
Least and greatest fixed points of

a while semantics function

Fairouz Tchier
Mathematics department,

King Saud University
P.O.Box 22452

Riyadh 11495, Saudi Arabia
ftchier@hotmail.com

May 1, 2009

Abstract

The meaning of a program is given by specifying the
function (from input to output) that corresponds to
the program. The denotational semantic definition,
thus maps syntactical things into functions. A re-
lational semantics is a mapping of programs to re-
lations. We consider that the input-output seman-
tics of a program is given by a relation on its set of
states. In a nondeterministic context, this relation is
calculated by considering the worst behavior of the
program (demonic relational semantics). In this pa-
per, we concentrate on while loops. We will present
some interesting results about the fixed points of the
while semantics function; f(X) = Q ∨ P 2 X where
P < ∧ Q< = Ø, by taking P := t 2 B and Q := t∼,
one gets the demonic semantics we have assigned to
while loops in previous papers. We will show that
the least angelic fixed point is equal to the greatest
demonic fixed point of the semantics function.

Keywords: Angelic fixed points, demonic
fixed points, demonic functions, while
loops, relational demonic semantics.

1 Relation Algebras

Both homogeneous and heterogeneous relation alge-
bras are employed in computer science. In this pa-
per, we use heterogeneous relation algebras whose
definition is taken from [7, 24, 25].

(1) Definition. A relation algebra A is a structure
(B,∨,∧,−, ◦,^) over a non-empty set B of elements,
called relations. The unary operations −,^ are total
whereas the binary operations ∨,∧, ◦ are partial. We
denote by B∨R the set of those elements Q ∈ B for
which the union R∨Q is defined and we require that
R ∈ B∨R for every R ∈ B. If Q ∈ B∨R, we say that
Q has the same type as R. The following conditions
are satisfied.

(a) (B∨R,∨,∧,−) is a Boolean algebra, with zero
element 0R and universal element 1R. The
elements of B∨R are ordered by inclusion, de-
noted by ≤.

(b) If the products P ◦R and Q ◦R are defined,
so is P ◦Q^. If the products P ◦Q and P ◦R
are defined, so is Q^ ◦R. If Q ◦R exists, so
does Q ◦ P for every P ∈ B∨R.

(c) Composition is associative: P ◦ (Q ◦ R) =
(P ◦Q) ◦R.

1

(d) There are elements Rid and idR associated
to every relation R ∈ B. Rid behaves as a
right identity and idR as a left identity for
B∨R.

(e) The Schröder rule P ◦Q ≤ R ⇔ P^◦−R ≤
−Q ⇔ −R ◦Q^ ≤ −P holds whenever one
of the three expressions is defined.

(f) 1 ◦R ◦ 1 = 1 iff R 6= 0 (Tarski rule).

If R^ ∈ B∨R, then R is said to be homogeneous.
If all R ∈ A have the same type, the operations are
all total and A itself is said to be homogeneous.

For simplicity, the universal, zero, and identity ele-
ments are all denoted by 1, 0, id, respectively. An-
other operation that occurs in this article is the re-
flexive transitive closure R∗. It satisfies the well-
known laws

R∗ =
∨
i≥0

Ri and R∗ = id ∨R ◦R∗ = id ∨R∗ ◦R,

where R0 = id and Ri+1 = R ◦ Ri. From Definition
1, the usual rules of the calculus of relations can be
derived (see, e.g., [7, 8, 25]).

The notion of Galois connections is very important
in what follows, there are many definitions of Galois
connections. We choose the following
one [2].

(2) Definition. Let (S,≤S) and (S′,≤S′) be two
preordered sets. A pair (f, g) of functions, where f :
S → S′ and g : S′ → S, forms a Galois connections
iff the following formula holds for all x ∈ S and y ∈
S′.

f(x) ≤S′ y ⇔ x ≤S g(y).
The function f is called the lower adjoint and g

the upper adjoint.

2 Monotypes and Related Op-
erators

In the calculus of relations, there are two ways for
viewing sets as relations; each of them has its own
advantages. The first is via vectors: a relation x is

a vector [25] iff x = x ◦ 1. The second way is via
monotypes [2]: a relation a is a monotype iff a ≤ id.
The set of monotypes {a | a ∈ B∨R}, for a given R,
is a complete Boolean lattice. We denote by a∼ the
monotype complement of a.

The domain and codomain of a relation R can be
characterized by the vectors R ◦ 1 and R^ ◦ 1, re-
spectively [13, 25]. They can also be characterized
by the corresponding monotypes. In this paper, we
take the last approach. In what follows we formally
define these operators and give some of their prop-
erties.

(3) Definition. The domain and codomain opera-
tors of a relation R, denoted respectively by R< and
R>, are the monotypes defined by the equations

(a) R< = id ∧R ◦ 1,

(b) R> = id ∧ 1 ◦R.

These operators can also be characterized by Galois
connections(see [2, 2]). For each relation R and each
monotype a,

R< ≤ a ⇔ R ≤ a ◦ 1,
R> ≤ a ⇔ R ≤ 1 ◦ a.

The domain and codomain operators are linked by
the equation R> = R^<, as is easily checked.

(4) Definition. Let R be a relation and a be a
monotype. The monotype right residual and mono-
type left residual of a by R (called factors in [4]) are
defined respectively by

(a) a/•R := ((1 ◦ a)/R)>,

(b) R\•a := (R\(a 2 1))<.

An alternative characterization of residuals can
also be given by means of a Galois connection as
follows [1]:

b ≤ a/•R ⇔ (b 2 R)> ≤ a,
b ≤ R\•a ⇔ (R ◦ b)< ≤ a.

We have to use exhaustively the complement of
the domain of a relation R, i.e the monotype a such
that a = R<∼. To avoid the notation R<∼, we adopt
the Notation

2

R≺ := R<∼.
Because we assume our relation algebra to be com-

plete, least and greatest fixed points of monotonic
functions exist. We cite [10] as a general reference
on fixed points.

Let f be a monotonic function. The fol-
lowing properties of fixed points are used below:
(a) µf =

∧
{X|f(X) = X} =

∧
{X|f(X) ≤ X},

(b) νf =
∨
{X|f(X) = X} =

∨
{X|X ≤ f(X)},

(c) µf ≤ νf,
(d) f(Y) ≤ Y ⇒ µf ≤ Y,
(e) Y ≤ f(Y) ⇒ Y ≤ νf.

In what follows, we describe notions that are useful
for the description of the set of initial states of a
program for which termination is guaranteed. These
notions are progressive finiteness and the initial part
of a relation.

A relation R is progressively finite in terms of
points iff there are no infinite chains s0, ..., si such
that siRsi+1 ∀i, i ≥ 0. I.e there is no points set y
which are the starting points of some path of infinite
length. For every point set y, y ≤ R ◦ y ⇒ y = 0.
The least set of points which are the starting points
of paths of finite length i.e from which we can pro-
ceed only finitely many steps is called initial part
of R denoted by I(R). This topic is of interest in
many areas of computer science, mathematics and is
related to recursion and induction principle.

(5) Definition.

(a) The initial part of a relation R, denoted
I(R), is given by
I(R) =

∧
{a | a ≤ id : a/•R = a} =

∧
{a |

a ≤ id : a/•R ≤ a} = µ(a : a ≤ id : a/•R),
where a is a monotype.

(b) A relation R is said to be progressively finite
[25] iff I(R) = id.

The description of I(R) by the formulation a/•R = a
shows that I(R) exists, since (a | a ≤ id : a/•R) is
monotonic in the first argument and because the set
of monotypes is a complete lattice, it follows from the
fixed point theorem of Knaster and Tarski that this
function has a least fixed point. Progressive finite-
ness of a relation R is the same as well-foundedness

of R^. Then, I(R) is a monotype. In a concrete
setting, I(R) is the set of monotypes which are not
the origins of infinite paths (by R):

A relation R is progressively finite iff for a mono-
type a, a ≤ (R ◦ a)< ⇒ a = 0 equivalently
ν(a : a ≤ id : (R ◦ a)<) = 0 equivalently µ(a : a ≤
id : a/•R) = id.

The next theorem involves the function wa(X) :=
Q∨P ◦X, which is closely related to the description
of iterations. The theorem highlights the importance
of progressive finiteness in the simplification of fixed
point-related properties.

(6) Theorem. Let f(X) := Q ∨ P ◦ X be a func-
tion. If P is progressively finite, the function f has a
unique fixed point which means that ν(f) = µ(f) =
P ∗ ◦Q [1]:

As the demonic calculus will serve as an algebraic
apparatus for defining the denotational semantics
of the nondeterministic programs, we will define in
what follows these operators.

3 Demonic refinement order-
ing

We now define the refinement ordering (demonic in-
clusion) we will be using in the sequel. This ordering
induces a complete join semilattice, called a demonic
semilattice. The associated operations are demonic
join (t), demonic meet (u) and demonic composition
(2). We give the definitions and needed properties
of these operations, and illustrate them with simple
examples. For more details on relational demonic
semantics and demonic operators, see [4, 7, 5, 6, 12].

(7) Definition. We say that a relation Q refines
a relation R [?], denoted by Q v R, iff R< ◦ Q ≤
R and R< ≤ Q<.

(8) Proposition. Let Q and R be relations, then

(a) The greatest lower (wrt v) of Q and R is,
Q tR = Q< ◦R< ◦ (Q ∨R),

If Q< = R< then we have t and ∨ coincide
i.e Q tR = Q ∨R.

3

(b) If Q and R satisfy the condition Q< ∧R< =
(Q∧R)<, their least upper bound is QuR =
Q∧R∨Q≺ ◦R∨R≺ ◦Q, otherwise, the least
upper bound does not exist. If Q< ∧ R< = 0
then we have u and ∧ coincide i.e Q u R =
Q ∧R.

For the proofs see [12].

(9) Definition. The demonic composition of rela-
tions Q and R [4] is Q 2 R = (R< /•Q) ◦Q ◦R.

In what follows we present some properties of 2 .

(10) Theorem.

(a) (P 2 Q) 2 R = P 2 (Q 2 R),

(b) R total ⇒ Q 2 R = Q ◦R,

(c) Q function ⇒ Q 2 R = Q ◦R.

See [4, 5, 6, 12, 32].
Monotypes have very simple and convenient prop-

erties. Some of them are presented in the following
proposition.

(11) Proposition. Let a and b be monotypes. We
have

(a) a = a^ = a2,

(b) a 2 b = a ∧ b = b 2 a,

(c) a ∨ a∼ = id and a ∧ a∼ = 0,

(d) a ≤ b ⇔ b∼ ≤ a∼,

(e) a∼ 2 b∼ = (a ∨ b)∼,

(f) (a ∧ b)∼ = (a 2 b)∼ = a∼ ∨ b∼,

(g) a 2 b∼ ∨ b = a ∨ b,

(h) a ≤ b ⇔ a 2 1 ≤ b 2 1.

In previous papers [12, 11, 28, 32], we found the
semantics of the while loop given by the following

graph: ���
e ���

s- --

Q

��P

(a) S(R) = I(P)◦ [(P ∨Q)< /•P ∗]◦P ∗ ◦Q., with
the restriction

(b) P < ∧Q< = 0

Our goal is to show that the operational semantics
a is equal to the denotational one which is given as
the greatest fixed point of the semantic function Q∨
P 2 X in the demonic semilattice. In other words,
we have to prove the next equation:

(a) S(R) =
⊔
{X|X v Q ∨ P 2 X};

by taking P := t 2 B and Q := t∼, one gets the
demonic semantics we have assigned to while loops
in previous papers [12, 32]. Other similar definitions
of while loops can be found in [17, 22, 26].

Let us introduce the following abbreviations:

(12) Abbreviation. Let P , Q and X be relations
subject to the restriction P < ∧ Q< = 0 (b) and x
a monotype. The Abbreviations wd, wa, w<, a and l
are defined as follows:

wd(X) := Q ∨ P 2 X,
a := (P ∨Q)< /•P ∗,
wa(X) := Q ∨ P ◦X,
l := I(P).
w<(x) := Q< ∨ (P 2 x)< = Q ∨ (P 2 x)<

(Mnemonics: the subscripts a and d stand for angelic
and demonic, respectively; the subscript < refers to
the fact that w< is obtained from wd by composi-
tion with <; the monotype a stands for abnormal,
since it represents states from which abnormal ter-
mination is not possible; finally, l stands for loop,
since it represents states from which no infinite loop
is possible.)

In what follows we will be concerned about the
fixed point of wa, w< and wd.

(13) Theorem. Every fixed point Y of wa (Abbre-
viation 12) verifies P ∗ ◦ Q ≤ Y ≤ P ∗ ◦ Q ∨ l∼ 2 1,
and the bounds are tight (i.e. the extremal values are
fixed points).

The next lemma investigates the relationship be-
tween fixed points of w< and those of wd (cf. Abbre-
viation 12).

4

(14) Lemma. Let h(X) := (P ∨Q)≺∨(P ◦X)< and
h1(x) := (P ∨Q)≺ 2 1 ∨ P ◦ x.

(a) Y = wd(Y) ⇒ w<(Y <) = Y <,

(b) w<(Y <) = Y < ⇒ h(Y ≺) = Y ≺,

(c) h(Y ≺) = Y ≺ ⇒ h1(Y ≺
2 1) = Y ≺

2 1,

(15) Lemma. Let Y be a fixed point of wd and b be
a fixed point of w< (Abbreviation 12). The relation
b 2 Y is a fixed point of wd.

(16) Lemma. If Y and Y ′ are two fixed points of
wd (Abbreviation 12) such that Y < = Y ′< and Y <◦P
is progressively finite, then Y = Y ′.

The next theorem characterizes the domain of the
greatest fixed point, wrt v, of function wd. This
domain is the set of points for which normal ter-
mination is guaranteed (no possibility of abnormal
termination or infinite loop).

(17) Theorem. Let W be the greatest fixed point,
wrt to v, of wd (Abbreviation 12). We have W < =
a 2 l.

The following theorem is a generalization to a non-
deterministic context of the while statement verifi-
cation rule of Mills [21]. It shows that the greatest
fixed point W of wd is uniquely characterized by con-
ditions (a) and (b), that is, by the fact that W is a
fixed point of wd and by the fact that no infinite loop
is possible when the execution is started in a state
that belongs to the domain of W . Note that we also
have W < ≤ a (see Theorem 17), but this condition
is implicitly enforced by condition (a). Half of this
theorem (the ⇐ direction) is also proved by Sekerin-
ski (the main iteration theorem [26]) in a predicative
programming set-up.

(18) Theorem. A relation W is the greatest fixed
point, wrt v, of function wd (Abbreviation 12), iff
the following two conditions hold:

(a) W = wd(W),
(b) W < ≤ l.

In what follows we give some applications of our
results.

4 Application

In [5, 6], Berghammer and Schmidt propose abstract
relation algebra as a practical means for the specifi-
cation of data types and programs. Often, in these
specifications, a relation is characterized as a fixed
point of some function. Can demonic operators be
used in the definition of such a function? Let us now
show with a simple example that the concepts pre-
sented in this paper give useful insights for answering
this question.

In [5, 6], it is shown that the natural numbers can
be characterized by the relations z and S (zero and
successeur) the laws

(a) Ø 6= z = zL ∧ zz^ ⊆ I (z is a point),
SS^ = I ∧ S^S ⊆
I (S is a one to one application.),
Sz = Ø (z has a predecessor),
L =

⋂
{x|z ∪ S^x =

x} (generation principle).

For the rest of this section, assume that we are
given a relation algebra satisfying these laws. In this
algebra, because of the last axiom, the inequation

(a) z ∪ S^X ⊆ X

obviously has a unique solution for X, namely, X =
L. Because the functiong(X) := z ∪ S^X is ∪-
continuous, this solution can be expressed as

(a) L =
⋃

n≥0 gn(Ø) =
⋃

n≥0 S^nz,

where g0(Ø) = Ø, gn+1(Ø) = g(gn(Ø)), S^0 = I
and S^n+1 = S^S^n. However, it is shown in [5, 6]
that z t S^

2 X ⊆ X, obtained by replacing the
join and composition operators in a by their demonic
counterparts, has infinitely many solutions. Indeed,
from Sz = Ø and the Schröder rule, it follows that

(a) z ∩ S^L = Ø,

so that, by definition of demonic join (8(a))
and demonic composition (9), z t S^

2 X = (z ∪
S^

2 X) ∩ z ∩ (S^
2 X)L ⊆ z ∩ S^L = Ø. Hence,

any relation R is a solution to z t S^
2 X ⊆ X.

Looking at previous papers [12, 29, 30, 31, 28], one

5

immediately sees why it is impossible to reach L by
joining anything to z (which is a point and hence is
an immediate predecessor of Ø), since this can only
lead to z or to Ø.

Let us now go ‘fully demonic’ and ask what is a
solution to ztS^

2 X v X. By the discussion above,
this is equivalent to Ø v X, which has a unique
solution, X = Ø. This raises the question whether
it is possible to find some fully demonic inequation
similar to (a), whose solution is X = L. Because L is
in the middle of the demonic semilattice, there are in
fact two possibilities: either approach L from above
or from below.

For the approach from above, consider the inequa-
tion

X v z u S^
2 X.

Using Theorem 10(c), we have z u S^
2 X =

z u S^X, since S^ is deterministic (axiom a(b)).
From a, z ⊆ S^L; this implies z ⊆ S^XL and
S^X ⊆ z, so that, by definition of u,
z u S^X = z ∩ S^X ∪ z ∩ S^XL ∪ z ∩ S^X =
z ∪ S^X.

This means that 4 reduces to

(a) X v z ∪ S^X.

By definition of refinement (7), this implies that
z ∪ S^XL ⊆ XL; this is a variant of (a), thus
having XL = L as only solution. This means that
any solution to 4 must be a total relation. But L
is total and in fact is the largest (by v) total rela-
tion. It is also a solution to 4 (since by axiom a(d),
z ∪ S^L = L) so that L =

⊔
{X|X v z u S^

2 X};
that is, L is the greatest fixed point in (BL,v) of
f(X) := z u S^

2 X. Now consider n≥0S
^n

2 z,
where S^n is a n-fold demonic composition defined
by S^0 = I and S^n+1 = S^

2 S^n. By axiom
a(b), S^ is deterministic, so that, by 10(c) and asso-
ciativity of demonic composition, conSn

2 z = S^nz.
Hence,

It is easy to show that for any n ≥ 0, S^nz is
a point (it is the n-th successor of zero) and that
m 6= n ⇒ S^mz 6= S^nz. Hence, in (BL,v),
{S^nz|n ≥ 0} (i.e. {S^n

2 z|n ≥ 0}) is the set of
immediate predecessors of Ø; looking at [28] shows

how the universal relationL arises as the greatest
lower bound n≥0S

^n
2 z of this set of points. Note

that, whereas there is a unique solution to a, there
are infinitely many solutions to 4 (equivalently, to a),
for example

⊔
n≥k Sn (=

⋃
n≥k Sn), for any k.

For the upward approach, consider

z^ tX 2 S v X.

Here also there are infinitely many solutions to this
inequation; in particular, any vector v, including
Ø and L, is a solution to 4. Because (BL,v) is
only a join semilattice, it is not at all obvious that
the least fixed point of h(X) := z^ t X 2 S ex-
ists. It does, however, since the following deriva-
tion shows that

⊔
n≥0 z^

2 Sn (=
⊔

n≥0 hn(z^),
where h0(z^) = z^) is a fixed point of h and hence
is obviously the least solution of 4: Because z^

and S are mappings, property 10(c) implies that
z^

2 Sn = z^Sn, for any n ≥ 0. But z^Sn is
also a mapping (it is the inverse of the point S^nz)
and hence is total, from which, by Proposition 8(a)
and equation a,

⊔
n≥0 z^

2 Sn =
⊔

n≥0 z^Sn =⋃
n≥0 z^Sn = (

⋃
n≥0 S^nz)˘ = L^ = L. This

means that L is the least upper bound of the set
of mappings {z^

2 Sn|n ≥ 0}. Again, a look at
[28] gives some intuition to understand this result,
after recalling that mappings are minimal elements
in (BL,v) (though not all mappings have the form
z^

2 Sn).
Thus, building L from below using the set of map-

pings {z^
2 Sn|n ≥ 0} is symmetric to building it

from above using the set of points {S^n
2 z|n ≥ 0}.

5 Conclusion

We presented a theorem that can be also used to find
the fixed points of functions of the form f(X) :=
Q ∨ P 2 X (no restriction on the domains of P and
Q). This theorem can be applied also to the program
verification and construction (as in the precedent ex-
ample). Half of this theorem (the ⇐ direction) is
also proved by Sekerinski (the main iteration theo-
rem [26]) in a predicative programming set-up. Our
theorem is more general because there is no restric-
tion on the domains of the relations P and Q.

6

The approach to demonic input-output relation
presented here is not the only possible one. In
[17, 18, 19], the infinite looping has been treated by
adding to the state space a fictitious state ⊥ to de-
note nontermination. In [7, 16, 20, 23], the demonic
input-output relation is given as a pair (relation,set).
The relation describes the input-output behavior of
the program, whereas the set component represents
the domain of guaranteed termination.

We note that the preponderant formalism em-
ployed until now for the description of demonic
input-output relation is the wp-calculus. For more
details see [3, 15].

References

[1] Backhouse, R. C., and Doombos, H.: Math-
ematical Induction Made Calculational. Com-
puting science note 94/16, Department of Math-
ematics and Computer Science, Eindhoven Uni-
versity of Technology, The Netherlands, 1994.

[2] Backhouse, R. C., Hoogendijk, P., Voermans,
E. and van der Woude, J.:. A Relational The-
ory of Datatypes. Research report, Department
of Mathematics and Computer Science, Eind-
hoven University of Technology, The Nether-
lands, 1992.

[3] R. J. R. Back and J. von Wright.: Combining
angels, demons and miracles in program spec-
ifications. Theoretical Computer Science,100,
1992, 365–383.

[4] Backhouse, R. C. and van der Woude, J.: De-
monic Operators and Monotype Factors. Math-
ematical Structures in Comput. Sci., 3(4), 417–
433, Dec. (1993). Also: Computing Science Note
92/11, Department of Mathematics and Com-
puter Science, Eindhoven University of Technol-
ogy, The Netherlands, 1992.

[5] Berghammer, R.: Relational Specification of
Data Types and Programs. Technical report
9109, Fakultät für Informatik, Universität der
Bundeswehr München, Germany, Sept. 1991.

[6] Berghammer, R. and Schmidt, G.: Relational
Specifications. In C. Rauszer, editor, Algebraic
Logic, 28 of Banach Center Publications. Polish
Academy of Sciences, 1993.

[7] Berghammer, R. and Zierer, H.: Relational Al-
gebraic Semantics of Deterministic and Nonde-
terministic Programs. Theoretical Comput. Sci.,
43, 123–147 (1986).

[8] Chin, L. H. and Tarski, A.: Distributive and
Modular Laws in the Arithmetic of Relation Al-
gebras. University of California Publications, 1,
341–384 (1951).

[9] Conway, J. H.: Regular Algebra and Finite Ma-
chines. Chapman and Hall, London, 1971.

[10] Davey, B. A. and Priestley, H. A.: Introduction
to Lattices and Order. Cambridge Mathematical
Textbooks. Cambridge University Press, Cam-
bridge, 1990.

[11] J. Desharnais, B. Möller, and F. Tchier. Kleene
under a demonic star. 8th International Con-
ference on Algebraic Methodology And Software
Technology (AMAST 2000), May 2000, Iowa
City, Iowa, USA, Lecture Notes in Computer
Science, Vol. 1816, pages 355–370, Springer-
Verlag, 2000.

[12] Desharnais, J., Belkhiter, N., Ben Mo-
hamed Sghaier, S., Tchier, F., Jaoua, A., Mili,
A. and Zaguia, N.: Embedding a Demonic Semi-
lattice in a Relation Algebra. Theoretical Com-
puter Science, 149(2):333–360, 1995.

[13] Desharnais, J., Jaoua, A., Mili, F., Boudriga,
N. and Mili, A.: A Relational Division Oper-
ator: The Conjugate Kernel. Theoretical Com-
put. Sci., 114, 247–272 (1993).

[14] Dilworth, R. P.: Non-commutative Residuated
Lattices. Trans. Amer. Math. Sci., 46, 426–444
(1939).

[15] E. W. Dijkstra. : A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

7

[16] H. Doornbos. : A relational model of programs
without the restriction to Egli-Milner monotone
constructs. IFIP Transactions, A-56:363–382.
North-Holland, 1994.

[17] C. A. R. Hoare and J. He. : The weakest
prespecification. Fundamenta Informaticae IX,
1986, Part I: 51–84, 1986.

[18] C. A. R. Hoare and J. He. : The weakest
prespecification. Fundamenta Informaticae IX,
1986, Part II: 217–252, 1986.

[19] C. A. R. Hoare and al. : Laws of programming.
Communications of the ACM, 30:672–686, 1986.

[20] R. D. Maddux. : Relation-algebraic semantics.
Theoretical Computer Science, 160:1–85, 1996.

[21] Mills, H. D., Basili, V. R., Gannon, J. D. and
Hamlet,R. G.: Principles of Computer Pro-
gramming. A Mathematical Approach. Allyn
and Bacon, Inc., 1987.

[22] Nguyen, T. T.: A Relational Model of Demonic
Nondeterministic Programs. Int. J. Founda-
tions Comput. Sci., 2(2), 101–131 (1991).

[23] D. L. Parnas. A Generalized Control Structure
and its Formal Definition. Communications of
the ACM, 26:572–581, 1983

[24] Schmidt, G.: Programs as Partial Graphs I:
Flow Equivalence and Correctness. Theoretical
Comput. Sci., 15, 1–25 (1981).

[25] Schmidt, G. and Ströhlein, T.: Relations and
Graphs. EATCS Monographs in Computer Sci-
ence. Springer-Verlag, Berlin, 1993.

[26] Sekerinski, E.: A Calculus for Predicative Pro-
gramming. In R. S. Bird, C. C. Morgan, and
J. C. P. Woodcock, editors, Second Interna-
tional Conference on the Mathematics of Pro-
gram Construction, volume 669 of Lecture Notes
in Comput. Sci. Springer-Verlag, 1993.

[27] Tarski, A.: On the calculus of relations. J.
Symb. Log. 6, 3, 1941, 73–89.

[28] F. Tchier.: Sémantiques relationnelles
démoniaques et vérification de boucles non
déterministes. Theses of doctorat, Département
de Mathématiques et de statistique, Université
Laval, Canada, 1996.

[29] F. Tchier.: Demonic semantics by mono-
types. International Arab conference on In-
formation Technology (Acit2002),University of
Qatar, Qatar, 16-19 December 2002.

[30] F. Tchier.: Demonic relational semantics of
compound diagrams. In: Jules Desharnais,
Marc Frappier and Wendy MacCaull, editors.
Relational Methods in computer Science: The
Québec seminar, pages 117-140, Methods Pub-
lishers 2002.

[31] F. Tchier.: While loop d demonic relational
semantics monotype/residual style. 2003 In-
ternational Conference on Software Engineer-
ing Research and Practice (SERP03), Las Ve-
gas, Nevada, USA, 23-26, June 2003.

[32] F. Tchier.: Demonic Semantics: using mono-
types and residuals. IJMMS 2004:3 (2004) 135-
160. (International Journal of Mathematics and
Mathematical Sciences)

[33] M. Walicki and S. Medal.: Algebraic approches
to nondeterminism: An overview. ACM compu-
tong Surveys,29(1), 1997, 30-81.

[34] L.Xu, M. Takeichi and H. Iwasaki.: Rela-
tional semantics for locally nondeterministic
programs. New Generation Computing 15, 1997,
339-362.

8

