies replication at 

design time like in [1], [2] and [3]. The dynamic 

strategy applies replication during the processing 

time. This strategy introduces the notion of agent 

criticality. It is used by [4] and [5]. According to 

the relation between the agent and its replicas there 

are two different types of replication. The passive 

replication that is defined as the existence of one 

active replica that processes all input messages and 

transmits periodically its current state to the other 

replicas in order to maintain coherence and to 

constitute a recovery point in case of failure [6]. 

The active replication is defined as the existence of 

several replicas that process concurrently all input 

messages [7]. 

This article introduces an approach for fault 

resistance in dynamic multi-agent systems. Our 

approach is based on the criticality calculation 

using agent's plan to determine the agent local 

criticality. The interdependence relations are used 

to calculate the agent external criticality. According 

to their criticalities agents will be oriented towards 

two different groups: the critical group managed by 

an agent called the supervisor, this group uses the 

active replication strategy. The other group uses the 

passive replication strategy and it is managed by an 

agent called the controller. 

The whole system is controlled by the decision 

agent that initializes agents to criticality evaluation 

and decides which agents are the most critical. 

Our approach is general because, first, it is hybrid, 

it uses the passive and the active replication 

strategies at the same time; and it uses two levels of 

criticality evaluation (the local level and the 

external level). Through this approach we calculate 

the agent criticality dynamically. 

The rest of this paper is organized as follows: 

section2 covers the related works in the field of 

fault tolerance. Section3 gives a description to the 

proposed approach based on dynamic replication. 

Section4 describes the general architecture of the 



system, and finally, Section5 that gives an insight 

into our future directions and concludes the paper. 

 

 

2. Review of Related Works 
 Here we review some important works dealing 

with fault tolerance in multi-agent systems.  

Hagg [2] proposes a strategy for fault tolerance 

using sentinels. The sentinel agents listen to all 

broadcast communications, interact with other 

agents, and use timers to detect agent crashes and 

communicate link failure. So, sentinels are guardian 

agents which protect the multi-agent system from 

failing in undesirable states. They have the 

authority to monitor the communications in order to 

react to fault. The main problem within this 

approach is that sentinels also are subject of faults.  

Kumar and al [1] introduce a strategy based on 

Adaptive Agent Architecture. This strategy uses the 

teamwork to cover a multi-agent system from 

broker failures. This approach does not deal 

completely with agent failures since only some 

agents (the brokers) or part of them can be 

replicated. 
A strategy based on transparent replication is 

proposed by [3]. All messages going to and from a 

replicated group are funneled through the replicate 

group message proxy. This work uses the passive 

replication strategy. 

These several approaches apply the replication 

mechanism according to the static strategy which 

allows replication at design time. But recent 

applications and mainly those which use the multi-

agent systems are very dynamic the fact that makes 

it too difficult to determine the critical agents at the 

design time. There are other proposed works that 

other use the dynamic replication strategy such as: 

Guesssoum and al [4] introduce an automatic and 

dynamic replication mechanism. They determine 

the criticality of an agent using various data such 

as: time processing, the role taken by an agent in 

the system… This mechanism is specified for 

adaptive multi-agent systems. They focus their 

work the platform DIMA [8].             

Almeida A. and al [9] propose a method to 

calculate the criticality of an agent in a cooperative 

system. They use agent plan as the basic concept in 

order to determine critical agent. This work uses the 

framework DARX [10]. 

These two works use the dynamic replication that 

allows replication at the processing time. This 

strategy requires the criticality calculation. The 

agent criticality is defined as the impact of a local 

failure of an agent on the whole system [11]. The 

dynamic strategy is more important than the static 

one when dealing within dynamic applications, but 

it must use a mechanism able to determine when it 

is necessary to duplicate agents. 

 

 

 

 

3. The Hybrid Approach 
Agents are subject of failure that can cause the 

whole system failure. We propose an approach to 

introduce fault tolerance in dynamic multi-agent 

systems by the use of two main concepts which are: 

replication and teamwork. Under our approach the 

two replication strategies are used (active and 

passive). Since we deal with dynamic multi-agent 

systems, we will use the dynamic replication, which 

means that agents are not duplicated at the same 

time and within the same manner. The question that 

arises, therefore, is which are the agents to be 

replicated? 

 

 

4. The Criticality Evaluation 

The agent criticality denoted CX is defined as the 

impact of a local failure of the agent X on the 

dysfunction of the whole system. An agent that 

causes a total failure of the system will have a 

strong criticality. 

 The criticality evaluation in our approach is 

realized at two main levels: 

• The local level: here we determine the 

agent criticality using its plan of actions. 

• The external level: In order to achieve its 

current goal the agent does not only use its own 

data but it relies on other agents. So, we try to 

evaluate the agent external criticality using the 

relations between agents. 

 

4.1 Agent Local Criticality 
In order to calculate the agent local criticality, we 

defined an agent according to the model proposed 

by [12]. Each agent is composed of the following 

elements: 
• Goals: the goals an agent wants to 

achieve. 

• Actions: the actions the agent is able to 

perform. 

• Resources: the resources an agent has 

control on. 

• Plans: the plan represents the sequence of 

actions that the agent has to execute in order to 

achieve a certain goal. 

 

4.1.1 Agent Plan 
We conceder that each agent knows the actions 

sequence that he has to execute in order to achieve 

its current goal. Therefore, we propose the use of a 

graph to represent the sequence of actions called 

agent's plan. These plans are established for short 

terms because the environment considered is 

dynamic. The graph that we use in this work is 

inspired from that proposed by [9]. The agent plan 

is represented by a graph where the nodes represent 

actions and edges represent relations between 

actions. These relations are the logical functions 

AND and OR. A node n which is connected to k 

other nodes (n1, n2... nk) using AND edges 

represents an action that will be achieved only if all 



its following actions are executed. However, a node 

n connected to its k followers using OR edges 

represents an action that is achieved if only one 

following action is executed. The work proposed in 

[5] uses a different description concerning the agent 

plan and it proposes the existence of internal and 

external actions. However, we are interested to 

actions which are executed by the agent (local 

actions), Thus, according to our description an 

agent X will be represented as follows (Figure 1): 

       

 

       

    

 

 

 

   

 

 

    

 

      

 

  
 

       

Figure 1. Agent X plan. 

 

4.1.2 Action criticality 
In this paper we propose the use of two types of 

action’s criticality: the action initial criticality given 

by the designer, and the action dynamic criticality 

calculated according to the agent plan. 

Thus, the criticality of an action A denoted CA is 

calculated as follows: 

 

CA = initial criticality + dynamic criticality 

CA= CIA + CDA 

 

4.1.3 Action Initial Criticality 
 We admit that a critical agent is the one which 

executes critical actions. And we propose the 

following criteria to define the initial criticality of 

an action:  

• An action which can be done by several 

agents can be regarded as being not too critical, but 

if an other action is done by few agents it will be 

regarded as a critical one. 

• The number of necessary resources that 

are required for the execution of an action can be 

also a factor to determine the initial criticality of an 

action. When an action requires many resources to 

be executed, it introduces a strong criticality. 

• Hardware data influence, also, the action 

initial criticality. 

• Finally, according to the application 

field, the designer can determine semantic 

information that can define the initial criticality of 

an action.  

Thus, at the design time each action A has a value 

called the initial criticality denoted CIA.   

 

4.1.4 Action Dynamic Criticality 
The dynamic criticality of an action denoted CD is 

defined as the value attributed to an action 

according to its position in the agent plan. There is 

one factor that can influence the action criticality 

which is the set of its following actions. 
 We use the function MULTIPLICATION to 

represent the following actions influence on the 

considered action when they are connected using 

AND edges. Since we have indicated that when an 

action A connected to its followers (B1, B2,…, Bk) 

by AND edges, the achievement of A implies that 

all its following actions are achieved. If we 

represent the actions with a group of sets we will 

have the following result: 

 

A= (B1∩B2∩...∩Bk ). 

CA = CIA + (CB1 * CB2 *...* CBK) 

 

One other function SUM is used to represent the 

case where one action is connected to its followers 

by OR edges. If we consider action B2  (figure 1)  

connected to    its  followers   (C1, C2, …, Cn) by 

OR edges,  in term of sets we will have: 

 

B2 = (C1 ∪ C2 ∪...∪ Cn ) 

 

Thus, B2 criticality is calculated as follows: 

 

CB2 = CIB2 + (CC1 + CC2 +...+ CCn) 

 

 An action which has no follower is called a 

terminal action. The dynamic criticality of a 

terminal action equals to 0. This means that the 

criticality of a terminal action equals to its initial 

criticality. 
 

4.1.5 Agent Local Criticality Calculation 
In order to determine the agent local criticality, we 

admit that each agent knows at an instant t the 

actions sequence which it has to execute to achieve 

its current goal. The local criticality of agent CL agent   

is calculated as follows:  

                        

CL agent =  Sum ( Caction1 +....+ Caction n). 

 

This criticality calculation is made directly by the 

agent. 
 

Example: 
Let's calculate the agent local criticality following 

the agent plan (Figure2): 

 

 

 

 

 

 

Agent X 

A 

OR 

AND 

   B1         B2         Bk      

   C1         C2         Cn      

AND 
AND 

OR 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure2. Agent X plan 

 

Table1.The initial actions criticalities. 

 

CIA  CIB CIC CID CIE 

2 1 3 5 10 

 

Table1. 

CA =  CIA + (CB * CC)    

CB = CIB                                                

      = 1     B is a terminal action.  

CC = CIC + (CD + CE) 

CD = CID = 5    D is a terminal action 

CE = CIE = 10 

CC = 18       

CA = 20 

 

The local criticality of agent X:  

C LX = (CA + CB + CC + CD + CE )  

     = 54. 

 

4.2 Agent External Criticality:   
According to the agent definition shown in the 

previous section the agent possesses a set of plans. 

Each plan is formed of a sequence of actions that 

the agent has to execute in order to achieve its 

current goal. These actions do not necessarily 

belong to the agent set of actions; therefore, an 

agent may depend on other agents to carry on a 

certain plans.  
There are six different dependence situations 

identified by [12]. Through this work we are 

interested to two main dependence relations which 

are: 

• The cooperative relation when an agent 

infers that he and other agents are depending on 

each other to realize the same current goal. 

• The adoptive relation the situation when 

an agent infers that he and other agents are 

depending on each other to realize different current 

goals. 

The relation between agents is defined in our model 

using the following set: 

  

Set = {T, P, N}  

    

T: represents the relation type, it can be cooperative 

or adoptive. 

P: is the relation weight, here it represents the sum 

of the initial criticalities of the actions that are 

executed using this relation: 

P = Sum CI  of the actions executed using the relation 

 

 N: the number that represent the agents having the 

same current goal. 

The external criticality in this case is calculated as 

follows: 

Cex agent = p/N  

     

  In adoptive case N = 1. 

 

4.3 Agent Criticality  
The agent criticality denoted Cagent is considered as 

agent propriety, it is calculated by the agent directly 

using the following relation: 

 

Cagent = CL agent + Cex agent 

 

4.4 Determine the Most Critical Agents 
Each agent must pass the calculated criticality at 

the instant t to an other agent called the decision 

agent. This later uses these values to determine the 

most critical agents. According to usual arithmetic, 

the median value of N numbers gives an index to 

divide a unit into two parts. The decision agent uses 

the following algorithm in order to determine the 

two groups of agents. 

  

Algorithm: decision 

Begin 

Sumcriticalities           0 

For each agent I do 

   Read Cagent i               /* Cagent i the criticality of the 

agent I*/ 

 /* the sum of agents criticalities calculation*/ 

Sumcriticalities          Sumcriticalities + Cagent i  

For each agent I do 

If (Cagent i >= Sumcriticalities / number of the 

agents) Then 

    GT =1 

Else   

    GT=2 

    /* GT is an agent property, if GT=1 then the 

agent is affected to the critical group, else it is in 

the other group*/ 

End. 

 

Finally, agents are oriented towards two different 

groups.  

 

4.5 Criticality Re-Evaluation 
The criticality calculated in the previous sections is 

determined at the instant t; it must be updated 

throughout the execution since our system is 

dynamic. We propose a solution based on two 

strategies:  

• Time strategy: the decision agent has a 

clock that gives alarms to re-evaluate agents' 

criticalities at each fixed time interval ∆t. 

E 

A 

B C 

D 

OR 

AND 

Agent X 



• Event strategy: There are many events 

that act on the system and caused criticality 

revision such as: an agent failure, a machine failure. 

 

 4.6 Determine the Agents Groups 
The concept of teamwork is used by different 

approaches such as [1] and [2]. Concerning this 

approach, criticality calculation leads to the 

creation of two agents' groups. This stage makes it 

possible to determine a strategy for fault tolerance. 

• The critical agents' group: uses the active 

replication. Each critical agent will have only one 

active replica called the follower. This later is an 

agent that has the same plan and executes the same 

action processed by the critical agent but after the 

reception of a permission message sent from the 

supervisor. The supervisor is an agent that 

guarantees the management of the critical group. 

• The no critical agents' group: this group 

uses the passive replication strategy. Each no 

critical agent will have only one passive replica. It 

is the no critical agent that executes all the actions 

and transmits its current state. If the active agent is 

lost its replica is activated by an other agent called 

the controller which is the group's manager. 

    The criticality revision is done by the decision 

agent according to two factors: time-driven factor 

and event-driven factor .When an agent is 

considered as critical at a given time t. It establishes 

a contract with the supervisor agent. So, the agent 

will have an active replica. If at the instant t + ∆t, 

the re-evaluation of the criticality considered the 

same agent as no critical its contract will be 

deleted. And one other contract will be established 

within the controller. 

 

 

5. System Architecture 
In order to guarantee fault tolerance in dynamic 

multi-agent systems, we have added three agents 

that allow error detection and data recovering. The 

general architecture of the system is given by the 

following diagram (figure3): 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure3. The system's architecture. 

 

DA: The Decision Agent. 

SUP: The Supervisor. 

CONT: The Controller. 

SA: The system's Agents. 

CG: Critical Group. 

NCG: Non Critical Group.          
The system consists of the dynamic multi-agent 

system and the three added agents: the decision 

agent that controls the whole system, the supervisor 

which manages the critical group and the manager 

of the no critical group called the controller. 
 

5.1 The Decision Agent 
This agent offers two fundamental services. First it 

determines critical agents the fact that allows the 

division of the whole system into two main groups. 

And it initializes the agents to the process of 

criticality re-evaluation following the dynamicity of 

the system. 

We use the concept of the sequence diagram [13] in 

order to represent the decision agent's role as 

follows (Figure 4). 

                         

                                                                                                                                                     

 

                

 

              
 

 

 

 

 

 

 

 

 

Figure 4. The sequence diagram for the decision agent. 

 

DA: The Decision Agent. 

SA: The System's Agent. 

SUP: The Supervisor. 

CONT: The Controller. 

1: The Criticality Evaluation. 

2: Pass the Criticality C. 

3: Decision. 

4: GT= 1. 

5: Establish contract with the Supervisor. 

6: GT= 2. 

7: Establish contract with the Controller. 

 

5.2 The Supervisor 
This agent allows the active replication. During 

execution time, the critical agent transmits 

periodically its current state to the supervisor, this 

latter gives permission messages in order to 

validate the replica's execution. 

The supervisor allows also failure detection. This 

service makes it possible to detect if an agent is still 

alive and that it does not function in a synchronous 

environment [14]. The supervisor achieves this 

service within the use of a clock that initializes the 

control messages sent to the critical agents. Each 

activated (critical replica) has a failure – timer 

which gives the max time used by the agent to 

answer. If the agent does not give an answer a 

failure is detected. 

 
 

 
 

DA 

SUP CONT 

ِCG SA 
NCG 

DA         SA         SUP                          CONT  

   3 
4 

6  

5  

1  

2  

7  



Since the failure detection, the supervisor creates a 

replica and the follower takes up the failed agent. 

The supervisor's services are represented by the 

following diagram (Figure 5).                                  

          

                 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The sequence diagram for the supervisor 

 

1: Establish contract. 

2: Active replication process. 

3: Current state's message. 

4: Permission message. 

5: Controlling message. 

6: Yes. 

7: Answer. 

8: No. 

9: T > Max Time. 

10: Agent recovering. 

 

5.3 The Controller 
It is the no critical agent group's manager it allows 

agent replication using the passive strategy. This 

agent verifies and detects failure among its group's 

agents using the same technique employed by the 

supervisor. Since the detection of failure, the 

passive replica will be active and an other passive 

replica will be added. The controller's sequence 

diagram is represented as follows (Figure 6): 

          

                 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The sequence diagram for the controller. 

  
1: Establish contract. 

2: Passive replication process. 

3: Current state's message. 

4: Controlling message. 

5: Yes. 

6: Answer. 

7: No. 

8: T > Max Time. 

9: replica activated + Agent recovering. 

 

 

6. Conclusion 
This article proposes a rich approach for fault 

resistance in dynamic multi-agent systems based on 

replication and teamwork. We use the two 

strategies (active and passive) within the existence 

of one strong replica at one time; this fact allows 

the decreasing of charges. In order to guarantee 

failure detection and system controlling three other 

agents are added.  

In further work, we are interesting to propose a 

more formal model for criticality calculation and to 

validate our approach trough implementation. 

 

 

7. References: 
[1] S.Kumar, P. R Cohen., H.J. Levesque,"The         

adaptive   agent    architecture:   achieving fault-

tolerance using persistent broker teams”, The 

Fourth International Conference on Multi-Agent 

Systems (ICMAS 2000), Boston, MA,    USA, July 

7-12, 2000. 

 

[2] S. Hagg ," A sentinel Approach to Fault 

Handling in Multi-Agent Systems  ",  Proceedings  

of  the second Australian Workshop on Distributed 

AI, Cairns, Australia, August 27, 1996. 

 

[3] A.  Fedoruk, R. Deters, "Improving  fault – 

tolerance   by  replicating   agents",  Proceedings 

AAMAS-02, Bologna, Italy, P. 144-148. 

 

[4] Z.Guessoum  , J-P.Briot,  N.Faci, O. Marin,  

"Un  mécanisme de réplication adaptative pour des 

SMA tolérants aux pannes ", JFSMA, 2004. 

 

[5] A. Almeida, S. Aknine, et al, "Méthode  de 

réplication  basée sur  les  plans  pour  la  tolérance  

aux pannes des systèmes multi-agents ", JFSMA, 

2005. 

 

[6] M. Wiesmann, F. Pedone, A. Schiper, et al, 

"Database replication techniques :  a three 

parameter classification". Proceedings of 19th IEEE 

Symposium on Reliable Distributed Systems 

(SRDS2000),Nüenberg ,Germany, October 2000 . 

IEEE Computer Society. 

 

[7] O. Marin,"Tolerance aux Fautes", Laboratoire 

d'Informatique de Paris6, Université PIERRE & 

MARIE CURIE. 

 

[8] N. Faci,  Z. Guessoum, O. Marin,"DIMAX:  A  

Fault  Tolerant  Multi - Agent  Platform". 

SELMAS' 06. 

 

Active replica The supervisor  

10 

1 

2 

3 

4 

5  

Critical agent  

7 

8  9 

6  

   Passive replica The Controller  

9 

1 

2 

3 

4  

Non critical agent  

6 

7  8 

5  



[9] A. Almeida, and al, "Plan-Based Replication for 

Fault Tolerant Multi-Agent Systems", IEEE 2006. 

 

[10] O. Marin, P. Sens,"DARX: A  Framework  For  

Tolerant  Support  Of  Agent Software", 

Proceedings of the 14
th

 International Symposium on 

Software Reability Engineering, IEEE,2003. 

 

[11] A. Almeida, S. Aknine, et al,"A Predective 

Method for Providing Fault  Tolerance in  Multi-

Agent Systems",, Proceedings of the IEEE / 

WIC/ACM International Conference of Intelligent 

AgentTechnologie (IAT'06).  

 

[12] J. S. Sichman, R. Conte, et al,"A Social 

Reasoning Mechanism Based On Dependence 

Networks". ECAI 94, 11
th

 European Conference On 

Artificial Intelligence, 1994. 

 

[13]  M. Jaton,"Modélisation Objet avec UML", 

cours,chapitre13.       

http://www.iict.ch/Tcom/Cours/OOP/Livre/LivreO

OPTDM.html.  

 

[14] M. Fischer, N. Lynch, M. Patterson, 

"Impossibility of distributed consensus with one 

faulty process". JACM, 1985.  

 

                                                   

 

 

 

 

 

 


