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Abstract

The n-Hosoya Polynomials of saw graph , and thorn saw graph are obtained .
The Wiener indices and n-Wiener indices of these graphs are also determined .
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1. Introduction:

We follow the terminology of
[3],[4]. Let v be a vertex of a
connected graph G, and let S be an
(n-1)-subset of V(G) , ns 2, then the
n-distance d,(v,s) isdefined by [1]
d,(v,S) =min{d(v,u):ul S}. ..(1.D
The n-diameter of G isdefined by
dlamnG=ma}x{dn(v, S):vl V(G), .”(1.2)
|g=n-1,S1 V(G)}
The n-Wiener index of G is defined
by

Wh(G)= § dn(v,S) - ..(L3)
(v.S)
The n-Hosoya polynomial  of
connected graph G of order p is
defined by
d
H,(G;x) = 5 C, (G, k)X, ..(1.4)
k=0
where 3en£p, d, isthe n-diameter of
G, and c,(G,k) isthe number of order
pairs (v,s),vi V(G),Si V(G),|§=n-1,such
that d,(v,S) =k.
One can easily show that [1].

ap- 19
Cn(G,0) = pgn o2
]

ap-10 o op-1- degvd
C,(GD= - +...(15
GY=pg = aE 1 ; (1.5)
The n-Hosoya polynomial of a
vertex v in G , denoted by H,(v.G;x),

isdefined [1] by

H,(v,G;x) = é C, (v, G,k)xK ...(1.6)
k30

where c,(v,G,k) isthe number of (n-1)-

subsets of vertices S such that

d,(v,S)=k. It is clear that for each k ,

OELKEd,,

Ca(GK) = § CalvGK), ..(1.7)
Vi V(G)

and

H,(G;x) = é H,(v,G;x), ..(1.8)
Vi V(G)

The following simple lemma is useful
for obtaining C,(v,G,k) for every
vertex v of aconnected graph G .

Lemma 1.1: [2] Let t be the number of
vertices of ordinary distance k from
vertex v , and let s be the number of
vertices of distance more than k fromv
in aconnected graph G . Then

as+t) es 0
Cn(v,G,k) = - I, ...(1.9
UL T T (1.9)
for vi v(G),2£n£ p,0£k£d, . |

Let T be a non-empty subset of
vertices of G . We define

Co(T,GK) = § ChVG,K) -
MT
We shall use this notation in our
proofs.
In this paper , we obtain n-
Hosoya polynomials and n-Wiener

..(1.10)
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indices of saw and thorn saw graphs .
Hosoya polynomials and Wiener
indices are also determined in this

paper .

2. Saw Graph:
A saw graph p, is a path of

order m, say w,v,, ..,v,, With m-1
additional  vertices u,u,,...,u, ¢, and
edg% {UiVi,UiVH_l:i :1,2,...,m- 1} as

depicted in Fig .2.1.

Vi Va2 V3 V4 Vm1  Vm
Fig. 2.1.

Itisclear p(P;)=2m-1 and
A(Pp) =3(m-1).
The n-diameter of p, is given in the
next satement.
Proposition 2.1: If p, is a saw graph
of order p=2m- 1, then
diam,Py, =m-

nu
1, 2ENEp.
t’

oD D
Nf

Proof: From Fig. 2.1, one can easily
noticethat diam,P, =&, (v).
The n-eccentricity of v, is the n-
distance from v, to the (n-1)-subset S
consisting of the first n-1 vertices from
the sequence :

ViU 12Vime 10U 2. -+ V2 Uy -
Thus, if niseven, then

S={VmiUm-1.Vm-1:Um- 2, Vim- 25

Vm-(n/2-} N>2,

Um- (n/2-1)

S={vy}, n=2,

and SO d,(%,S) =m- g

If nisodd, then

S={VmUm-1;Vm-1:Um- 25 i Vim- (n-2)/2-1)

n-1
Um-(n-7/2)} and so dp(v1,S) =m- 5

Hence , the proof. N

To find H,(P,;x), we redraw

*

P, and relabel its vertices as shown

Vp-3Vp-2Vp-1Vp

inFig.2.2

Vi V2 v3 V4 V5 Vg

Fig.2.2 The saw graph r, where
p=2m-1
Theorem 22: For 2£k£d,, the
coefficient c,(r,.k) of the n-Hosoya
polynomial of the saw graph B, of

order p=2m-1, m? 4, isgiven by

+ 2k +1¢
C.(Ph k) = A.Ea %R
o
§a+Saa+50 a- 36a+30 a+7aa+1o
é
N 1¢
R=¢6 AR ke N
? 2 gn-lz Zu
é
é ému
SZE10 fezu+1£k£d
& e
+ 2k +1¢ 4 +30
C(Pk)AEa Sa;l"zglg
and 3] o
it _ému
-2 T ; if
gn-l,é, ~&24
ezero ;if mis even

R=S 26 2 4
%ae °2ae 2. if mis odd

8%“ 1z e&n-1y
Where a=p-4k , and d, is the n-

diameter of pr,.



Proof: Let v, 1£i£p, and S be an (n-

1)-subset of vertices. We consider two

cases for the values of k .

ase (1): When 2£|<£§m‘fJ

For 1£i£2k-1, there are exactly two
vertices, namely  vpuo.12p  and
Vo 2i-1y/20 » OF distance k from v, , and
thereare p- 2k- 2¢i- 1)/2¢- 1 vertices of
distance more than k from v, .

Hence for such values of i , the number
of (n-1)-subsets such that d,(v;,S)=k is

given by
aicxaep 2k - Zdl )/ 2{- 10
ag : 1 forigigok-1
J - - P
j=1
Hence
%1 2k-154 a
o €ap- 2k- 28i-1)/2(+10
aC (Vi , P, K =a z
l a & -1 5
_aep-Zk-Zdl /2 10U
: w1 B

_Zgzéaep- 2k - 2¢(i - 1)/ 2(+16
a & 1
- 2k- 2¢i- 1)/ 2(- 10U

n-1 Qg

Because of the symmetry of P, with
respect to the initial vertex v, and the
terminal vertex v,, the number of (n-
1)-subsets S such that d,v;,s)=k, for
p- 2k+2£i £ p, IS given by (2.1)

Hence for this case and for the values

of I,1£i£2k-1 and p- 2k+2£i£p, wWe

have

aC . P K= 4g;a+2k+12 aa+30 Zaa +1g

| -1 45 @&n- 12, n- 1y
..(22)

Now , for 2kEi£p-2k+1, and

2£KE @9 1, there are four vertices of

g2
distance k from v, namely ,

Vog 2 2k+1s V2§ 1 2 2k+21 V2§ 1 20+ 2K- 25 and

Vagiapek-1-  The number of vertices in

P, of distance more than k from v, is

given by

p-{(26/20+2k-1)- (26 /2(- 2k+1)+3
=a - 2hi +1

10, when iiseven
where h, =| »
11, when iisodd

Hence for this case , the number of
pairs (v;,s) of n-distance k and for all i,
2k£i £ p- 2k+1, Isgiven by

2k+1n-
EW Y ) .(23)

|2kJ—lJn:ng

It can easily be checked that when p is
odd , then the number of even i's is

a+3
2

, and the number of odd i's is

a+1
5




Because, p is aways odd for r,, then
(2.3) simplified to

a+3% adoeea+1 o a+1o diea-1 o

2 j:lgjgn 1 g 2 qujgn 1- jp

a+3%a+50 aa+1ou a+16a +3) a - 10u
2 %n 1ggn 1@ 2 %n 1ggn 1@

..(2.4)
Finally , we note from Fig.2.2 , that

8):864 gif mis even or odd ,
¢ -
...(2.5)

o1

Cn (Vm-11 me

and n-1

cos
I
(@]
>0
~~
<
3
&
3-0
DD D
f S

Q-0

= T = if mis odd
gn- 1y en-1yh

...(2.6)
From above , (2.2) , (2.4), (2.5), ad
(2.6), we have

+2k +19
C,(PhK) = 4§a 2+ , where
€ +3@+50 a-3@+30 a+72+10
g 2 -1y 2 n-15 2 gn 15
é
y =€ _atl@-l f2£k£@‘9-1
e
&ed 0 a+30 aa+10 it | = &mu
gn-lg n-1% n-1,2,J &24
where
ézero ;if miseven
. e
=526 20 (27
J =0 0 22 0.4 icoad (2.7)

g n-1; “&n-15

ase (2): Wheng e, 16k £d,.
2q

For 1t£i£2(m- k), then we have the
same result of Case (1) for 1£i£2k-1.
That is:

n-1_o.. A a
* o aRtep- 2k- 2di- 1)/2(- 16
Cavi.Pm.K)=Q

Gep o
ALE  n1j g
1Ei£2(m- k) .

Hence

A1 AF W - 2k- 28 - 1)/2+10

ac:(vpk)—é g = 2

i=1 i=! a
ap- k- 2¢i - /20 1680
- aU
n-1 a4

n-1 5 én 1zg n-1 4
Also because of the symmetry of p, ,
the number of (n-1)-subsets S such that
d,(vi,S) =k, for 2k£i£p is given by
(2.8).
Hence for this case of the values of i ,

1£i£2(m- k) and 2k £i £ p, we have

aa +2k +1o

aC(v,P k) = 4@

This complete the proof . [

Corollary 2.3: The n-Hosoya polynomial

of saw graph pr,, of order p=2m-1 is given

by
-16 p+3ap- 30
H (P x) =
n(PmiX) = pg 1pgn 152 &1
d
-—p gp T+ & CalP) k) xK
% o
,for m= 4,

. 22 0 220
Hn(PZ;x)=3§ i+3§ X
n- 2 @n-1;5

« ae4'c_'> 240 24
ST TP 6 A
@ 20 2

+4§” 12:

and the n-Wiener index of saw graph



W (P*):paep-lg_ p+365p-39_ -3
nee gn-lg 2 &n-1yz 2

[EEY
QI-I-O:

d, ’
+Q KCn(Pp k)
k=2

Wn(P£)=3§ae 29,

n-lg

* ® 40 e 2(5’
and Wn(P3)=5§n 1:+4§n 1:
" g ]

where c,(P,.k) is given in Theorem
2.2, for 2£k£d,, and d, is the n-
diameter determined by Proposition

2.1

Corollary 2.4 The  Hosoya

polynomial of saw graph p,, of order
p=2m-1isgiven by
H(P;; %) = (2m- 1) +3(m- 1)x+4gl(m- X .
i=2

...(2.9)
Proof: When n=2 , we have
dp(v.{U}) =dp(ufv}).
Thus H(P,;x) IS obtained from
Theorem 2.2 , by putting n=2 , and
dividing by 2.
We notice that our result , for special
value of n=2 is exactly the result
obtained by W. A.M. Saeed [5].
From (29) we notice that:
C(P,,0)=2m- 1,C(P;,,)) =3(m- 1), and
C(P,.k)=4(m- k), for 2ekEm- 1.
Therefore

C(Pp,0) < C(Pp1) < C(Pn,2) > C(Py 3) >
C(Pr.4) > ... >C(Py.d)

Thus, the sequence (c(R;,.k)) is strong —
unimodal, and clearly , it is neither
palindromic nor semi-palindromic .

3. Thorn Saw Graphs:

Definition 3.1: Let G be a
connected graph of order p and

maximum degree D. A n-thorny

graph G
from G be adding pendals such that

is the graph constructed

every vertex of G becomes of degree n
, wherepen ,in G".

In most chemical graphs we

have Dp£4 and we take n=4in
congtructing n- thorny graphs. For saw

graphs P, of order 2m-1,m:2, we

take n=4. Then , the thorn saw P;°of

order p=4m+1,m3 2, is shown in Fig.

3.1.

Fig. 3.1. Thorn saw graph p;’ of
order p=4m+1
The number of added end-
vertices is 2m+1 and labeled

W Ws, Womse . I 1S Clear  that

Py ) =5m-1, and the diameter of g}’

IS m+1, it IS d(w,Wo.,). Thefirst result

determines the n-diameter of p;°.



Proposition3.1: The n-diameter of the

m3 2, IS

thorn saw of order p=4m+1,
given by
i én- 2(
s j{m+l- W 2ENE4
diamanC=:'mJr g 4 4 neam
11 , n=4m+1
Proof: It is clear from Fig.3.1 , that

. %xC
diam, Py =en(wW).

The n-eccentricity of w, is the n-
distance from w, to the (n-1)-subset S

consisting of the first n-1 vertices from
the sequence :

Wom+2s Wom+1s Woms Wom-1: Vms Um- 1, Wom- 2, Wom- 3
iVm-1,Um- 2, Wom. 4, Wom. 55 V3, Up, Wy, W3

Vo , U, WoiVy .
Notices that distance from w, to

each of the four vertices

Vi

Also,

U

J'l’WZj'Z’WZj-Bl fOf 3£]£m, ISJ .

each vertex of
{Worneo, Wormeg Wor, Wor 3 1S OF  distance
m+1 from w,, and if ns 5, then S must
contain all these vertices. Therefore,
we have 4(m+1- j)=n- 5, which implies
=4m+2)- (n-1).
Sincej isinteger , then
én- 10 én- 2Q

=m+1

§a{ R

Forn=4m-h, 0£h£2,d,(w,S) =2, which

j:m+2_

is the same result obtained from Fig.
3.1. u

In the next theorem, we find the n-

Hosoya Polynomial of P’

0O O

To simplify the proofs we redraw p;°,

and relabel its vertices as shown in Fig

3.2 . ltisclear that p=4m-+1.

Vi T2
u u g-) u él) u 511)

0)

( 0)
us

u§
Fig.3.2.
Proposition3.2: For 3e£nf£4m+1, and

Vi for j=01,

16 adm- 80
: (m +Dg T
n-1g
m Z)aém-lzg adm- 49
g n-1g &n-1g

Cn(P 2) = 2(m+1)g

(3.2

Proof: Let S be an (n-1)-subset of v(PR,).

We consider three cases for a
vertex wi v(p.").

Case(1):w=ul",r=0,1and i=12,..,m+1
There are three vertices, namely

u* " v,,v; each of distance 2 from

u r=0,1.Also, there are three
1

vertices, namely u®%D v, 5. v 5 €ach

of distance 2 from u{),,r=0.1.
Moreover, each of the three vertices
u®D vy 5,vy,, is of distance 2 from
u for i=23 ...,mand r=0,1.

Therefore, the number of pairs u",s)

such that d,u”,9)=2, =12 .. ,m+1,
and r=o01 isgiven by

_ 10 aélm 4ou
2(m+1)a§ gn 1 i 2(m+1)$ - 1@

...(3.2)



Case (2): W=Vj,VoiVa) o Vo 45 Vo 2:Vom 1 -

There are four vertices, namely

va.vs,u’; us), each of distance 2 from
vjy for j=01. Also there are four
vertices, namely  vom s.Vom 4.u'%,; u;

each  of distance 2 from
Vome1j s for j=01.

Moreover, each of the four vertices
Vo 3:Voio 2. Voie2: Vo4, 1S Of distance 2
fromvertex v, for i=23, .. ,m- 2.
Therefore the number of pairs (w,s)
such that d,(w,s)=2, isgiven by

6_ édm- 46 adm- 80U
(m+1)a§£n 1- p (m+)$n 1,2, gn 1fzg

..(33)

Ca% 3 . W:V3,V5, ,Vzm_s,VZm_s . Tha‘e

are eight vertices, namely
u® u® u u® o0 u® ve,v,  each  of

distance 2 from v; . Also there are

eight vertices, namely

4@, 0@ u©@ u® u O u®
Uy Uy

Unn+1:Umig:Um 1:Vom-6:Vom- 7

each of distance 2 from v,, ;.
Moreover, each of the eight vertices
Vai. 1.V21 U U U U, Vaie Vaiey IS OF
distance 2 from vertex v,,, for

i=12, .. ,m-4.
Therefore , the number of pairs (w,s)
such that d,(w,s)=2, isgiven by

woaap édm- 40 aém 120u

(m- Z)aggnl i -(m- 2)@ nlm

..(34)

Hence, from (3.2) , (3.3) ,and (3.4) we
obtain (3.1).

Remark 1. If m=2, then Case (3) does
not exist and so

ae7o ae4o

2= 6§n 1,2, 3§n 1,2,'

Proposition 3.3: For 3£n£4m+1, and

m35,
ColP' 9 = 2(m+1)§"“' *Sem-of T %2
- 7]
-  16¢
(m+1)§ 2 (m-1)§é’:_l %
-~ (m- 4)?Lm 20? ...(35)

Proof: We have two cases:

Case (1): wi AEB, Where

A={u :r=01and i=12, ..,m+3}

B={v;: i=1,2,3,2m- 1,2m- 2,2m- 3 .

As in the proof of Proposition 3.2, one
can easily show that there are four
vertices of distance 3 from vertex
wi AE B; and there are p-9 vertices of
distance more than 3 when wi A; there
are p-13 vertices of distance more than
3 when wi {v;,v,,V, 1.Vom. o} ; @nd there
are p-17 vertices of distance more than
3 when wi {vs,von. 3} -

Therefore, the number of pairs (w,s)

suchthat d,(w,s) =3, isgiven by

pgo aéloaeplSo

2(m+1)ag£n 1-jg ag;gn 1-jg

aéoaep 17 9

+Zag£

j:111111121



2(m+1)eaélm 49 aém 80u eaém 80
B En-15 En1 gn 1y

aélm 120u+2eaélm 126 adm- 1680
nlm a nlzgnlm

_ adm- 40 _2&m- 86
_2(m+1)g ) ; 2(m 1)g n-la (3 6)

adm- 120 aém 160

Case(2): wi D={v,: i=45,...2m- 4.
For each such wi b there are eight
vertices each of distance 3 from w.
But, there are (p-17) vertices of
distance more than 3 from vertex
v; for eveni,4£i£2m- 4; and there are
(p-21) vertices of distance more than 3
from v, for odd i ,5£i£2m- 5.

Therefore, the number of pairs

w,S),wi D, such that d,w,5)=3, IS

given by
- 219

= (m- 3)@ 9+( )?nm_ 1122 (m- 3)?”1 16:

m- 200
- (m- 4)§ - E ..(37)
Hence from (3.6) and (3.7), we obtain
(3.5). [ |
Remark 2:
Ca(P;°, 3 = 6@ 6,

«C 28 0 >4 0
Cn(P3 ,3)=8§n = %, 1:,3,
-1 -

212 6 ae80 x4 0
SRR 0 AP LA

Proposition 3.4: For 3£nfp=4m+1,

4£k£8_mg me 7, the coefficient of x*
21

in the n-Hosoya polynomial of p.°is

given by

C (RS k) =88 —+(2m+10 a0 +23- 4ko
&n- § n1 g
+11- 4k¢ +19- 4k
+(m- 2k)§a 2 2 %
n-1 g n-1 4

+15- 4K¢

-(m+7-2k)g g

1 5

+7- 4k

(M+5- 2|<)§‘a 9

n-1 4

-(m+2-2k)-§a+3 1‘”‘; ..(38)
where a = p- 4k , and p=4m+1.
Proof: We consider two cases and
partition v(p;)in to A and B in which
each vertex w of A is of distance k
from exactly four vertices, and each
vertex weof B is of distance k from
exactly eight vertices.
Case (1): A=AEAEAMEAEAEA,
where
A={u":r=0,1;i=1,2,m+1,nm,

A ={uD:r=0,1;i=34, .. k-2; k1 4,

Ag={ul":r=0,1;i=m-1,m- 2,
Cm-Kk+4: k1 4
Ag={v;:i=12,..,2k-52k- 4},

Ag={v;:i=2m-1,2m- 2, ... ,2m- 2k + 4},

Ay ={Vo_3.Vom. 243} -

For each wi A , there are four vertices
each of distance k from w. For
instance, each of
verticesvy ,vaer u2 ul is of distance k

from vertex v, ,i=12 . Also, each of



Vak-10 Va0, U 5 ,us) o is of distance k
from u”, ,r=o0,1.
If wi A, then there are p-4k+3 vertices

each of distance more than k from w.
Thus

...(3.9
If wi A,, say w=u") , then there are p-
4k+11-4i vertices each of distance

more than k from u{” . Thus

'S aéaaea +11- 4i

Cn(ui(r),Pr;C;k) ag g n1 | for u1 A

9
o

From Fig.3.2, one may notice that
Ca(u®, P K = Cr U5 P k)

i=34, .. ,k-2,r=01, and therefore the
number of pairsw,s), if wi AJE A,

such that d,(w,s)=k, isgiven by:

52 bladipea +11- 4i6

LU I Y By

+3¢ +19- 4k
_ 230 @ @ ...(3.10)
Sn-15 n-1

If wi A, s8y w=v; , then there are

p- 4k+3- 43'2‘4 vertices each of distance

u

more than k from v, . Thus

5 sl gen + 349/

Cn(vP k) = agé —forvIAg

Also , from Fig.3.2, one may notice
that

CaVi By K) = Co (Vo 1P 1K) 11 =12, .. 2k~ 4
,and therefore the number of pairs

w,S), wi AJE Ay, such that d,(w,S)=k

isgiven by:
2254 né.ladoaea+3 4e/2u<; 2254éaa+7-4é/2£(i5
iz Jlgé n-1-j g iﬂg n-1 4
aa+3 4e/2uou
n-1 zg
K524 4|o aa+3 4i )

o éa +
=4a = e
|=1$ n-1 9]

eaa+30 a +11- 4kl
i....(3.11
Agn 15 & n-1 % (3.11)

If wi A, ,then there are p-8k+7 vertices

each of distance more than k from W,
Thus

n-1
*C [o] %’
Cow,Py K =Q

Geea
A& n-

+7- 4k¢

0
=, for wl A,
ﬂ

...(312)
Therefore, from (3.9)-(3.12), we get
the number of pairs (w,s),wi A, such
that d,(w,S)=k, whichis

éa +70 aa+3dJ+ éa +3 28 +19- 4kgl
%nlzgn 1,@4%115@ n-1 ,;g
éa +30 aa +11- kol _Ga +11- 4ko sa +7- 4de
Agnlzg nlégzg nl,;,g nlm
...(3.13)

Case (2): B=B,E B,E By, Where

B, ={u":r=0,1andi =k- L,k,k+1, ... ,m+3- K},
B, ={Vi:i=2k- 2,2k ;2k+2, .. ,2m- 2k+2},
By ={v;:i=2k-1,2k+1;2k+3, .. ,2m- 2k+1}

For each wd B , there are eight vertices
each of distance k from w. For
instance, vertex u(”),(r=02 is of

distance k from each of the eight



vertices

0 ..

uf uf?

uf uf?

0 1)
0

Ul( WUop- 4:Vak-7:Vak-8 -

If wi B, then there are p-8k+15
vertices each of distance more than k
from we. Thus

%C 'S - 0
C,(W¢P,, k) = "3 Tz for wd
(w ) ja:.1 Jﬁ . B
...(3.14)
If wdiB,, then there are p-8k+7
vertices each of distance more than k

from we. Thus

...(3.15)
If wdiB;, then there are p-8k+3
vertices each of distance more than k

from w(. Thus

o Blags s
C,(W¢P, ’k)zagjéﬁn-l- J_ 3, for wil B

...(3.16)
Therefore, from (3.14),(3.15) and
(3.16) we obtain the number of pairs
w,S),wi B, such that d,(w,S)=k,
which is

Gaa+23 4ko a +15- 4de

(2m+10- 4k)$ - U

a n-1 A

Eaa+15 4ko aa +7- 4kl

+(m+3- 2k)g S [é; n1 %
]

11- 4k¢ 3- 4k

+(m+2- 2k)§a 3 8a+n 1 2
[}

..(3.17)

Hence from (3.13) and (3.17)we obtain

CaPiy K0, 4£ ke g2 as givenin (3.8). I

Proposition 3.5: For 3£nfp=4m+1,
m3 7,

«C ému am- 4gn/2u+4o
Cn(Pm sa—g*tD = Sg
621y

n-1 5
eaélm 89n/2u+4o am- 8€m/2u+120u

8 nl@ n-1 m

8ém/ 2(1+16¢
+(2m+6- 4em/20§4m gn/ 2169

n-1 B

aelm 85,m/2u+80u ‘R
n-1 fZQ

..(3.18)

eae4 o 28 0
where R=g gn 15 gn 15
&ero , if misodd

, iIf miseven

Proof: As in the proof of Proposition
3.4, we partition the vertices of p;° in
toAandB . If wi AEAEAEAE A,
the number of pairs (w,s) such that

dny(W,S) = ‘ﬂ“+1 are obtained from (3.9)

&24
, (3.10) , and (3.11). If m is even then

thereareonly v,,, and v, such that
Ay (Vi 1,S) = dpy (Vg S) =g +1, and

ae4o

*C M
C (V- 1,Pm =+ =d, (v, ,P +1
n(ml m 2 ) n( m+1 ) gn 1,3

If mis odd thereis no vertex w in A,

such that

d, (w,5) = §MY, 1 - M*3

&2 2
If wi B, the number of pairs (w,s)such

that dn(w,5)=§_z'3+1 is obtained from
u

(3.14) by putting k—‘ﬂ“u . For m

even only, there is one vertex of B,,



namely v,,, such that dn(vm,5)=g+1,

+1) &8 0
gn 15

Moreover, there is no vertex w of

and C,(vy, Py —

B, E B;- {v,,} such that

dn(w,S) = 041,

&24

Simplifying the result mentioned

before we obtain (3.18). W
Proposition 3.6: For 3£nf£ p=4m+1 ,

ms 7,

emu___ odm-4gn/2)p  adm- 84/ 2 46
ColPn & 3+2> =% o E
e n'l z

n-1 g

§ 0 , iIf miseven
egn 1@ .
&ero , if misodd
..(3.19)
éma
&2

wi A E A E Ay We have the same results

Proof: When k=z—n+2, and

obtained Case (1) of the proof of
Proposition 3.4.

Now we consider
D={v:i=12, ..,2m- ant- 2}, and
82u
D¢={v: i =2m- 1,2m- 2, .. emﬂ+2}
82
Then there are a +3- 4%3 vertices each
u
of distance more than S_Z‘ﬂu from
u
wi D,where a = p- 4 ' -8 . Thus

+C ému L dipea +3- 481209

?u*’z) ag é ot

C(W,P : ;
" ot ] n-1-j 5

for wi D.

10

Hence

2(gn/2u-1) c emu
a Cn(vi,Pm 8 u +2)
i=

2(9“62”1) %' aigea +3- 44/ 200

) ,a aglé n-j-1 g
_Zé%zl%ladwa+3 4|o
B a a Jgn 1- ] &

i=1 j-1

am/ 241

2o eaea+74loaea+34lou
o L

nlj,lzg

1LY

+3( 0 +3(
_Zeaa oae ouzaa o

Since
*C emu *C ém[:]
Cn (vi, Py 182H+2) Cn(Vom-i+Pm 1838"'2) ,

i=12, . (em‘i 1, and therefore the

number of pairs (w,s), wi DE D¢, such

that :

d,(w,S —emu, , isgivenby .2 *39,
&2t

n-lg

Finally from Fig.3.2, we notice that

«C ému *®e8 0 .
C (u(r) P a—nt2)= +,r=01, mis even
et E2d - 15

This completes the proof. [ ]
Proposition 3.7: FOr 3£nfp=4m+1,

gg‘%ss k£d,, m? 7,then the coefficient
u

of x* in the n-Hosoya polynomial of

P IS

C. (P k) = Sg _ 17; ..(3.20)
where a = p- 4k.

Proof: We assume  that

F=FREF,EFSEFEF§ Where

Fo={u:r=0,1;i=1,2,m+1,n},



F={u":r=0,1;i=34, .. ,m-k+3},
Fg&={u:r=0,1;i=m-1,m- 2, ... k-1,
Fa={vi:i=12, ..,2(m-k)+2,
F{={vi:i=2m-1,2m- 2, .. ,2k- 2} .

For each wai F , there are four

vertices each of distance k from we,

8 + 3EkEd,
If wd F, then there are p-4k+3
vertices each of distance more than k

from we. Thus

! iz

C (W¢P k) = agjén 13 , for wéi F.

.(3.21)
If wa F,, then there are p-4k+11-4i
vertices each of distance more than k

from we. Thus

aelosea +11- 4i6

k)= agé 3, for wiil F,

CWP
n (W n1-j o

..(3.22)
If wd Fy, then there are p- 4k+3- 4%3
ezu
vertices each of distance more than k

from we. Thus

.C e + 4e/2ur_>
C, (WP, a_gé e ﬂforwﬁﬁ F;
(3.23)
Since ", Pn K =Coul;,,.Pa k) |

i=34,..,m-k+3,r=01, and

«C «C
Ch(vi, Pn s K)=Cpr(Vom-is P ,K)
i=12, ... 2(m-k)+2.

11

Therefore the number of pairs (w,s),

wi F, such that d,(w,S) =k,
eli+3£kEd, -1, iSgiven by:
&2

m-k+3

eaa+7o & +34l é&a +15- 4|o aa +11- 4igl
g | 2a T T
n- 1,2, n-1z4 n-1 g n-1 ﬂ;l

AMHN*2 e +7- 4612p_ga +3- 49/2uou

+2a g

o n-1-j % n-1-j zé

eaa+7o aa+30u+ eaa+30 &0 ou

_Sgn 15 §n-174 @n-1g5 gn 14

eaa+30 &0 ou a +70

+4,
Sn-15 Sn-1 n-14

Finaly , we note from Fig. 3.2, that

C.(R )= 8?4 9
This completes the proof. [ ]
Remark 2:
1. cn(Pr;C,m+1):8§en4 1% ., m3 3.
)
2. c,(Ra=1Fd 0. 240
Gk Og - 1y Agn 1y
3. C(P5 A) = 12%8120 4?8845 2
125 125
4. ae16o ae120

C (PG A = 14g 1,3 gn 1,3
®80 240

) Sgn- 15 Zgn- 13'

m3 5,

* 86
5 c @ m=s’ 2
B m e 2

«C ae120 x 8 o x4 0
6. C,(P; 5= s§ E: 2§ E: 4@ %
g én-lg ¢&n-ly

Propositions (3.2)- (3.7), and
Remarks 1 and 2 , we obtain the next

From

theorem .



Theorem 3.8 For P.°of order
p=4m+1,m2 2, and for 3£n£ p,the n-
Hosoya polynomial of p;°is

g" c
Hn(Pn %)= Q Cn(Pr )X,

k=0
where d, is the n-diameter of g’
given in Proposition 1, and

*C @' 10
Ch(Pn 0) = pgn 2:!
)

P

S =R e 2 amedf 2

15
. and C,(P.2),Ch(P 3,  are

respectively (3.1) , (3.2), and ¢, (P k),
4£k£d, Isgivenin Propositions (3.4) -
37 m

Corollary 3.9: For P, of order 4m+1,

we have

H (P’ ;%) = (4m+1) +(5m- 1)x+3(@Em- )x2
+12(m- 1)x3+16gl(m+2- K)xX.
k=4
Proof: For n=2, we have
dp(UfV}) = dp(v{u}) =d(u,v) -
Thus HP.:x) is obtain from
Propositions (3.2)-(3.7) and Remarks 1
and 2 by putting n=2 and dividing by
2. From Corollary 3.9 , we note that
the sequence (c(P; k), k=01 ...d iS
strong-unimodal, m>5,since there is

index h=4, such that

12

C(R 0 <C(R 1) <Py 2) <C(Pl 3 >

C(R. 4) >C(Py B) >..>C(Ra ,m+1).

Hence : the sequence
CP. k), k=01 .., m+1, m>5 IS
neither  palindromic  nor  semi-
palindromic.

Corollary 3.10: The Wiener index of

thorn saw graph p;,° of order 4m+1, is
WP =16§eﬂ ;32 @m+11).
%]

Proof: By taking the derivative of the

Hosoya polynomial of p.°of order
4m+1 determined in the Corollary 3.9,
with respect to x and then putting x=1,

we have

* vac
WP =16§eﬂ ) 2 (37m+11). -
2
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