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ABSTRACT

The sti¤ initial value problems occur in many �elds of engineering science, particularly in the studies of
electrical circuits, vibrations, chemical reactions, and so on. In most cases, the model is too complex
to allow one to �nd an exact solution: an e¢ cient, reliable computer simulation is required. The
techniques commonly used for sti¤ problems are implicit multistep methods. These methods are
suited for linear problems. However, when solving the nonlinear problems, these method require some
major modi�cations that include the use of some root �nding technique. Furthermore, they require the
use of other basic numerical techniques in order to obtain the solution. In this paper, a novel approach
is proposed to solve sti¤ problems, which is based on the use of continuous genetic algorithms where
smooth solution curves are used throughout the evolution of the algorithm to obtain the required
nodal values. The proposed algorithm has the following distinct advantages over the conventional
methods. First, it does not require any modi�cation while switching from the linear to the nonlinear
case. Second, its ability to solve sti¤ problems without the use of other numerical techniques. Third,
the error in this method does not e¤ect by the distance from the given initial value. Numerical example
presented in this paper to illustrate the applicability, accuracy, and generality of the proposed method.

Key Words: Sti¤ Problems; Initial Value Problem; Continuous Genetic Algorithms; Finite Di¤erence
Approximation.

Mathematics Subject Classi�cations: 65Y20, 34K28, 46N40, 34A45.

1. Introduction

Continuous genetic algorithms (CGA�s),
depends on the evolution of curves in
2-dimensional space, and surfaces in 3-
dimensional space. Generally, CGA�s uses
smooth operators and avoids sharp jumps
in the parameter values. CGA�s were devel-
oped, enhanced and applied for the solution
of the Cartesian path generation problem
of robotic manipulators, which is a highly
nonlinear, coupled problem. Also it used

to solve second order-two point boundary
value problems. CGA�s begin with a pop-
ulation of randomly generated candidates
and evolve to-wards better solution by ap-
plying genetic operators which is reproduc-
tion; crossover and mutation, a procedure
of genetic algorithms similar to the genetic
processes which occur in nature. CGA�s are
a relatively new class of optimization tech-
nique, which are generating a growing in-
terest in the engineering community. They



are well suited for a broad range of prob-
lems encountered in science and engineer-
ing. The work presented in this paper is
motivated by the needs for a new numer-
ical method for the solution of the sti¤
problems with the following characteristics:
First, it requires the minimal amount of in-
formations about speci�c problems. Second,
the method is not a mathematically guided
scheme. Third, the algorithm is of global
nature in terms of the solutions obtained as
well as it is ability to solve other mathe-
matical problems based on ordinary as well
as partial di¤erential equations. Fourth, it
should not restore to more advanced math-
ematical tools; that is, the algorithm should
be simple to understand and implement,
and should be thus easily accepted in the
engineering and mathematical application
�elds.
The concept of genetic algorithms was

�rstly proposed by Holland [8]. Smooth
genetic algorithm introduced by Gutowski
[7]. Abo-Hammour in his thesis [1] and in
a research paper [3] developed the CGA�s
to solve a second-order, two-point bound-
ary value problems. CGA�s were developed,
enhanced and applied for the solution of the
Cartesian path generation problem of ro-
botic manipulators [2]. AbuArqob in his
thesis [4] developed the CGA�s to solve a
fuzzy initial value problems.
The reminder of the paper is organized

as follows: the formulation of the CGA�s is
described in section 2. Description of the
CGA�s is covered in section 3. Numerical
results are given in section 4. Finally, con-
clusion is presented in section 5.

2. Formulation of the Continuous Ge-
netic Algorithms

In this section, a novel method for the
solution of the sti¤ problems based on a
CGA�s is introduced. The proposed tech-
nique might be considered as a variation
of the �nite di¤erence method in the sense
that each derivatives in the system of ordi-
nary di¤erential equations is replaced by an
appropriate di¤erence-quotient approxima-

tion.
The general sti¤ problems discussed in

this paper involves a system of �rst-
order di¤erential equation of the form:

H
�
t; Y [t] ; _Y [t]

�
= _Y [t] � F [t; Y [t]] = 0,

Y [t0] = Y0, t 2 T , where T = [t0; tf ],
Y [t] = (Y1 [t] ; Y2 [t] :::; Ym [t]), and F =
(F1; F2; :::; Fm).
We �rst make the stipulation that the

mesh points are equally distributed through
the interval T . This condition is ensured
by choosing positive integer N and select-
ing the mesh points ti = t0 + ih, for each
i = 0; 1; :::; N , where the step size h =
(tf � t0) =N is the common distance be-
tween the points in the interval T . Thus, at
the interior mesh points, ti, i = 1; 2; :::; N ,
the system of ordinary di¤erential equation
to be approximated is given as:

H
�
ti; _Y [ti] ; Y [ti]

�
= 0, Y [t0] = Y0, ti 2 T:

(I)

The continuous genetic algorithms ap-
proach for numerically approximating the
solution to the sti¤ problem consists of re-
placing each derivative in Equation (I) by a
appropriate �nite-divided-di¤erence formu-
las, which closely approximates that deriv-
atives when h is small. The �nite-divided-
di¤erence formulas with error up to O(hn),
where n 2 N, for approximating _Y [ti] for
i = 0; 1; :::; N can be obtained by using the
following algorithm.

Algorithm 1 [8] To approximate the
derivative of the function Y [ti], ti 2 T
using an (n+ 1)-point formula, at N + 1
equally spaced numbers in the intervals T ,
let K = [n=2], then there are four steps:

Step 1: For i; j = 0; 1; :::; n set dn+1;i;j =
(�1)i�j+1 i! (n� i)!= ((j � i) j! (n� j)!)
if i 6= j and set dn+1;i;i =

�
Xn

j=0;j 6=i
dn+1;i;j .

Step 2: For i = 0; 1; ::;K � 1 set _Y [ti] =Xn

j=0
dn+1;i;jY [tj ] =h+O(hn).



Step 3: For i = K; :::; N�K�1 set _Y [ti] =Xn

j=0
dn+1;K;jY [ti�K+j ] =h+O(hn).

Step 4: For i = N � K; :::; N set _Y [ti] =Xn

j=0
dn+1;n+i�N;jY [tN�n+j ] =h+O(hn).

Now, to complete the formulation of the
sti¤ problem substituting the approximate
value of _Y [ti] for i = 1; 2; :::; N in Equa-
tion (I), discretized form of Equation (I) is
obtained. The resulting equations will be a
function of Y [ti�n], Y

�
ti�(n�1)

�
,:::, Y [ti+n],

and ti, where n 2 N.
After that, it is necessary to rewrite the

discretized equation in the following form:

H (ti; Y [ti�n] ; :::; Y [ti+n]) � 0;
i = 1; 2; :::; N:

The residual of the general interior node,
i, denoted by Res(i), is de�ned for each k =
1; 2; ::;m as:

Resk (i) = Hk (ti; Y [ti�n] ; :::; Y [ti+n]) ;
i = 1; 2; :::; N:

The overall individual residual, denoted
by Oir, is a function of the residuals of all
interior nodes. It may be stated as:

Oir =

vuut NX
i=1

�
Res1 (i)

�2
+ :::+

NX
i=1

(Resm (i))2:

A mapping of the overall individual resid-
ual, Oir, into a �tness function, Fit, is re-
quired in the CGA�s in order to convert the
minimization problem of Oir into a maxi-
mization problem of Fit. A suitable �tness
function, used in this work is de�ned as:

Fit = �= (� +Oir) , � 2 R+: (II)

The individual �tness is improved if a de-
crease in the value of the overall individual
residual is achieved. The optimal solution of
the problem, nodal values, will be achieved
when Oir approaches zero and Fit approach
unity.

3. Described of the Continuous Ge-
netic Algorithms

In this paper, we developed the CGA�s to
solve the sti¤ problems. Before going to the
detailed description of the CGA�s, the con-
dition about the continuous functions that
can be used in such algorithm should be
clearly sated in [3]. In relation to the initial-
ization function, any smooth function can
be used and a mixture of functions will be
bene�cial in this case to result in a diverse
initial population. The e¤ect of the ini-
tial population usually dies after few tens
of generations and the convergence speed
(the average number of generations required
for convergence) after that is governed by
the selection mechanism, crossover and mu-
tation operators. Regarding the crossover
function, it should be within the range [0; 1]
such that the o¤spring solution curve will
start with the solution curve of the �rst par-
ent and gradually change their values till
they reach the solution curve of the sec-
ond parent at the other end. The muta-
tion function may be any continuous func-
tion within the range [0; 1] such that the mu-
tated child solution curve will start with the
solution curve of the child produced through
the crossover process and gradually change
its value till it reach the solution curve of
the same child at the other end.
The CGA�s proposed in this work consists

of the following steps:

1. Initialization: In this phase, an
initial population comprising of Np
smooth individuals is randomly gener-
ated. In this work, two smooth func-
tions that satisfy the constraint con-
dition used for initializing the popu-
lation: the modi�ed Gaussian func-
tion and the tangent hyperbolic func-
tion. The two function di¤er from
each other by main criteria: the con-
vex/concave nature. The modi�ed
Gaussian function is given by the
equation:

pkj (i) = Yk [t0] + i
�
�k � Yk [t0]

�
=N

+Ak exp
�
�0:5 ((i� �) =�)2

�
;



(III)

while the tangent hyperbolic function
is governed by the equation:

pkj (i) = Yk [t0] + 0:5
�
�k � Yk [t0]

�
(1 + tanh ((i� �) =�)) ;

(IV)

for each i = 1; 2; :::; N , j = 1; 2; :::; Np,
and k = 1; 2; :::;m, where �k rep-
resents a random number within
the range of Yk [t] if the range of
Yk [t] known and any random num-
ber if it is unknown, pkj (i) is the i-
th variable value of the k-th curve
for the j-th parent, Ak represents
a random number within the range�
�2
���k � Y k [t0]�� ; 2 ���k � Y k [t0]���, �

is a random number within the range
[N=4; 3N=4], and � is a random num-
ber within the range [1; dmin=3], where
dmin is a minimum of d1 and d2; the
two values d1 and d2 representing the
number of nodes to the left and right
of �. For both Gaussian and hyper-
bolic functions, � speci�es the center,
while � speci�es its degree of disper-
sion.

2. Evaluation: The �tness, a nonnega-
tive measure of quality used to re�ect
the degree of goodness of the individ-
ual, is calculated for each individual
in the population as given in Equation
(II).

3. Selection: In the selection process,
individuals are chosen from the cur-
rent population to enter a mating pool
devoted to the creation of new individ-
uals for the next generation such that
the chance of selection of a given in-
dividual for mating is proportional to
its relative �tness. This step ensures
that the overall quality of the popula-
tion increases from one generation to
the next.

4. Crossover: Crossover provides the
means by which valuable informa-
tion is shared among the individuals

in the population. The crossover
process combines the features of
two parent individuals, say j and
h, to form two children individuals,
say l and l + 1, as given by the
equations: ckl (i) = wk (i) pkj (i) +�
1� wk (i)

�
pkh (i), ckl+1 (i) =�

1� wk (i)
�
pkj (i) + wk (i) pkh (i), and

wk (i) = 0:5 (1 + tanh (i� �) =�) for
each i = 1; 2; :::; N and k = 1; 2; :::;m,
where pl and ph represent the two
parents chosen from the mating pool,
cl and cl+1 are the two children ob-
tained through crossover process, wk

represents the crossover weighting
function within the range [0; 1], and
�, � are as given in the initialization
process. In the proposed algorithm,
pairs of individuals are crossed with
probability Pci. Within the pair of
parents that should undergo crossover
process, individual curves are crossed
with probability Pcc.

5. Mutation: Mutation is often in-
troduced to guard against premature
convergence. Generally, over a pe-
riod of several generations, the gene
pool tends to become more and more
homogeneous. The purpose of mu-
tation is to introduce occasional per-
turbations to the parameters to main-
tain genetic diversity within the pop-
ulation. The mutation process is
governed by the following formulas:
mk
j (i) = c

k
j (i) + d

kgk (i) and gk (i) =

exp
�
�0:5 ((i� �) =�)2

�
for each i =

1; 2; :::; N , j = 1; 2; :::; Np, and k =
1; 2; ::;m, where cj represents the j-th
child produced through the crossover
process, mk

j is the mutated j-th child,
g is the Gaussian mutation function
within the range [0; 1], and dk rep-
resents a random number within the
range [�Rang (k) ; Rang (k)], where
Rang (k) representing the di¤erence
between the minimum and maximum
values of the k-th smooth curve of
child cj , and �, � are as given in



the initialization process. In mutation
process, each individual child under-
goes mutation with probability Pmi.
However, for each child that should
undergo mutation process, individual
curves are mutated with probability
Pmc.

6. Replacement: After generating the
o¤spring�s population through the ap-
plication of the genetic operators to
the parents population, the parents
population is totally or partially re-
placed by the o¤spring�s population
depending on the replacement scheme
used. This completes the �life cycle�
of the population.

7. Termination: The CGA�s is termi-
nated when some convergence crite-
rion is met. Possible convergence cri-
teria are: the �tness of the best indi-
vidual so far found exceeds a threshold
value, the maximum nodal residual of
the best individual of the population
is less than or equal some prede�ned
threshold value, the maximum num-
ber of generations is reached, or the
progress limit; the improvement in the
�tness value of the best member of the
population over a speci�ed number of
generations is less than some prede-
�ned threshold, is reached. After ter-
minating the algorithm, the optimal
solution of the problem is the best in-
dividual so far found.

To summarize the evolution process in
CGA�s, an individual is a candidate solu-
tion that consists of m curves each of N
nodal values. The population of individuals
undergoes the selection process, which re-
sults in a mating pool among which pairs of
individuals are crossed over with probabil-
ity Pci within that pair of parents, individ-
ual solution curves are crossed with prob-
ability Pcc. This process results in an o¤-
spring generation where every child under-
goes mutation with probability Pmi, within
that child individual solution curves are mu-
tated with probability Pmc. After that, the

next generation is produced according to the
replacement strategy applied. The complete
process is repeated till the convergence cri-
terion is met where the m curves of the best
individual are the required solution curves.
The �nal goal of discovering the required
nodal values is translated into �nding the
�ttest individual in genetic terms.

The complete and unambiguous descrip-
tion of the CGA�s is given by the following
algorithm.

Algorithm 2 To approximate the so-
lution of the initial value problem:

H
�
t; _Y [t] ; Y [t]

�
= 0, Y [t0] = Y0, t 2 T at

N+1 equally spaced numbers in the interval
T .

Input: Endpoints of T ; integer N ; initial
condition Y0.

Output: Approximation � to Y at the N+
1 values of t.

Step 1: Set h = (tf � t0) =N .

Step 2: For i = 0; 1; :::; N Set ti = t0 + ih.

Step 3: Initialization process.

Step 4: Fitness evaluation process.

Step 5: Selectionprocess.

Step 6: Crossover process.

Step 7: Mutation process.

Step 8: Fitness evaluation process.

Step 9: Replacement process.

Step 10: If termination process doesn�t
hold then go to Step 5 else go to Step
11.

Step 11: Output (ti;� [ti]).

Step 12: Stop.

Two additional operators were introduced
to enhance the performance of the CGA�s.
These operators are summarized in the form
of following:



1. Elitism: The preservation of the best
solution or solutions and moving it or
them to the next generation. Elitism
is utilized to ensure that the �tness of
the best candidate solution in the cur-
rent population must be larger than or
equal to that of the previous popula-
tion. In other words, a good solution
found should not be lost through some
of the genetic operators.

2. Extinction and Immigration:
This operator applied when all indi-
viduals in the population are identical
or when the improvement in the �t-
ness value of the best individual over
a certain number of generations is less
than some threshold value. The num-
ber of individuals in the population
associated with better �tness grows
exponentially. Therefore, after some
generations, the mating pool will con-
sist of almost identical members. This
means that no new information will be
obtained through crossover process.
The CGA�s thus tends to stagnate;
�extinction and immigration� opera-
tor is used to bypass this di¢ culty.
This operator, as indicated by its
name, consists of two stages; the �rst
stage is the extinction process where
all of the individuals in the current
generation are removed except the
best-of-generation individual. The
second stage is the mass-immigration
process where the extinct population
is �lled out again by generating Np�1
individuals to keep the population size
�xed. The generated population is di-
vided into two equal segments each
of Np=2 size; the �rst segment, with
j = 2; 3; :::; Np=2, is generated as
in the initialization phase, while the
other segment is generated by per-
forming continuous mutation to the
best-of-generation individual as given
by formulas: pkj (i) = p

k
1 (i) + d

kgk (i)

and gk (i) = exp
�
�0:5 ((i� �) =�)2

�
for each i = 1; 2; :::; N , j =
Np=2 + 1; Np=2 + 2; :::; Np, and

k = 1; 2; ::;m, where pkj is the j-
th parent generated using immigra-
tion operator, pk1 represents the best-
of-generation individual, gk is the
Gaussian mutation function, and dk

represents a random number within
the range [�Rang (k) ; Rang (k)],
where Rang (k) representing the dif-
ference between the minimum and
maximum values of the k-th smooth
curve of pk1, and �, � are as given in
the initialization process.

4. Numerical Results and Discussion

The scenario of this section is to intro-
duced a sti¤ problem with exact solution
to compare the result obtained from CGA�s
with the corresponding exact solution to
measure the e¢ ciency of CGA�s as a novel
solver.

Example 3 Consider the sti¤ initial value
problem: _Y (t) = �15 (Y2 (t) ; Y1 (t)) �
16 (Y1 (t) ; Y2 (t)) +

1
5 (18; 21), t 2 [0; 1]

subject to initial condition: Y (0) =
(0; 0). The exact solution is given
by: Y (t) = 3=10 (1;�1) exp (�t) �
39=310 (1; 1) exp (�31t) + 1=155 (�27; 66).

The CGA�s proposed in this work is used
to solve the given sti¤ problem. The input
data to the algorithms is divided into two
parts; the genetic algorithms related para-
meters and the sti¤ problem related para-
meters. The genetic algorithms related pa-
rameters include the population size, Np,
the crossover probability, Pcc, Pci, the mu-
tation probability, Pmc, Pmi, the value of �
in Equation (II), the initialization method,
the selection scheme used, the replacement
method, the immigration threshold value
and the corresponding number of genera-
tions, and �nally the termination criterion.
The sti¤ problems related parameters in-
clude the governing sti¤ di¤erential equa-
tion, the interval [t0; tf ], the step size, h,
the initial value, the number of nodes, N .
The initial settings of the CGA�s related

parameters are as follows: the population
size is set to 500 individuals. The individual



crossover probability, Pci, is set to 0:5, the
curve crossover probability, Pci, is set to 0:5,
the individual mutation probability, Pmi, is
set to 0:5, the curve mutation probability,
Pmc, is set to 0:5, and � is set to 1. Mixed
method for initialization schemes are used
where half of the population is generated
by the modi�ed Gaussian given in Equa-
tion (III) while the other half generated us-
ing the tangent hyperbolic function given
in Equation (IV). The rank-based selection
strategy is used where the rank based ra-
tio is set to 0:1. Generational replacement
scheme is applied where the number of elite
parents that are passed to the next genera-
tion equals one-tenth of the population size.
Extinction and immigration operator is ap-
plied when the improvement in the �tness
value of the best individual of the popula-
tion over 100 generations is less than 0:01.
For the problem, the step size, h, is set to
0:1 and the number of interior nodes is set
to 10.
The CGA�s is stopped when one of the

following conditions is met. First, the �t-
ness of the best individual of the popula-
tion reaches a value of 0:9999; that is, the
overall individual residual of the best in-
dividual of the population is less than or
equal to 0:000100010001. Second, the max-
imum nodal residual of the best individual
of the population is less than or equal to
0:0000000001. Third, a maximum number
of 3000 generations is reached. Fourth, the
improvement in the �tness value of the best
individual in the population over 500 gen-
erations is less than 0:00001. It is to be
noted that the �rst two conditions indicate
to a successful termination process (optimal
solution is found), while the last two condi-
tions point to a partially successful end de-
pending on the �tness of the best individual
in the population (near-optimal solution is
reached). Due to the stochastic nature of
CGA�s, tenth di¤erent runs were made for
every result obtained in this work using a
di¤erent random number generator seed; re-
sults are the average values of these runs.
The convergence data is given as follows:

the problem take about 3000 generations,

on average, to converge to a �tness value of
about 0:98692556 with an average absolute
nodal residual of the value 6:189294� 10�4
and an average absolute di¤erence between
the exact values and the values obtained us-
ing CGA�s of the value 7:232698� 10�4.
The evolutionary progress plots, of the

best-�tness and minimum-residual individ-
ual are shown in Figure 1.
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Figure 1: Evolutionary �tness and residual
of the problem.

It is observed that from the evolution-
ary plots of the problems that the conver-
gence process is divided into two stages:
the coarse-tuning stage and the �ne-tuning
stage, where the coarse-tuning stage is the
initial stage in which oscillations in the evo-
lutionary plots occur, while the �ne-tuning
stage is the �nal stage in which the evo-
lutionary plots reaches steady-state values
and don�t have oscillations by usual inspec-
tion.
The percentage of the �ne-tuning stage

till convergence from the total number



of generations for the problem with re-
spect to �tness evolution is 50%, where
the number of generations in the �ne-
tuning stage is de�ned by: the average
number of generations� (j � 50) such that
Fit(k)�Fit(k � 50) � 0:001 for each k > j
for some generation j. That means the ap-
proximate of CGA�s converge to the actual
solution very fast in the �rst 50% of the
generations. In fact the individual �tness
is improved if a decrease in the value of the
overall individual residual is achieved. The
optimal solution of the problem, nodal val-
ues, will be achieved when minimum overall
individual residual approaches zero and best
�tness approaches unity.
The way in which the nodal values evolve

is studied next. Figure show the evolution
of the �rst and ninth nodal value for the
�rst variable, respectively, while the Figure
3 show the evolution of the �rst and ninth
nodal value for the second variable, respec-
tively.
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Figure 2: Evolution of the �rst and ninth
nodal values for the �rst variable.

Evolution Function for Y 2(t  = 0.1)

0.1

0.13

0.16

0.19

0.22

0.25

0.28

0 500 1000 1500 2000 2500 3000

Generation Number

N
o

d
a

l 
V

a
lu

e

Evolution Function Y 2(t  = 0.9)

0.25

0.28

0.31

0.34

0.37

0.4

0.43

0 500 1000 1500 2000 2500 3000

Generation Number

N
o

d
a

l 
V

a
lu

e

Figure 3: Evolution of the �rst and ninth
nodal value for the second variable.

It is observed that all nodes, in the same
problem, reaches the near optimal solution
together. It is also concluded that the evo-
lution has initial oscillatory nature for all
nodes. As a result, the distance (number of
nodes) from the initial point doesn�t e¤ect
in the convergence speed.
The percentage of the �ne-tuning stage

till convergence from the total number of
generations with at the �rst and ninth nodes
evolution with respect to �rst and second
variables are: 47%, 58% and 47%, 58%, re-
spectively, where the number of generations
in the �ne-tuning stage is de�ned by: the av-
erage number of generations� (j � 50) such
that jEvo (t; k)� Evo (t; k � 50)j � 0:001
for each k > j for some generation j, where
Evo(t; k) denote to evolution of node t at
generation k.
Table 1 through Table 4 show the re-

sults obtained for the problem using CGA�s
across all interior nodes for the �rst and the
second variable, respectively.



Table 1: Numerical result for the 1st var.
t Exact value Approx. value
0:1 +0:09159020 +0:09421277

0:2 +0:07117036 +0:07066817

0:3 +0:04804042 +0:04851664

0:4 +0:02690195 +0:02645195

0:5 +0:00776563 +0:00797471

0:6 �0:00955006 �0:00940603
0:7 �0:02521796 �0:02579864
0:8 �0:03939486 �0:03897397
0:9 �0:05222265 �0:05270990
1:0 �0:06382972 �0:06699915
Table 2: Numerical result for the 1st var.
t Absol. error Absol. residue
0:1 2:622569� 10�3 8:660110� 10�5
0:2 5:021916� 10�4 2:496025� 10�4
0:3 4:762200� 10�4 9:042357� 10�4
0:4 4:500008� 10�4 1:377463� 10�3
0:5 2:090833� 10�4 1:035190� 10�3
0:6 1:440258� 10�4 2:664832� 10�4
0:7 5:806818� 10�4 5:658351� 10�4
0:8 4:208851� 10�4 8:325423� 10�4
0:9 4:872495� 10�4 8:136086� 10�4
1:0 3:169437� 10�3 5:738147� 10�4

Table 3: Numerical result for the 2nd var.
t Exact value Approx. value
0:1 +0:14868775 +0:15122578

0:2 +0:17993191 +0:17938585

0:3 +0:20354948 +0:20396309

0:4 +0:22470992 +0:22421968

0:5 +0:24384723 +0:24413581

0:6 +0:26116296 +0:26146166

0:7 +0:27683086 +0:27639496

0:8 +0:29100776 +0:29162541

0:9 +0:30383555 +0:30358507

1:0 +0:31544262 +0:31447228

Table 4: Numerical result for the 2nd var.
t Absol. error Absol. residue
0:1 2:538035� 10�3 7:895800� 10�5
0:2 5:460636� 10�4 2:113119� 10�4
0:3 4:136019� 10�4 8:635775� 10�4
0:4 4:902445� 10�4 1:312187� 10�3
0:5 2:885803� 10�4 1:117774� 10�3
0:6 2:986974� 10�4 4:566294� 10�4
0:7 4:358978� 10�4 5:611304� 10�4
0:8 6:176508� 10�4 8:751833� 10�4
0:9 2:504839� 10�4 8:370778� 10�4
1:0 9:703367� 10�4 5:972419� 10�4

The accuracy in CGA�s doesn�t e¤ect by
the distance from the initial node, while
in conventional methods the accuracy e¤ect
by the distance from the initial node. The
absolute average error which is calculated
across all problem nodes for the �rst and
the second variable are: 9:0623 � 10�4 and
6:8496� 10�4, respectively.

5. Conclusion

In this research, a new numerical method
to tackle the sti¤ initial value problems is
proposed. Central to the approach is the
novel use of CGA�s where smooth solution
curves are used for representing the required
nodal values. This new method promises
to open new possibilities for applications in
an important class of physical, engineering,
and chemical problems.
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