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ABSTRACT: 
 

        Torsion of anisotropic viscoelastic reinforced layer represents both crucial and 
challenge process in numerous of composite materials within distinct real-world 
engineering industry. This paper proposes a novel innovative scheme for formal 
solution of the stress and displacement, which is occurring in an infinite anisotropic 
reinforced viscoelastic layer, when it is twisted by means of turning a rigid 
cylindrical shaft attached to it. In this research, we modify the problem by adding 
some important terms within the proposed solution and assuming that the layer is 
made of composite viscoelastic material. The entire technique for solving quasi-static 
viscoelastic problems in a reinforced composite material with the method of effective 
module for this model is proposed. The motivation behind such idea is to find the 
distributions of stresses and displacement in our model. The behavior of the layer is 
governed by the equilibrium equation are solved by means of Hankel transforms. The 
dynamic mixed boundary value problem can lead to dual integral equations as a first 
step. The solution of purely elastic layer is obtained, and then the problem of model 
with anisotropic reinforced viscoelastic layer is solved using the correspondence 
principle and Ilyushin’s approximation method. A numerical example of the fields of 
stress and displacement are illustrated with diagrams which compare the cases of 
anisotropic materials with those of an isotropic material. 
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Introduction 
 
       In recent years, composite materials have gained considerable attention in many engineering 
applications. Composite materials are considered as a structural material for future high-speed 
spacecraft and power generation industries. The composite materials are microscopically 
inhomogeneous, in which the mechanical properties vary from one point to the other or one 
surface to another. 
The general stability of drive shafts under torsion has been studied by many researchers. Greenhill 
[6] for the first time in 1883 presented a solution for torsion stability of long solid shafts. This 
method of solution can be extended for calculating of the first torsion buckling mode of a hollow 
shaft. Tennyson [12] using a theoretical method studied the classical linear elastic buckling of 
non-isotropic composite cylinders, ‘‘perfect’’ and ‘‘imperfect’’, under different loading 
conditions. He compared his results with experiments. Bauchau and Krafchack [1] in 1988 
measured the torsional buckling load of some composite drive shafts made of carbon / epoxy. 
They predicated the torsional buckling load using shell theory and by considering the effects of 
elastic coupling and transverse shear deformation. Chen and Peng [6] in 1998, using a finite 
element method, studied the stability of composite shafts under rotation and axial comparison 
load. They predicated the critical axial load of a thin-wall composite shaft under rotation. The 
torsional problem of an anisotropic layer with fixed base on a rigid foundation when it is twisted 
by means of turning an attached rigid cylindrical shaft studied by Tang [10]. In this problem we 
modify the problem by adding some terms in the solution which are cancel in the solution [10], 
and then we suppose that the layer is made of composite viscoelastic material. Methods of solving 
quasi-static viscoelastic problems in a reinforced composite material have been developed by 
Allam and Pobedria [9]. Allam and Zenkour [8] have used the small parameter method as well as 
the method of effective module for the bending response of a reinforced viscoelastic arched 
bridge model. The main objective being to find the distributions of stresses and displacement in 
our model. 
 

Formulation of the Problem 
 
Consider the anisotropic layer whose material has three mutually perpendicular directions of 
elasticity symmetry parallel to the axis of coordinates. For such material the equations of the 
generalized Hooke's law is written in the following way [11]: 

11 12 13 44

12 22 23 55

13 23 33 66

1

1

1

r z
r r z z z

r z r
r z zr zr

z r
z r z r r

uu u
s s s s

r z r

u u u u
s s s s

r r r z

u uu u
s s s s

z r r r

θ
θ θ θ

θ
θ θ

θ θ
θ θ θ

ε σ σ σ ε σ
θ

ε σ σ σ ε σ
θ

ε σ σ σ ε σ
θ

∂∂ ∂
= = + + = + =

∂ ∂ ∂

∂ ∂ ∂
= + = + + = + =

∂ ∂ ∂

∂∂ ∂
= = + + = + − =

∂ ∂ ∂

            (1) 

 

where ijs  are elastic constant's of the layer, ,ru uθ   and zu  are the displacements with references 

to ( ), ,r zθ  coordinates respectively , , , , ,r z z rθ θ θε ε ε ε ε  and rzε  are the strain components in 

cylindrical coordinate, , , , ,r z z rθ θ θσ σ σ σ σ  and rzσ  are the stress components in cylindrical 

coordinate. 
Let us take (see Fig.1) the axis of the cylindrical shaft as the Z -axis of a cylindrical coordinate 

system ( ), ,r zθ  the origin being at the centre of the cross section of the shaft which is attached 

to the layer, a  is the radius of the cylindrical shaft and h  is the thickness of the layer. The polar 

r -axis is directed arbitrarily. It is assumed that one of the boundary surface ( )z h=  is fixed and 
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the other surfaces of the layer ( )0z =  is subjected to a torsion Ω  over the area  0 r a≤ ≤  and 

let a h< . 
It is assumed that the cross sections of the layer are not rotated and the displacements in the radial 
and axial directions are absent, that is:               

( )0 , , , 0r zu u u r z uθ θ= = =  

then from (1) all the components of stress vanish identically except zθσ  and rθσ  which are 

given by the relations 
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the remaining two components of stress zθσ  and rθσ  depend only on r  and z , and by using 

the equations of equilibrium [11]: 
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The first and third equations are directly vanished, and the second equation becomes: 
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the mixed boundary conditions are assumed to be: 

0 0ruθ = =                                         (4.a) 

0z huθ = =                                        (4.b) 
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where Ω  is the angular displacement of the shaft. 
The solution of the equation (3) has the form: 
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where 1 2,B B  is a constant and 1J  is the first Bessel function. From boundary conditions (4.a) and 

(4.b) and assuming that at infinity ( )r → ∞  the displacement uθ  must remain finite then by the 

use of Hankel transform theorem, the general solution of the differential equation takes the form:  
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∫                                         (5) 

where ( )A p  is the unknown function determine from boundary conditions. 

It follows from (2) that the non-vanishing components of stress are: 
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noting that [5]:            ( )
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where 2J  is the second order Bessel function.  

Using the boundary conditions on 0z =  (4.c), (4.d) we have the equations: 
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Putting ( ) ( ) ( )cothp A p pb f p= , where 
h

b
k

= , then the equations (7) become the dual 

integral equations: 
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Using Tranter's method [3], we have  
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where α  is a real and positive number. Γ  is the gamma function, and 0nδ  is the kronecker delta 

symbol and   
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for 1b > , we may choose 1
2

α =  (Tranter [3]), then: 
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writing the hyperbolic function in this equation (11)  as a series of exponentials, we have: 
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The right hand side of this equation is a typical form of Weber-Schaftheitlin integral which can be 

expressed as a power series in ( )
1

2qh k
−

 by using the formal given by Watson [4]. Doing  this, 

interchange the order of summation. 
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where 
a a

k
b h

β = = , the equation (12) may written as: 
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and ( )tζ  is Rieman's zeta function. Then ,m nL  may be determine to any degree of 

approximation according to the power of ( )1β β = , for the seventh power of β  we have: 
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All the other L's are negligible since the power of β  greater than 7. Using the results (14) in (10), 

we find c's existing they are:  
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Substitution of the above mentioned values in equation (10) yields: 
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So by using equation (15)  
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Then the function ( )A p  can be found as: 
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The displacement and stresses can then be found in equation (6). 
When h  is sufficiently large (i.e. for an elastic half-space) follows: 
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using the a asymptotic expansions given by Watson [4],[5]. This equation may be written as: 
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this is the expression for half-space given by Sneddon [7] in the isotropic case. 
 
 
Numerical Solutions 
 
The numerical solutions of stresses and displacement are directly evaluated from equation (5) and 

(6) with the result of ( )f p  and ( )A p  can be written by: 
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The numerical solutions of stresses and displacements are directly evaluated from the relation (4) 
in the appendix; the final form is as follows: 
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where  ( )2 1 , ; ;F υ µ γ λ
  

 is the hypergeometric function, 
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The expressions for 1 2( ) , ( ), 1, 2,3B k B k k =   are given in the appendix 

 
 

Viscoelastic Composite layer 
 
Now, consider the solution for the case of a layer made of viscoelastic isotropic material (filler) 
reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic 
material .By using Hook's law in anisotropic layer we have the relations: 
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( )1,2i =  is the elastic and viscoelastic material respectively. 

Let the viscoelastic filler characterized by E , υ  or by the bulk modulus K and dimensionless 

kernel of relaxation ( )tω while the elastic reinforcement characterized by Young's modulus E1 

and Poisson ratio 1υ ; where 

2 2 1

1 9
, ,

2 2

K
E K E

ω ω
υ ξ

ω ω

−
= = =

+ +
                                                                (20) 
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so from this relation we can write the ratio 66
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where γ  is the ratio between the thickness of the reinforcing layer to the thickness of the whole 

material. 
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The displacement and stresses may be considered as constant function in elastic composites and 
operator functions of time in viscoelastic composites. In general, , , andr zuθ θ θσ σ  can be 

represented according to Illyushin's approximation method of the unified form:  
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The constants ( ), 1, ,5iA i = K  are constants to be found from the system of linear algebraic 

equations. 
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Assuming an exponential relaxation function: 
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where 1 1, ,a b α  are constants determined experimentally. 
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The Laplace-Carson transformation can be used to determine the functions ( )tπ  and 
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The eq.(22) for a viscoelastic composite may be recorded to obtain the explicit formulae for 

( ),f r ω  as function of ( ),r t . Thus we have: 
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Numerical Example and Discussion 
 

A numerical example for torsion of anisotropic reinforced viscoelastic layer will be given. the 
example includes the layer of elastic and viscoelastic form. These numerical computations are 
carried out for the displacement and stresses that being reported herein: 
Computations were carried out for the following values of parameters 

1a = , 1.5h = ,   1

1
,

3
υ =

  

4

3
ξ = ,  

1
,

10
γ =

  
0 5θ = ,  0 10 ,t =

   1 0.1,a =  1 0.9,b =   

The coefficient α  depends on the scale of time parameter and let ( )tτ α≡  

The numerical examples of the stresses and displacement are calculated by using the following 
data: 
 

material value of k 
Anisotropic 0.5 

Isotropic 1 
Anisotropic 2 

 

The results of the present investigations are given in tables (1-12). Note that the results are given 
for different values of geometric, and constitutive parameters.  

Figs.(2)-(6) show the stresses and displacement in the dimensionless form: 

                    
23 12

, , ,z r
z r

u
u

G G
θ θ

θ θ

σ σ
σ σ= = =

Ω Ω Ω
 

and then we will remove the bars symbol. 

The variation of displacement u  with r for all cases outside the shaft ( )0z =
 
for different values 

of constitutive parameter k  is illustrated in Fig.(2). The radial distribution of stresses, zθσ , on the 

contact surface under shaft ( )0,0z r a= ≤ ≤  are plotted in Fig.(2). The variation of zθσ  on the 

contact surface is shown in Fig.3 and at the fixed base ( )z h=  is shown in Fig.(4). Also, the rθσ  

( ) ( )0 0
1 1 1 0 1 2 1( ) , ( )

y t y tyF y b e a t b e F y b e
τ ττ − − − −−= + − =
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on the contact surface ( )0z =  is plotted in Fig.(3,5) and also the variation of stresses zθσ and 

rθσ and displacement u  at the middle surface of the layer 
2

h
z

 
= 

 
 in Figs (6).  

It seens from Fig.(2) that displacement u  attained its  maximum value at the  points  of the edge 

of the shaft and then decreases very rapidly. The magnitude of zθσ  is slightly increases when k 

decreases and it increases with r to attained maximum value at the boundary of the shaft r=a, and 

it vanishes outside of the shaft. The influence of ratio 
h

a
 (thickness of layer/radius of shaft) to the 

distribution and magnitude is relatively insignificant. The stress zθσ  on the fixed base surface 

increases with r and attained it maximum at the boundary of the circle r=r and the decreases and 
vanishes at infinity. As shown in Fig.(5), the stress rθσ  on the contact surface z=0  takes the same 

behavior but with discontinuity at r=at, This continuity shon also for all z-levels as shown in Fig.6  
which illustrate also the behavior of stress zθσ  and displacement u . 

It can be seen from Fig.(6) that the displacement uθ at 
2

h
z =  has a maximum value on the 

contact surface under the edge of the shaft and then decrease rapidly towards the centre of the 
shaft and outside the shaft. Also in Fig.(6) the stresses ,z rθ θσ σ  has the same behavior of the 

displacement at 
2

h
z = .   

Tables (1-7) give the same values of coefficient , 1, 2,3,4,5iA i =  given in eq.(28) for the 

, ,r zuθ θ θσ σ  in terms of radius r , from which we have the viscoelastic solution at different values 

of r as explicit functions of the time. 

Figs.(7)-(19) show the type of relaxation with time that occurs in the , ,r zuθ θ θσ σ  respectively at 

some particular points of the disk, from which we see that all values are start decrease with time, 
and then increase to attend their asymptotic values, meaning that a steady state established in the 
layer. 
 
Conclusion and Recommendation 

Based on the above illustration and the numerical example-real-world application, we have 
concluded that the anisotropic layer whose material has three mutually perpendicular directions of 
elasticity symmetry parallel to the axis of coordinates can be solved using innovative scheme for 
formal solution of the stress and displacement. This new framework of proposes form a solution 
of the stress and displacement, which is occurring in an infinite anisotropic reinforced viscoelastic 
layer, when it is twisted by means of turning a rigid cylindrical shaft attached to it. Therefore, by 
modifying the problem with this additional important terms and assuming that the layer is made 
of composite viscoelastic material is accomplished. In addition, we find the distributions of 
stresses and displacement in the proposed model. Furthermore, the behavior of the layer is 
governed by the equilibrium equation are solved by means of Hankel transforms. This solution of 
purely elastic layer is obtained, and then the problem of model with anisotropic reinforced 
viscoelastic layer is solved using the correspondence principle and Ilyushin’s approximation 
method.  
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Appendix: 
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1 2 1 2 2 2
2 2

2
0 4 1

2 2 1 212 2

22
3

2 1 2
( , ) , ; ;

2 2 2
( , ) 1 , 1 ; ;

( , )
( , )

2

i
j

j

i
ai i i

a cm

j

i
ai

i m a c

j

r

u a i m
u i j F m m

a c

u a i m
u i j F i m i m

a c

u i j
u i j

m

+
− + +

++

+
+ + +

 Γ + +  
= − +  

  +



Γ + +  
= − − + +  

  +


 =

+

 

 

c)        

( ) ( )( )
( )

( )( )( )

( ) ( )( )
( )

( )( )
( )

( ) ( )( )
( )

( )

2

2 22 1
2

2

2 2

2 2

2 2 1
4 2 1 2

2 22 1
2

2 2

2 2 1
5 2 1 21

2 24 1
2

2 2

2

4 1
2

2 1 21
( , ) 1 , ;2;

!

1 2 2 2
( , ) 1 , ;2;

!

1 2 3 2
6( , )

!

i
j

j

i mm a
i r

r cm
i

j

i mm a
i r

i m r ci
j

i mm a

i

i m
u i j F i m m

m
m r c

i m
u i j F i m m

m m r c

i m
u i j

m m r

+

+

+

++
+

+

−
+ + ++

+

+

Γ + +−  
= − − + 

 
Γ + +

− Γ + +  
= + + − − 

 Γ + +

− Γ + +
=

Γ + ( )( )
2

2 22 3
2

2 3
2 1 2

2 2

1 , ;3;
i

j

i r

r cm

j

F i m m

c
+

+

++













  − − +   
+



 

 

where           0 1 2
0 1 2, ,

3 35 5465

H H H
A A and A= = =

 

                    1 2
z

c q b
k

= +  ,         2 2 2
z

c q b b
k

= + −  

             
( ) ( )( )

( )

1 2

2
0

1
, 1,2,3 1, 2

! 2
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d) For     0 b a< <  
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Fig. 2. Distribution of ( ), 0u rθ  in r direction. 

  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fig.1. Infinite anisotropic layer subjected 

 to a twisting moment. 

  

  

Fig.4. Distribution of ( ),z r hθσ  with r.  
  

Fig.3. Distribution of ( ), 0z rθσ  when 0 r a≤ ≤ . 

  
  

Fig. 6. Stresses and displacement at , 1
2

h
z k= = . 

  
  

Fig.5. Distribution of ( ), 0r rθσ  in r direction. 
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Fig. 10. Variation of stress and displacement at  

( )3, 0r z= =  with time. 

  

  
Fig. 9. Variation of stress and displacement at  

( )0.3, 0r z= =  with time. 

 
 

Fig. 12. Variation of stress and displacement at  

3,
2

h
r z

 
= = 

 
 with time. 

 
 

Fig. 11. Variation of stress and displacement at  

0.3,
2

h
r z

 
= = 

 
 with time. 
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A5 x10-7  A4 x10-6 A3 x10-8 A2 x10-7 A1  x10-2 r A5 x10-4 A4 x10-3 A3 x10-7 A2 x10-4 A1 r 

0 0 0 0 0 0 0 0 0 0 0 0 

-154.18 68.264 1.6886 135.81 9.9886 0.1 0.4508 -0.1998 -0.4917 0.39777- 0.18282- 0.1 

-198.28 88.574 2.0983 177.12 19.985 0.2 1.4598 -0.6476 -1.5876 -1.2897 -0.3711 0.2 

758.657 -335.39 -8.3581 -666.69 30.023 0.3 -0.0254 0.02431 0.01842 0.02612 -0.5726 0.3 

-170.02 75.227 1.8734 149.63 40.004 0.4 -0.5549 0.24446 0.61916 0.48497 -0.7949 0.4 

1791.11 -792.12 -19.691 -1574.8 50.098 0.5 -2.7541 1.22012 3.00983 2.42826 -1.0521 0.5 

-1452.2 642.13 15.987 1276.6 60.022 0.6 5.7689 -2.5549 -6.3114 -5.0836 -1.3632 0.6 

1363.58 -602.62 -15.04 -1197.6 70.168 0.7 -5.7818 2.55443 0.06379 5.07556 -1.7851 0.7 

-670.46 296.19 7.4085 588.54 80.153 0.8 -6.1778 2.74492 6.67828 5.47219 -2.4208 0.8 

-811.51 359.9 8.8396 716.74 90.206 0.9 -17.084 7.58186 18.5393 15.1039 -3.6288 0.9 

-2019.4 895.36 21.998 1782.7 100.22 -18.34 8.13715 19.9344 16.2087 -6.711 1 

1366.73 -607.09 -14.795 -1210.1 78.539 
1 

3.51924 -1.575 -0.0382 -3.1576 8.0591 2 

108.419 -48.153 -1.1742 -95.973 1.8526 3 

       

        Table (2) Values of Ai for  ( ), 0z rθσ . 

  
-21.063 9.3326 0.2301 18.575 0.4719 4 

-5.274 2.3377 0.0575 4.6538 0.1266 5 

-0.6629 0.2939 0.0072 0.5852 0.0356 6 

-0.145 0.0643 0.0016 0.128 0.011 7 

-0.0991 0.044 0.0011 0.0878 0.0043 8 

0.12216 -0.0542 -0.0013 -0.1078 0.0025 9 

-0.0416 0.0184 0 0.0365 0.0021 10 

         

Table (1) Values of Ai for  ( ),0u r . 

  
  
  
  
  
  
  
  
  
  
  
  
  

 

A5 x10-5 A4 x10-5 A3 x10-8 A2 x10-5 A1  r A5 x10-5 A4 x10-5 A3 x10-7 A2 x10-5 A1 r 

0 0 0 0 0 0 0 0 0 0 0 0 

0.12372 -0.5512 -0.1324 -0.1101 -0.0032 0.1 -1.3272 5.87594 0.14541 1.16902 0.02987 0.1 

-0.3194 1.4184 0.3456 0.2827 -0.013 0.2 -1.1672 5.14531 0.12994 1.02107 0.05897 0.2 

1.28487 -5.6678 -1.4279 -1.1252 -0.0298 0.3 0.9678 -4.3033 -0.1044 -0.8583 0.08648 0.3 

1.50301 -6.6607 -1.6408 -1.3258 -0.0544 0.4 -1.3925 6.18272 0.15093 1.23207 0.11131 0.4 

-2.5398 11.254 2.774 2.24 -0.0884 0.5 3.5129 -15.586 -0.3817 -3.1047 0.13298 0.5 

3.95857 -17.524 -4.3388 -3.486 -0.1336 0.6 -8.6147 38.1941 0.93883 7.60472 0.14977 0.6 

12.7657 -56.586 -13.925 -11.265 -0.1944 0.7 -1.6537 7.28641 0.18431 1.44551 0.16218 0.7 

-9.98 44.222 10.898 8.8021 -0.2807 0.8 -8.9379 39.5049 0.98488 7.85152 0.16849 0.8 

-24.459 108.04 27.027 21.465 -0.4123 0.9 -9.5444 42.2896 1.04244 8.41702 0.16937 0.9 

-23.573 104.63 25.575 20.845 -0.6556 -5.9355 26.3782 0.64145 5.25937 0.16526 

182.293 -810.04 -196.99 -161.49 -4.852 
1 

3.3267 -14.679 -0.3689 -2.9145 0.16544 
1 

-12.059 53.392 13.208 10.622 -0.169 2 2.2744 -10.071 -0.2491 -2.0036 0.05302 2 

1.81527 -8.0507 -1.9757 -1.6032 -0.032 3 0.5437 -2.41 -0.0593 -0.4798 0.013 3 

-0.1505 0.6673 0.1637 0.1329 -0.0075 4 0.0829 -0.3669 -0.0091 -0.073 0.3341 4 

-0.0537 0.2379 0.0586 0.0474 -0.0019 5 0.0113 -0.0499 -0.0013 -0.0099 0.00089 5 

-0.0059 0.0263 0.0065 0.0052 -0.0005 6 0.0082 -0.036 -0.0009 -0.0072 0.00025 6 

0.00467 -0.0207 -0.0051 -0.0041 -0.0001 7 -0.0016 0.00724 0.00018 0.00144 0.00007 7 

-0.0002 0.0007 0 0.0001 -4E-05 8 0.0021 -0.0092 -0.0002 -0.0018 0.00002 8 

-0.0003 0.0012 0 0.0002 -1E-05 9 -0.0003 0.00147 0.00003 0.00029 0.00001 9 

0.00005 -0.0003 0 0 0 10 -4E-05 0.00019 0 0.00003 0.00001 10 

          

Table (3) Values of Ai for  ( ),z r hθσ  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

Table (4) Values of Ai for ( ),0r rθσ  . 
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A5 x10-5 A4 x10-5 A3 x10-7 A2 x10-5 A1 r A5 x10-5 A4 x10-5 A3 x10-7 A2 x10-5 A1 r 

0 0 0 0 0 0 0 0 0 0 0 0 

-1.1554 5.1223 0.1259 1.0199 0.03 0.1 -0.5159 2.30848 0.05439 0.46214 -0.0947 0.1 

2.11839 -9.3831 -0.2317 -1.8672 0.0592 0.2 1.0537 -4.7073 -0.1116 -0.9414 -0.1875 0.2 

-3 13.285 0.3284 2.6432 0.0866 0.3 -7.3198 32.3774 0.80469 6.43789 -0.277 0.3 

1.21914 -5.4064 -0.1327 -1.0766 0.1117 0.4 -10.536 46.6951 1.15049 9.29524 -0.36 0.4 

1.87506 -8.3019 -0.2053 -1.6516 0.1333 0.5 14.792 -65.902 -1.5828 -13.159 -0.4325 0.5 

1.83918 -8.1915 -0.1971 -1.6353 0.1505 0.6 -12.6 55.671 1.39095 11.0627 -0.4931 0.6 

1.0757 -4.7331 -0.1205 -0.9382 0.1627 0.7 9.9709 -43.95 -1.1103 -8.7213 -0.5335 0.7 

2.74484 -12.123 -0.3033 -2.4083 0.1693 0.8 -22.885 101.374 2.50159 20.1745 -0.553 0.8 

-11.673 51.734 1.2737 10.298 0.1697 0.9 9.0602 -40.014 -1.001 -7.9492 -0.5454 0.9 

4.10472 -18.176 -0.4494 -3.6165 0.166 -21.581 95.4451 2.37293 18.9767 -0.5179 

-0.8619 3.8549 0.0909 0.7714 0.1657 
1 

13.763 -60.893 -1.5121 -12.11 -0.3249 
1 

2.44241 -10.801 -0.2686 -2.1474 0.0532 2 -1.6206 7.19988 0.17523 1.43524 -0.0632 2 

0.56428 -2.5032 -0.0614 -0.4986 0.013 3 0.1839 -0.8201 -0.0196 -0.1638 -0.0138 3 

0.21688 -0.9602 -0.0238 -0.191 0.0034 4 0.0659 -0.2922 -0.0072 -0.0582 -0.0035 4 

0.00424 -0.0189 -0.0005 -0.0038 0.0009 5 0.0071 -0.0317 -0.0008 -0.0063 -0.0009 5 

-0.0137 0.0609 0.0015 0.0121 0.0003 6 0.0042 -0.0186 -0.0005 -0.0037 -0.0003 6 

0.00067 -0.003 -7E-05 -0.0006 8E-05 7 -0.0017 0.00742 0.00018 0.00148 -8E-05 7 

0.00178 -0.0079 -0.0002 -0.0016 3E-05 8 -0.0021 0.00942 0.00023 0.00188 -3E-05 8 

-0.0005 0.0023 6E-05 0.0005 1E-05 9 0.0016 -0.007 -0.0002 -0.0014 -1E-05 9 

0.00024 -0.0011 -3E-05 -0.0002 1E-05 10 -0.0006 0.00259 0 0.00005 -1E-05 10 

  
      Table (5) Values of Ai for 

  
         Table (6) Values of Ai for 

  
 

A5 x10-5 A4 x10-5 A3 x10-7 A2 x10-5 A1 r 

0 0 0 0 0 0 

0.05544 -0.2454 -0.0061 -0.0488 -0.0015 0.1 

0.07096 -0.3145 -0.0077 -0.0626 -0.0058 0.2 

-0.3037 1.3476 0.033 0.2684 -0.0129 0.3 

-0.8295 3.6696 0.0912 0.7297 -0.0226 0.4 

1.8211 -8.0763 -0.1983 -1.6083 -0.0344 0.5 

0.62878 -2.7892 -0.0684 -0.5555 -0.048 0.6 

3.01311 -13.354 -0.3288 -2.6584 -0.0625 0.7 

1.90242 -8.4458 -0.2063 -1.6829 -0.0771 0.8 

-0.0619 0.2722 0.0069 0.0539 -9.0583 0.9 

0.71089 -3.1681 -0.0761 -0.6327 -0.1019 

-18.039 79.887 1.9738 15.896 -0.2352 
1 

2.22597 -9.8784 -0.2418 -1.968 -0.1011 2 

0.52207 -2.3247 -0.056 -0.464 -0.0223 3 

0.16521 -0.7335 -0.0179 -0.1462 -0.0053 4 

0.04137 -0.1836 -0.0045 -0.0366 -0.0013 5 

0.01518 -0.0672 -0.0017 -0.0134 -0.0004 6 

0.00137 -0.006 -0.0002 -0.0012 -9E-05 7 

-0.0009 0.0039 9E-05 0.0008 -2E-05 8 

0.00013 -0.0006 -1E-05 -0.0001 0 9 

-0.0001 0.0006 1E-05 0.0001 0 10 

  
         Table (7) Values of Ai for 
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