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ABSTRACT 
 In this paper we present new estimates for the spectral norm for the square of the Frobenius 
companion matrix. We apply these estimates to get new bounds for the zeros of polynomials 
and commutator inequalities. 
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1. Introduction 
        The Frobenius companion matrix plays 
an important link between matrix analysis and 
polynomials. It is used for the location for the 
zeros of polynomials by matrix method, see [3] 
and [12]. It is also used for the numerical ap-
proximation, see [14]. 
       Many papers appeared to give new bounds 
for the zeros of polynomials or to improve 
some classical bounds, see, e.g., [1], [2], [5], 
[7]-[11], [16], and [17]. Fujii and Kubo [1] 
used the companion matrix to give new proofs 
of some classical bounds.  
        In the presented paper, we will give new 
estimates for the spectral norm for the square 
of the Frobenius companion matrix. These esti-
mates based on spectral norm inequalities for 
partitioned matrices. We apply these estimates 
to get new bounds for the zeros of polynomials 
and commutator inequalities. Section 2 pre-
sents some classical and recent bounds such as 
Cauchy's bound, Montel's Bound, Carmichael-
Mason's bound, s1-bound, and FK-bound. 
 
 
2. Classical and recent bounds for 
the zeros of polynomials 
       This section introduces some classical and 
recent bounds for the zeros of polynomials, 
which can be proved with the aid of the 
companion matrix. 
      The Frobenius companion matrix of the 
monic polynomial 
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       The characteristic polynomial of ( )pC  is 
( )zp . Thus, the eigenvalues of ( )pC  are the 

zeros of ( )zp . For simplicity we write C ins-
tead of ( )pC .  
       The following theorem contains classical 
bounds for the zeros of polynomials and these 
bounds can be found in [3]. 
 
Theorem 2.1: If z is any zero of p , then 

1. { }1 2 3max ,1 ,1 , ,1 nz a a a a≤ + + +K

     { }naaaa ,,,,max1 321 K+≤ .                      
                                               (Cauchy's bound) 

2. { }1 2 3max 1 , nz a a a a≤ + + + +K  

       naaaa +++++≤ K3211 .                              
                                                (Montel's bound) 

3. ( )
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                             (Carmichael-Mason's bound) 
       For other classical bounds for the zeros of 
polynomials see [12], [13], and [15]. 



Theorem 2.2: If z is any zero of p , then 
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3. Estimates for the spectral norm 
of the square of the companion 
matrix  
      In this section, we will give new bounds 
for the zeros of polynomials depending on esti-

mates of 2C . In this section, z stands for a 

zero of p and  
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where njaaab jjnj ,...,2,1,1 =−= − , 

with 00 =a . 
       The following lemma can be easily 
proved. 
Lemma 3.1: The singular values of  
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     The following lemma is basic in our work 
and can be found in [4]. 
 
Lemma 3.2: Let ( )CMA n /∈  be partitioned as  
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     The following lemma was given by the au-
thor in [8]. 
 
Lemma 3.3 : Let 
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with 4≥n . Then 
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Theorem 3.4: If 4≥n , then 
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From Lemma 3.1.9, we have 
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       It is well known that 

                      CCz ≤≤
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where z is any zero of p. So the previous esti-

mate of 2C  gives the following bound for 

the zeros of p. 
 
Corollary 3.5: If 4≥n , then 
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Remark 3.6: Let 
( ) 100234 ++++= zzzzzp . Then 

bound(1) = 13.1392, FK-bound = 51.3165, s1-
bound = 100.015, and Cauchy-bound = 100. 
While for ( ) 19 34 ++= zzzp , bound(1) = 

10.2064, FK-bound = 9.83671, s1-bound = 
9.10977, and Cauchy-bound = 10. So bound 
(1) is incomparable with any of these bounds. 
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       Theorem 3.7 and the inequality (3.1) give 
the following bound for the zeros of p. 
 
Corollary 3.8: 
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Remark 3.9: Let ( ) 10045 ++= zzzp . Then 
bound(2) = 12.7206, FK-bound = 51.3685, s1-
bound = 100.005, and Cauchy-bound = 100. 



While for 
( ) ( ) ( ) 151005100 345 +++++= zizizzp , 

bound(2) = 131.558, FK-bound = 121.729, and 
Cauchy-bound = 101.1249. So bound(2) is 
incomparable with any of these bounds. 
 
Remark 3.10: Our new bounds presented here 
locate the zeros of p inside discs. The zeros of 
p can be located inside annuli in those discs by 
applying these bounds to the polynomial 
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Remark 3.11: Our new estimates for 2C  

enables us to obtain a lower bound for the 
spectral norm of the self-commutator of C in 
terms of the coefficients of p. It has been 
shown in [6] that 

22** CCCCCC −≥− , 

where C  was evaluated in [5] and 2C  is 

estimated in this paper. 
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