
Digital forensic techniques for static analysis of NTFS images

Mamoun Alazab
Internet Commerce Security Laboratory

University of Ballarat, Australia
m.alazab@ballarat.edu.au

Sitalakshmi Venkatraman
Internet Commerce Security Laboratory

University of Ballarat, Australia
s.venkatraman@ballarat.edu.au

Paul Watters
Internet Commerce Security Laboratory

University of Ballarat, Australia
p.watters@ballarat.edu.au

ABSTRACT
Static analysis of the Windows NT File System (NTFS) which is the standard and most
commonly used file system could provide useful information for digital forensics. However,
since the NTFS disk image records every event in the system, forensic tools need to process an
enormous amount of information related to user / kernel environment, buffer overflows, trace
conditions, network stack and other related subsystems. This leads to imperfect forensic tools
that are practical for implementation but not comprehensive and effective. This research
discusses the analysis technique to detect data hidden based on the internal structure of the NTFS
file system in the boot sector. Further, it attempts to unearth the vulnerabilities of NTFS disk
image and the weaknesses of the current forensic techniques. This paper argues that a
comprehensive tool with improved techniques is warranted for a successful forensic analysis.

Key Words: NTFS, Forensics, disk image, data hiding.

1. Introduction
Digital forensics is the science of
identifying, extracting, analyzing and
presenting the digital evidence that has been
stored in the digital electronic storage
devices to be used in a court of law [1, 2, 3].
It attempts to provide full descriptions of a
digital crime scene. In computer systems, the
primary goals of digital forensic analysis are
fivefold: i) to identify all the unwanted
events that took place, ii) to ascertain their
effect on the system, iii) to acquire the
necessary evidence to support a lawsuit, iv)
to prevent future incidents by detecting the
malicious techniques used and v) to
recognize the incitement reasons and

intendance of the attacker for future
predictions [4]. The general component in
digital forensic process are; acquisition,
preservation, and analysis [5].
Digital electronic evidence could be
described as the information and data of
investigative value that are stored by an
electric device, such evidence [6]. This
research focuses on the third goal of
acquiring the necessary evidence of
intrusions that take place on a computer
system. In particular, this paper investigates
the digital forensic techniques that could be
used to analyze and acquire evidences from
the most commonly used file systems on

computers, namely, Windows NT File
System (NTFS).

Today, NTFS file system is the basis of
predominant operating systems in use, such
as Windows 2000, Windows XP, Windows
Server 2003, Windows Server 2008,
Windows Vista, Windows 7 and even in
most free UNIX distributions [7, 8, 9].
Hence, attackers try to target on NTFS as
this could result in affecting more computer
users. Another compelling reason for
witnessing a strong relationship between
computer crime and the NTFS file system is
the lack of literature that unearth the
vulnerabilities of NTFS and the weaknesses
of the present digital forensic techniques
[10]. This paper attempts to fill this gap by
studying the techniques used in the analysis
of the NTFS disk image. Our objectives are
i) to explore the NTFS disk image structure
and its vulnerabilities, ii) to investigate
different commonly used digital forensic
techniques such as signatures, data hiding,
timestamp, etc. and their weaknesses, and
iii) finally to suggest improvements in static
analysis of NTFS disk image.

2. Research Methodology
In order to achieve the above mentioned
objectives of this research work, we
conducted an empirical study using selected
digital forensic tools that are predominantly
used in practice. Several factors such as
effectiveness, uniqueness and robustness in
analyzing NTFS disk image were considered
in selecting the tools / utilities required for
this empirical study. Since each utility does
some specific functionality, a collection of
such tools were necessary to perform a
comprehensive set of functionalities. Hence,
the following forensic utilities / tools were
adopted to conduct the experimental
investigation in this research work:

i) Disk imaging utilities such as dd [11]
or dcfldd V1.3.4-1 [12] for
obtaining sector-by-sector mirror
image of the disk;

ii) Evidence collection using utilities
such as Hexedit [13], Frhed 1.4.0[14]
and Strings V2.41[15] to introspect
the binary code of the NTFS disk
image;

iii) NTFS disk analysis using software
tools such as The Sleuth KIT (TSK)
3.01[16] and Autopsy [17] and
NTFSINFO v1.0 [18] to explore and
extract intruded data as well as
hidden data for performing forensic
analysis.

Test data for the experimental investigation
with the above tools was created on a
Pentium (R) Core (TM) 2 Due CPU, 2.19
GHz, 2.98 of RAM with Windows XP
professional that adopts the NTFS file
system partition. In this research, we focus
on the boot sector of the NTFS disk image
for the empirical study. We adopt the
following three steps to perform digital
forensic analysis in a comprehensive
manner:

i) Hard disk acquisition,
ii) Evidence searching and
iii) Analysis of NTFS file system.

2.1 Hard Disk Data Acquisition
In this step, we used the dcfldd developed by
Nicholas Harbour and dd utility from
George Garner to acquire the NTFS disk
image from the digital electronic storage
devices since they are simple and flexible
acquisition tools. The advantage of using
these tools is that we could extract the data
in or between partitions to a separate file for
more analysis, and in addition, it provides
built-in MD5 hashing features. Some of its
salient features allow the analyst to
calculate, save, and verify the MD5 hash
values. In digital forensic analysis, using
hashing technique is important to ensure
data integrity and to identify whether the
value of data has been changed as well as
explore known data objects [19].

2.2 Evidence searching

An evidence of intrusion could be gained by
looking for some known signatures,
timestamps as well as even searching for
hidden data [20]. In this step, we used
Strings command by Mark Russinovich,
Frhed hexeditor tool by Rihan Kibria and
WinHex hexeditor tool by X-Ways Software
Technology AG to detect a keyword or
phrase from the disk image.

2.3 Analysis of NTFS File System
The final step in the experimental
investigation is to analyze the data obtained
from the NTFS disk image that contribute
towards meaningful conclusions of the
forensic investigation. We adopted a
collection of tools such as the Sleuth Kit
(TSK) and Autopsy Forensic by Brian
Carrier and NTFSINFO v1.0 from Microsoft
Sysinternals by Mark Russinovich to
perform different aspects of the NTFS file
system analysis.

3. Analysis of the boot sector of the
NTFS disk image
The first step for a digital forensic
investigator is to acquire a duplicate copy of
the NTFS disk image before beginning the
analysis so as to ensure that the data on the
original devices have not been changed
during the analysis. Therefore, it is required
to isolate the original infected computer to
extract the evidence that could be found on
the electronic storage devices from the disk
image as the image captures the invisible
information as well [21]. The advantages of
analyzing disk images are that the
investigators can: a) preserve the digital
crime-scene, b) obtain the information in
slack space, c) access unallocated space, free
space, and used space, d) recover file
fragments, hidden or deleted files and
directories, e) view the partition structure
and f) get date-stamp and ownership of files
and folders [3, 22].

To understand how intrusions can lead to
data hiding, deleting, etc. and to facilitate
recovery, it is essential to understand the
physical characteristics of the Microsoft
NTFS file system. Master File Table
(MFT) is the core of NTFS since it contains
details of every file and folder on the volume
and allocates two sectors for every MFT
entry [23]. Each MFT entry has a fixed sized
which is 1 KB (At byte offset 64 in the boot
sector to identify the MFT record size). We
provide the MFT layout and represent the
plan of the NTFS file system using Figure 1.
NTFS exists to read and write the attributes
instead of read and write the file content.
The MFT enables a forensic analyst to
examine in some detail the structure and
working of the NTFS volume. Therefore, it’s
important to understand how the attributes
are stored in the MFT entry.

Figure 1: MFT layout structure.

MFT entry within the MFT contains
attributes that can have any format and any
size. Further, as it shows in Figure 1, every
attribute contains an entry header which is
allocated in the first 42 bytes of a file record,
and it contains an attribute header and
attribute content. The attribute header is used
to identify the size, name and the flag value.
The attribute content can reside in the MFT
followed by the attribute header if the size is
less than 700 bytes (known as a resident
attribute), otherwise it will store the attribute
content in an external cluster called cluster
run (known as a non-resident attribute).
This is because; the MFT entry is 1KB in

size and hence cannot fit anything that
occupies more than 700 bytes.

Metadata files are used to describe the file
system. We created a NTFS disk image of
the test computer using the dd utility and
investigated the boot sector. We used
NTFSINFO tool on the disk image as shown
in Table 1 which shows the boot sector of
the test device and information about the on-
disk structure: it enables you to view the
MFT information, allocation size, volume
size and metadata files. We extracted
information such as the size of clusters,
sector numbers in the file system, starting
cluster address of the MFT, the size of each
MFT entry and the serial number given for
the file system.

Volume Size

Volume size : 483 MB
Total sectors : 991199
Total clusters : 123899

Free clusters : 106696
Free space : 416 MB (86% of drive)

Allocation Size

Bytes per sector : 512
Bytes per cluster : 4096
Bytes per MFT record : 1024
Clusters per MFT record: 0

MFT Information

MFT size : 0 MB (0% of drive)
MFT start cluster : 41300
MFT zone clusters : 41344 - 56800
MFT zone size : 60 MB (12% of drive)
MFT mirror start : 61949

Meta-Data files

Table 1: NTFS Information Details.

From the information gained above and from
analyzing the boot sector image as shown in
Figure 2, we performed an analysis of the
data structure of this boot sector and this is
summarized in Table 2.

Figure 2: First Sector of the test boot Sector.

Byte
Range

Size Description Value Note

 0 -- 2 3 Jump to boot code 9458411
If bootable, jump. If non-
bootable, used to store error
message

 3 -- 10 8 OEM Name – System ID NTFS
11 -- 12 2 Bytes per sector: 512
13 -- 13 1 Sectors per cluster 8
14 -- 15 2 Reserved sectors 0 Unused
16 -- 20 5 Unused 0 Unused
21 -- 21 1 Media descriptor 0
22 -- 23 2 Unused 0 Unused
24 -- 25 2 Sectors per track 63 Not Check
26 -- 27 2 Number of heads 255 Not Check
28 -- 31 4 Unused 32 Not Check
32 -- 35 4 Unused 0 Unused

36 -- 39 4 Drive type check 80 00 00 00 For USB thumb drive

40 -- 47 8
Number of sectors in file
system (volume)

0.47264 GB

48 -- 55 8
Starting cluster address of
$MFT

4*8=32

56 -- 63 8
Starting cluster address of MFT
Mirror
$DATA attribute

619,49

64 -- 64 1 Size of record - MFT entry 210=1024
65 -- 67 3 Unused 0 Unused
68 -- 68 1 Size of index record 01h
69 -- 71 3 Unused 0 Unused
72 -- 79 8 Serial number C87C8h
80 -- 83 4 Unused 0 Unused
84 -- 509 426 Boot code ~

510 --511 2 Boot signature 0xAA55

Table 2: Data structure for the test boot sector

4. Analysis of the Hidden Data in
the $Boot metadata file system
Attackers use different techniques such as
disguising file names, hiding attributes and
deleting files to intrude the system. Since
the Windows operating system does not zero
the slack space, it becomes a vehicle to hide
data, especially in $Boot file. Hence, in this
study, we analyze the hidden data in the
$Boot file. The $Boot entry is stored in a
metadata file at the first cluster in sector 0 of
the file system called $Boot from where the
system boots. It is the only metadata file that
has a static location so that it cannot be
relocated. Microsoft allocates the first 16
sectors of the file system to $Boot and only

half of these sectors contains non-zero
values [3].

NTFS file system requires knowledge and
experience to analyze the data structure and
the hidden data [24]. The $Boot metadata
file is located in MFT entry 7 and contains
the boot sector of the file system. It contains
information about the size of the volume,
clusters and the MFT. The $Boot metadata
file has four attributes:
$STANDARD_INFORMATION,
$FILE_NAME,
$SECURITY_DESCRIPTION and $DATA.
The $STANDARD_INFORMATION
attribute contains temporal information such

as flags, owner, security ID and the last
accessed, written, and created times. The
$FILE_NAME attribute contains the file
name in Unicode, the size and temporal
information as well. The
$SECURITY_DESCRIPTION attribute
contains information about the access
control and security properties. Finally, the
$DATA attribute contains the file contents.
These are illustrated for the test sample as
shown in Table 2 using the following TSK
command tools:
Istat –f ntfs c:\image.dd 7

MFT Entry Header Values:
Entry: 7 Sequence: 7
$LogFile Sequence Number: 0
Allocated File
Links: 1

$STANDARD_INFORMATION Attribute Values:
Flags: Hidden, System
Owner ID: 0
Created: Mon Feb 09 12:09:06 2009
File Modified: Mon Feb 09 12:09:06 2009
MFT Modified: Mon Feb 09 12:09:06 2009
Accessed: Mon Feb 09 12:09:06 2009

$FILE_NAME Attribute Values:
Flags: Hidden, System
Name: $Boot
Parent MFT Entry: 5 Sequence: 5
Allocated Size: 8192 Actual Size: 8192
Created: Mon Feb 09 12:09:06 2009
File Modified: Mon Feb 09 12:09:06 2009
MFT Modified: Mon Feb 09 12:09:06 2009
Accessed: Mon Feb 09 12:09:06 2009

Attributes:
Type: $STANDARD_INFORMATION (16-0)
Name: N/A Resident size: 48
Type: $FILE_NAME (48-2) Name: N/A Resident
size: 76
Type: $SECURITY_DESCRIPTOR (80-3) Name:
N/A Resident size: 116
Type: $DATA (128-1) Name: $Data Non-Resident
size: 8192
0 1

Table 2: “$Boot Attributes”

Hence the $Boot attribute of the NTFS file
system could be used to hide data. By
analyzing the hidden data in the boot sector,

one could provide useful information for
digital forensics. The size of the data that
could be hidden in the boot sector is limited
by the number of non-zero that Microsoft
allocated in the first 16 sectors of the file
system. The data could be hidden in the
$Boot metadata files without raising
suspicion and without affecting the
functionality of the system [25].

Analysis of the $Boot attribute of the NTFS
file system will identify any hidden data.
The analyzer should start by making a
comparison between the boot sector and the
backup boot sector. The image with the boot
sector and backup boot sector are supposed
to be identical; otherwise there is some data
hidden on the $Boot file. One method is to
check the integrity of the backup boot sector
and the boot sector by calculating the MD5
for both of them. A difference in checksum
indicates that there is some hidden data. We
performed this comparison by adopting the
following commands on the $Boot image
file and the backup boot image, see the
applied below:

dd if=image.dd bs=512 count=1 skip=61949
of=c:\backupbootsector.dd –md5sum –
verifymd5 –md5out=c:\hash1.md5

dd if=image.dd bs=512 count=1
of=c:\bootsector.dd –md5sum –verifymd5 –
md5out=c:\hash2.md5

We found that hidden data in the $Boot file
was not detected directly by the tools used in
this study and manual inspections were
required alongside these forensic tools.
Hence, through the analysis conducted with
various utilities and tools, we arrived at the
following results:

1. There is a huge amount of data
analysis required while scanning the
entire NTFS disk image for forensic
purposes. Just by focusing on the
hidden data in the $Boot, this
empirical study showed that many

tools and utilities have to be adopted
and it takes an immense amount of
time to analyze the data derived.

2. Not all computer infections are
detected by forensic tools, especially
intrusions that are in the form of
hidden data in the $Boot file.

3. By adopting a manual introspection
of the $Boot file using the three-step
approach of i) hard disk
acquisition, ii) evidence searching
and iii) analysis of the NTFS file
system, we could identify hidden
data in the $Boot file.

4. Searches can be performed to extract
the ASCII and UNICODE characters
from binary files in the disk image on
either the full file system image or
just the unallocated space, which
could speed-up the process of
identifying hidden data.

5. Microsoft has different versions of
the NTFS file system. While
Windows XP and Windows Server
2003 use the same version, Windows
Vista uses the NTFS 3.1 version [7].
The new NTFS 3.1 has changed the
on-disk structure. For example, the
location of the volume boot record is
at physical sector 2,048. Not all
existing tools work with all the
different versions of NTFS file
system, hence a comprehensive tool
is warranted even with the changes in
the NTFS file structure.

5. Conclusions and Future Work
This paper has attempted to explore the
difficulties involved in digital forensics,
especially in conducting static analysis of
NTFS disk images and propose a solution
method. In this empirical study, we have
found the boot sector of the NTFS file
system could be used as a vehicle to hide
data by computer attackers. This is an
important NTFS file system weakness to be
addressed as research in this domain area
could lead to effective methods for the open

problem of detecting new malicious codes
that use this mode of attack. The existing
forensic software tools are not competent
enough to comprehensively detect hidden
data in boot sectors. As a first step to
address this problem, we have formulated a
three-step forensic analysis process to
facilitate the research methodology. We
have reported the results gathered by
adopting this process. One clear
achievement through this research study is
that we were successful in identifying some
unknown malicious hidden data in the $Boot
file that were hidden from current well-
known virus scanners. The research
methodology reported in this paper could be
adopted to analyze other sectors of the NTFS
file system as well.

In this initial research investigation
conducted, we had adopted a few forensic
techniques and manual inspections of the
NTFS file image. Our next stage of this
research work would be to automate the
proposed process so as to facilitate forensic
analysis of the NTFS disk image in an
efficient and comprehensive manner. We
plan to extract signatures intelligently so as
to detect efficiently new malware that use
hidden and obfuscated modes of attack.
This would help trigger more research to be
conducted in satisfying the objective of
automatically and proactively identifying
unseen malware that try to evade detection.

References:

[1] Reith, M.; Carr, C. & Gunsch, G., “An
examination of digital forensic models”,
International Journal of Digital
Evidence, 2002, 1, 1-12.

[2] Technical Working Group for Electric
Crime Scene Investigation. “Electronic
Crime Scene Investigation: A Guide for
First Responders”, 2001.

[3] Carrier, B., “File system forensic
analysis”, Addison-Wesley Professional,
USA, 2008.

[4] Ardisson, S. ,”Producing a Forensic
Image of Your Client’s Hard Drive?
What You Need to Know”, Qubit, 2007,
1, 1-2.

[5] Andrew, M., “Defining a Process Model
for Forensic Analysis of Digital Devices
and Storage Media”, Systematic
Approaches to Digital Forensic
Engineering, 2007, SADFE 2007.
Second International Workshop on,
2007, 16-30.

[6] Investigation, E., “Electronic Crime
Scene Investigation: A Guide for First
Responders”, US Department of Justice,
NCJ, 2001, 187736.

[7] Svensson, A., “Computer Forensic
Applied to Windows NTFS Computers”,
Stockholm's University, Royal Institute
of Technology, 2005.

[8] NTFS, http://www.ntfs.com, 22/2/2009.

[9] Purcell, D. & Lang, S., “Forensic
Artifacts of Microsoft Windows Vista
System”, Lecture Notes in Computer
Science, Springer, 2008, 5075, 304-319.

[10] Newsham, T.; Palmer, C.; Stamos, A.;
Burns, J. & iSEC Partners, I., “Breaking
forensics software: Weaknesses in
critical evidence collection”,
Proceedings of the 2007 Black Hat
Conference, 2007.

[11] DD tool, George Garner’s site
http://users.erols.com/gmgarner/forensic
s/, 14/1/2009.

[12] DCFL tool, Nicholas Harbour,
http://dcfldd.sourceforge.net/, 14/1/2009.

[13] WinHex tool, X-Ways Software
Technology AG, http://www.x-
ways.net/winhex/, 14/1/2009.

[14] FRHED tool, Raihan Kibria site,
http://frhed.sourceforge.net/, 14/1/2009.

[15] STRINGS, Mark Russinovich,
http://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx,
14/1/2009.

[16] TSK tools, Brian Carrier site,
http://www.sleuthkit.org/sleuthkit/,
14/1/2009.

[17] Autopsy tools, Brian Carrier site,
http://www.sleuthkit.org/autopsy/,
14,1,2009.

[18] NTFSINFO tool, Mark Russinovich,
http://technet.microsoft.com/en-
au/sysinternals/bb897424.aspx,
14/1/2009.

[19] Roussev, V.; Chen, Y.; Bourg, T. &
Richard, G., md5bloom: Forensic file
system hashing revisited, Digital
Investigation, Elsevier, 2006, 3, 82-90.

[20] Chow, K.; Law, F.; Kwan, M. & Lai,
K., “The Rules of Time on NTFS File
System” Proceedings of the Second
International Workshop on Systematic
Approaches to Digital Forensic
Engineering, 2007, 71-85.

[21] Jones, K.; Bejtlich, R. & Rose, C.,
“Real digital forensics: computer
security and incident response”,
Addison-Wesley Professional, USA,
2008.

[22] Carvey, H., “Windows Forensic
Analysis DVD Toolkit”, Syngress Press,
USA, 2007.

[23] Naiqi, L.; Yujie, W. & QinKe, H.,
“Computer Forensics Research and

Implementation Based on NTFS File
System”, Computing, Communication,
Control, and Management, 2008.
CCCM'08. ISECS International
Colloquium on, 2008, 1.

[24] Aquilina, J.; Casey, E.; Malin, C. &
MyiLibrary, “Malware Forensics
Investigating and Analyzing Malicious
Code”, Syngress Publishing,USA, 2008.

[25] Huebner, E.; Bem, D. & Wee, C., “Data
hiding in the NTFS file system”, Digital
Investigation, Elsevier, 2006, 3, 211-226.

Digital forensic techniques for static analysis of NTFS images

Mamoun Alazab

Internet Commerce Security Laboratory

University of Ballarat, Australia

m.alazab@ballarat.edu.au

Sitalakshmi Venkatraman

Internet Commerce Security Laboratory

University of Ballarat, Australia

s.venkatraman@ballarat.edu.au

Paul Watters

Internet Commerce Security Laboratory

University of Ballarat, Australia

p.watters@ballarat.edu.au

ABSTRACT

Static analysis of the Windows NT File System (NTFS) which is the standard and most commonly used file system could provide useful information for digital forensics. However, since the NTFS disk image records every event in the system, forensic tools need to process an enormous amount of information related to user / kernel environment, buffer overflows, trace conditions, network stack and other related subsystems. This leads to imperfect forensic tools that are practical for implementation but not comprehensive and effective. This research discusses the analysis technique to detect data hidden based on the internal structure of the NTFS file system in the boot sector. Further, it attempts to unearth the vulnerabilities of NTFS disk image and the weaknesses of the current forensic techniques. This paper argues that a comprehensive tool with improved techniques is warranted for a successful forensic analysis.

Key Words: NTFS, Forensics, disk image, data hiding.

1. Introduction

Digital forensics is the science of identifying, extracting, analyzing and presenting the digital evidence that has been stored in the digital electronic storage devices to be used in a court of law [1, 2, 3]. It attempts to provide full descriptions of a digital crime scene. In computer systems, the primary goals of digital forensic analysis are fivefold: i) to identify all the unwanted events that took place, ii) to ascertain their effect on the system, iii) to acquire the necessary evidence to support a lawsuit, iv) to prevent future incidents by detecting the malicious techniques used and v) to recognize the incitement reasons and intendance of the attacker for future predictions [4]. The general component in digital forensic process are; acquisition, preservation, and analysis [5].

Digital electronic evidence could be described as the information and data of investigative value that are stored by an electric device, such evidence [6]. This research focuses on the third goal of acquiring the necessary evidence of intrusions that take place on a computer system. In particular, this paper investigates the digital forensic techniques that could be used to analyze and acquire evidences from the most commonly used file systems on computers, namely, Windows NT File System (NTFS).

Today, NTFS file system is the basis of predominant operating systems in use, such as Windows 2000, Windows XP, Windows Server 2003, Windows Server 2008, Windows Vista, Windows 7 and even in most free UNIX distributions [7, 8, 9]. Hence, attackers try to target on NTFS as this could result in affecting more computer users. Another compelling reason for witnessing a strong relationship between computer crime and the NTFS file system is the lack of literature that unearth the vulnerabilities of NTFS and the weaknesses of the present digital forensic techniques [10]. This paper attempts to fill this gap by studying the techniques used in the analysis of the NTFS disk image. Our objectives are i) to explore the NTFS disk image structure and its vulnerabilities, ii) to investigate different commonly used digital forensic techniques such as signatures, data hiding, timestamp, etc. and their weaknesses, and iii) finally to suggest improvements in static analysis of NTFS disk image.

2. Research Methodology

In order to achieve the above mentioned objectives of this research work, we conducted an empirical study using selected digital forensic tools that are predominantly used in practice. Several factors such as effectiveness, uniqueness and robustness in analyzing NTFS disk image were considered in selecting the tools / utilities required for this empirical study. Since each utility does some specific functionality, a collection of such tools were necessary to perform a comprehensive set of functionalities. Hence, the following forensic utilities / tools were adopted to conduct the experimental investigation in this research work:

i) Disk imaging utilities such as dd [11] or dcfldd V1.3.4-1 [12] for obtaining sector-by-sector mirror image of the disk;

ii) Evidence collection using utilities such as Hexedit [13], Frhed 1.4.0[14] and Strings V2.41[15] to introspect the binary code of the NTFS disk image;

iii) NTFS disk analysis using software tools such as The Sleuth KIT (TSK) 3.01[16] and Autopsy [17] and NTFSINFO v1.0 [18] to explore and extract intruded data as well as hidden data for performing forensic analysis.

Test data for the experimental investigation with the above tools was created on a Pentium (R) Core (TM) 2 Due CPU, 2.19 GHz, 2.98 of RAM with Windows XP professional that adopts the NTFS file system partition. In this research, we focus on the boot sector of the NTFS disk image for the empirical study. We adopt the following three steps to perform digital forensic analysis in a comprehensive manner:

i) Hard disk acquisition,

ii) Evidence searching and

iii) Analysis of NTFS file system.

2.1 Hard Disk Data Acquisition

In this step, we used the dcfldd developed by Nicholas Harbour and dd utility from George Garner to acquire the NTFS disk image from the digital electronic storage devices since they are simple and flexible acquisition tools. The advantage of using these tools is that we could extract the data in or between partitions to a separate file for more analysis, and in addition, it provides built-in MD5 hashing features. Some of its salient features allow the analyst to calculate, save, and verify the MD5 hash values. In digital forensic analysis, using hashing technique is important to ensure data integrity and to identify whether the value of data has been changed as well as explore known data objects [19].

2.2 Evidence searching

An evidence of intrusion could be gained by looking for some known signatures, timestamps as well as even searching for hidden data [20]. In this step, we used Strings command by Mark Russinovich, Frhed hexeditor tool by Rihan Kibria and WinHex hexeditor tool by X-Ways Software Technology AG to detect a keyword or phrase from the disk image.

2.3 Analysis of NTFS File System

The final step in the experimental investigation is to analyze the data obtained from the NTFS disk image that contribute towards meaningful conclusions of the forensic investigation. We adopted a collection of tools such as the Sleuth Kit (TSK) and Autopsy Forensic by Brian Carrier and NTFSINFO v1.0 from Microsoft Sysinternals by Mark Russinovich to perform different aspects of the NTFS file system analysis.

3. Analysis of the boot sector of the NTFS disk image

The first step for a digital forensic investigator is to acquire a duplicate copy of the NTFS disk image before beginning the analysis so as to ensure that the data on the original devices have not been changed during the analysis. Therefore, it is required to isolate the original infected computer to extract the evidence that could be found on the electronic storage devices from the disk image as the image captures the invisible information as well [21]. The advantages of analyzing disk images are that the investigators can: a) preserve the digital crime-scene, b) obtain the information in slack space, c) access unallocated space, free space, and used space, d) recover file fragments, hidden or deleted files and directories, e) view the partition structure and f) get date-stamp and ownership of files and folders [3, 22].

To understand how intrusions can lead to data hiding, deleting, etc. and to facilitate recovery, it is essential to understand the physical characteristics of the Microsoft NTFS file system. Master File Table (MFT) is the core of NTFS since it contains details of every file and folder on the volume and allocates two sectors for every MFT entry [23]. Each MFT entry has a fixed sized which is 1 KB (At byte offset 64 in the boot sector to identify the MFT record size). We provide the MFT layout and represent the plan of the NTFS file system using Figure 1. NTFS exists to read and write the attributes instead of read and write the file content. The MFT enables a forensic analyst to examine in some detail the structure and working of the NTFS volume. Therefore, it’s important to understand how the attributes are stored in the MFT entry.

[image: image1.jpg]Partition 1 on the digital electronic storage devices

([

Sectors

Y777 WFT Enry

4 LX) b

MFT Entry Header || [MTF Attributes|Header | | [Unused Space

MFT Attributes Content

Figure 1: MFT layout structure.

MFT entry within the MFT contains attributes that can have any format and any size. Further, as it shows in Figure 1, every attribute contains an entry header which is allocated in the first 42 bytes of a file record, and it contains an attribute header and attribute content. The attribute header is used to identify the size, name and the flag value. The attribute content can reside in the MFT followed by the attribute header if the size is less than 700 bytes (known as a resident attribute), otherwise it will store the attribute content in an external cluster called cluster run (known as a non-resident attribute). This is because; the MFT entry is 1KB in size and hence cannot fit anything that occupies more than 700 bytes.

Metadata files are used to describe the file system. We created a NTFS disk image of the test computer using the dd utility and investigated the boot sector. We used NTFSINFO tool on the disk image as shown in Table 1 which shows the boot sector of the test device and information about the on-disk structure: it enables you to view the MFT information, allocation size, volume size and metadata files. We extracted information such as the size of clusters, sector numbers in the file system, starting cluster address of the MFT, the size of each MFT entry and the serial number given for the file system.

Volume Size

Volume size : 483 MB

Total sectors : 991199

Total clusters : 123899

Free clusters : 106696

Free space : 416 MB (86% of drive)

Allocation Size

Bytes per sector : 512

Bytes per cluster : 4096

Bytes per MFT record : 1024

Clusters per MFT record: 0

MFT Information

MFT size : 0 MB (0% of drive)

MFT start cluster : 41300

MFT zone clusters : 41344 - 56800

MFT zone size : 60 MB (12% of drive)

MFT mirror start : 61949

Meta-Data files

Table 1: NTFS Information Details.

From the information gained above and from analyzing the boot sector image as shown in Figure 2, we performed an analysis of the data structure of this boot sector and this is summarized in Table 2.

[image: image2.png]orfset
oooononon
000000016
oooooonsz
oooonon4s
oooononsa
oooononsn
000000086
oooooo11z
oooono1zs
oooono14a
oooono160
000000176
ooooooisz
oooonozos
oooonozza
oooonoz4n
000000256
ooooaoz7z
oooonozes
oooonosoa
oooonoszo
000000336
oooooossz
000000368
oooonoses
oooono400
000000416
ooooooasz
000000448
oooonoasa
oooonoasn
000000456
oooonos1z

o
B
oo
oo
04
e
oo
aE
10
o8
oF
57
1
7
03
oo
oF
Ba
6
6
1
o1
FF
s
Ba
B
20
)
6F
6
20
20
oo
05

1
sz
oo
oo
oo
oo
oo
8
B
c»
B6
cs
24
04
06
6
as
22
s8
7
oo
0z
06
10
o1
2
65
on
67
70
a3
72
oo
oo

2
£
oo
oo
oo
oo
oo
B
53
13
b1
6
oo
FE
1c
so
oc
an
6
F1
a6
c»
10
8
a8
s
72
aE
oo
72
7
65
oo
aE

3
aE
oo
oo
oo
oo
oo
1
oo
73
a0
7
c»
06
oo
06
oo
1
s8
FE
b6
13
oo
o1
o
)
72
54
)
65
72
73
oo
oo

4
54
oo
a0
oo
o1
Fi
oo
68
05
2
E1
13
14
6
53
B
24
1F
cz
an
oF
FF
B
ac
on
B
ac
on
73
&
7
oo
54

s
a6
8
oo
oo
oo
3

B8
oo
B9
aF
6

72
oo
S
6

B3
oo
B
an
1

X
oE
03
ac
a1
72
aa
aE
73
28
6

oo
oo

6
£
oo
oo
oo
oo
co
oo
)
FF
7
It
oF
s
06
68
FF
1
20
ca
24
15
oE
oo
oo
20
20
E
54
65
a1
72
oo
ac

F]
20
oo
oo
oo
oo
aE
)
68
FF
2
20
81
6
20
10
a0
1F
6
6
oo
oo
oo
10
7
64
B
20
ac
64
&
7
oo
oo

s
20
aF
oF
)
12
o
aE
61
an
a6
oo
B
60
oo
oo
£t
a8
3
a8
an
ac
oF
B
03
65
63
65
aa
oo
7
)
S
aa

s
20
oo
1F

F1
04
BC
co
0z
F1
c»
s
s5
1p

oF
o1
14

Fa
2
o
B
co
as
o1
Ba
73
63
73
E
)
28
on
10
oo

10
20
FF
oF
oo
a3
oo
3
B
6
co
Ba
a
06
X
oo
oo
c»
6
6
co
05
B
B
oE
E:
s
20
20
on
aa
oo
B3
E

1
oo
oo
oo
oo
ES
7c
B
an
oF
D
a1
s
6
ETY
a0
oo
13
oF
c1
4
20
FF
03
BB
20
72
6
65
so
65
oo
cs
oo

12
0z
20
oo
oo
a7
B
6
1
B6
06
BB
03
a
oo
£t
oF
6
57
EL
06
oo
o7
oo
o7
72
72
65
73
72
&
oo
oo

of

13
S
oo
oo
oo
a3
B8
06
24
6
a1
a
e
10

1p

14

84
s8
oE
10

on
aE
1F

B
oo
65

65

73
20
65

20
oo
oo
oo

14
oo
oo
oo
oo
ES
co
oE
oo
a0
6
s5
c1
oo
6
oo
6
sB
18
7
cc
co
6
B
c»
6
64
73
63
73
7
oo
s5
24

15
oo
oo
oo
oo
68
o7
oo
Ba
6
oF
an
o1
6
61
oo
oo
o7
oo
a6
B8
6
6
FE
10
64
oo
65
B
73
B
oo
a
oo

ERINTFS

3 carcan
ushive 4,k
oz | GistE
&5 h hy ES §
s ryySic aEpr
qitear:atihi af
Efrafs BkeeUd

eyes La
B8 § <ot £x(
£X£X &-£302
£:ipisiecpeie <6
1638 § Seda 1,
t, @ zie
vy oy fa
iee we aep
coact s 1
&8 1 disk read
error occurred
NTLDR is missi
ng NTLDR is co
mpressed
Cerlthle+del to

Press

restart
E
NTLDR[§

Figure 2: First Sector of the test boot Sector.

		Byte Range

		Size

		Description

		Value

		Note

		 0 -- 2

		3

		Jump to boot code

		9458411

		If bootable, jump. If non-bootable, used to store error message

		 3 -- 10

		8

		OEM Name – System ID

		NTFS

		

		11 -- 12

		2

		Bytes per sector:

		512

		

		13 -- 13

		1

		Sectors per cluster

		8

		

		14 -- 15

		2

		Reserved sectors

		0

		Unused

		16 -- 20

		5

		Unused

		0

		Unused

		21 -- 21

		1

		Media descriptor

		0

		

		22 -- 23

		2

		Unused

		0

		Unused

		24 -- 25

		2

		Sectors per track

		63

		Not Check

		26 -- 27

		2

		Number of heads

		255

		Not Check

		28 -- 31

		4

		Unused

		32

		Not Check

		32 -- 35

		4

		Unused

		0

		Unused

		36 -- 39

		4

		Drive type check

		80 00 00 00

		For USB thumb drive

		40 -- 47

		8

		Number of sectors in file system (volume)

		0.47264 GB

		

		48 -- 55

		8

		Starting cluster address of $MFT

		4*8=32

		

		56 -- 63

		8

		Starting cluster address of MFT Mirror

$DATA attribute

		619,49

		

		64 -- 64

		1

		Size of record - MFT entry

		210=1024

		

		65 -- 67

		3

		Unused

		0

		Unused

		68 -- 68

		1

		Size of index record

		01h

		

		69 -- 71

		3

		Unused

		0

		Unused

		72 -- 79

		8

		Serial number

		C87C8h

		

		80 -- 83

		4

		Unused

		0

		Unused

		84 -- 509

		426

		Boot code

		~

		

		510 --511

		2

		Boot signature

		0xAA55

		

Table 2: Data structure for the test boot sector

4. Analysis of the Hidden Data in the $Boot metadata file system

Attackers use different techniques such as disguising file names, hiding attributes and deleting files to intrude the system. Since the Windows operating system does not zero the slack space, it becomes a vehicle to hide data, especially in $Boot file. Hence, in this study, we analyze the hidden data in the $Boot file. The $Boot entry is stored in a metadata file at the first cluster in sector 0 of the file system called $Boot from where the system boots. It is the only metadata file that has a static location so that it cannot be relocated. Microsoft allocates the first 16 sectors of the file system to $Boot and only half of these sectors contains non-zero values [3].

NTFS file system requires knowledge and experience to analyze the data structure and the hidden data [24]. The $Boot metadata file is located in MFT entry 7 and contains the boot sector of the file system. It contains information about the size of the volume, clusters and the MFT. The $Boot metadata file has four attributes: $STANDARD_INFORMATION, $FILE_NAME, $SECURITY_DESCRIPTION and $DATA. The $STANDARD_INFORMATION attribute contains temporal information such as flags, owner, security ID and the last accessed, written, and created times. The $FILE_NAME attribute contains the file name in Unicode, the size and temporal information as well. The $SECURITY_DESCRIPTION attribute contains information about the access control and security properties. Finally, the $DATA attribute contains the file contents. These are illustrated for the test sample as shown in Table 2 using the following TSK command tools:

Istat –f ntfs c:\image.dd 7

MFT Entry Header Values:

Entry: 7 Sequence: 7

$LogFile Sequence Number: 0

Allocated File

Links: 1

$STANDARD_INFORMATION Attribute Values:

Flags: Hidden, System

Owner ID: 0

Created:
Mon Feb 09 12:09:06 2009

File Modified:
Mon Feb 09 12:09:06 2009

MFT Modified:
Mon Feb 09 12:09:06 2009

Accessed:
Mon Feb 09 12:09:06 2009

$FILE_NAME Attribute Values:

Flags: Hidden, System

Name: $Boot

Parent MFT Entry: 5
Sequence: 5

Allocated Size: 8192
Actual Size: 8192

Created:
Mon Feb 09 12:09:06 2009

File Modified:
Mon Feb 09 12:09:06 2009

MFT Modified:
Mon Feb 09 12:09:06 2009

Accessed:
Mon Feb 09 12:09:06 2009

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 48

Type: $FILE_NAME (48-2) Name: N/A Resident size: 76

Type: $SECURITY_DESCRIPTOR (80-3) Name: N/A Resident size: 116

Type: $DATA (128-1) Name: $Data Non-Resident size: 8192

0 1

Table 2: “$Boot Attributes”

Hence the $Boot attribute of the NTFS file system could be used to hide data. By analyzing the hidden data in the boot sector, one could provide useful information for digital forensics. The size of the data that could be hidden in the boot sector is limited by the number of non-zero that Microsoft allocated in the first 16 sectors of the file system. The data could be hidden in the $Boot metadata files without raising suspicion and without affecting the functionality of the system [25].

Analysis of the $Boot attribute of the NTFS file system will identify any hidden data. The analyzer should start by making a comparison between the boot sector and the backup boot sector. The image with the boot sector and backup boot sector are supposed to be identical; otherwise there is some data hidden on the $Boot file. One method is to check the integrity of the backup boot sector and the boot sector by calculating the MD5 for both of them. A difference in checksum indicates that there is some hidden data. We performed this comparison by adopting the following commands on the $Boot image file and the backup boot image, see the applied below:

dd if=image.dd bs=512 count=1 skip=61949 of=c:\backupbootsector.dd –md5sum –verifymd5 –md5out=c:\hash1.md5

dd if=image.dd bs=512 count=1 of=c:\bootsector.dd –md5sum –verifymd5 –md5out=c:\hash2.md5

We found that hidden data in the $Boot file was not detected directly by the tools used in this study and manual inspections were required alongside these forensic tools. Hence, through the analysis conducted with various utilities and tools, we arrived at the following results:

1. There is a huge amount of data analysis required while scanning the entire NTFS disk image for forensic purposes. Just by focusing on the hidden data in the $Boot, this empirical study showed that many tools and utilities have to be adopted and it takes an immense amount of time to analyze the data derived.

2. Not all computer infections are detected by forensic tools, especially intrusions that are in the form of hidden data in the $Boot file.

3. By adopting a manual introspection of the $Boot file using the three-step approach of i) hard disk acquisition, ii) evidence searching and iii) analysis of the NTFS file system, we could identify hidden data in the $Boot file.

4. Searches can be performed to extract the ASCII and UNICODE characters from binary files in the disk image on either the full file system image or just the unallocated space, which could speed-up the process of identifying hidden data.

5. Microsoft has different versions of the NTFS file system. While Windows XP and Windows Server 2003 use the same version, Windows Vista uses the NTFS 3.1 version [7]. The new NTFS 3.1 has changed the on-disk structure. For example, the location of the volume boot record is at physical sector 2,048. Not all existing tools work with all the different versions of NTFS file system, hence a comprehensive tool is warranted even with the changes in the NTFS file structure.

5. Conclusions and Future Work

This paper has attempted to explore the difficulties involved in digital forensics, especially in conducting static analysis of NTFS disk images and propose a solution method. In this empirical study, we have found the boot sector of the NTFS file system could be used as a vehicle to hide data by computer attackers. This is an important NTFS file system weakness to be addressed as research in this domain area could lead to effective methods for the open problem of detecting new malicious codes that use this mode of attack. The existing forensic software tools are not competent enough to comprehensively detect hidden data in boot sectors. As a first step to address this problem, we have formulated a three-step forensic analysis process to facilitate the research methodology. We have reported the results gathered by adopting this process. One clear achievement through this research study is that we were successful in identifying some unknown malicious hidden data in the $Boot file that were hidden from current well-known virus scanners. The research methodology reported in this paper could be adopted to analyze other sectors of the NTFS file system as well.

In this initial research investigation conducted, we had adopted a few forensic techniques and manual inspections of the NTFS file image. Our next stage of this research work would be to automate the proposed process so as to facilitate forensic analysis of the NTFS disk image in an efficient and comprehensive manner. We plan to extract signatures intelligently so as to detect efficiently new malware that use hidden and obfuscated modes of attack. This would help trigger more research to be conducted in satisfying the objective of automatically and proactively identifying unseen malware that try to evade detection.

References:

[1] Reith, M.; Carr, C. & Gunsch, G., “An examination of digital forensic models”, International Journal of Digital Evidence, 2002, 1, 1-12.

[2] Technical Working Group for Electric Crime Scene Investigation. “Electronic Crime Scene Investigation: A Guide for First Responders”, 2001.

[3] Carrier, B., “File system forensic analysis”, Addison-Wesley Professional, USA, 2008.

[4] Ardisson, S. ,”Producing a Forensic Image of Your Client’s Hard Drive? What You Need to Know”, Qubit, 2007, 1, 1-2.

[5] Andrew, M., “Defining a Process Model for Forensic Analysis of Digital Devices and Storage Media”, Systematic Approaches to Digital Forensic Engineering, 2007, SADFE 2007. Second International Workshop on, 2007, 16-30.

[6] Investigation, E., “Electronic Crime Scene Investigation: A Guide for First Responders”, US Department of Justice, NCJ, 2001, 187736.

[7] Svensson, A., “Computer Forensic Applied to Windows NTFS Computers”, Stockholm's University, Royal Institute of Technology, 2005.

[8] NTFS, http://www.ntfs.com, 22/2/2009.

[9] Purcell, D. & Lang, S., “Forensic Artifacts of Microsoft Windows Vista System”, Lecture Notes in Computer Science, Springer, 2008, 5075, 304-319.

[10] Newsham, T.; Palmer, C.; Stamos, A.; Burns, J. & iSEC Partners, I., “Breaking forensics software: Weaknesses in critical evidence collection”, Proceedings of the 2007 Black Hat Conference, 2007.

[11] DD tool, George Garner’s site http://users.erols.com/gmgarner/forensics/, 14/1/2009.

[12] DCFL tool, Nicholas Harbour, http://dcfldd.sourceforge.net/, 14/1/2009.

[13] WinHex tool, X-Ways Software Technology AG, http://www.x-ways.net/winhex/, 14/1/2009.

[14] FRHED tool, Raihan Kibria site, http://frhed.sourceforge.net/, 14/1/2009.

[15] STRINGS, Mark Russinovich, http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx, 14/1/2009.

[16] TSK tools, Brian Carrier site, http://www.sleuthkit.org/sleuthkit/, 14/1/2009.

[17] Autopsy tools, Brian Carrier site, http://www.sleuthkit.org/autopsy/, 14,1,2009.

[18] NTFSINFO tool, Mark Russinovich, http://technet.microsoft.com/en-au/sysinternals/bb897424.aspx, 14/1/2009.

[19] Roussev, V.; Chen, Y.; Bourg, T. & Richard, G., md5bloom: Forensic file system hashing revisited, Digital Investigation, Elsevier, 2006, 3, 82-90.

[20] Chow, K.; Law, F.; Kwan, M. & Lai, K., “The Rules of Time on NTFS File System” Proceedings of the Second International Workshop on Systematic Approaches to Digital Forensic Engineering, 2007, 71-85.

[21] Jones, K.; Bejtlich, R. & Rose, C., “Real digital forensics: computer security and incident response”, Addison-Wesley Professional, USA, 2008.

[22] Carvey, H., “Windows Forensic Analysis DVD Toolkit”, Syngress Press, USA, 2007.

[23] Naiqi, L.; Yujie, W. & QinKe, H., “Computer Forensics Research and Implementation Based on NTFS File System”, Computing, Communication, Control, and Management, 2008. CCCM'08. ISECS International Colloquium on, 2008, 1.

[24] Aquilina, J.; Casey, E.; Malin, C. & MyiLibrary, “Malware Forensics Investigating and Analyzing Malicious Code”, Syngress Publishing,USA, 2008.

[25] Huebner, E.; Bem, D. & Wee, C., “Data hiding in the NTFS file system”, Digital Investigation, Elsevier, 2006, 3, 211-226.

