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ABSTRACT

Numerical solution of Korteweg-de Vries-Burger (KdV-B) equation is
presented using the exponential finite-difference technique. The accuracy of
computed solutions is examined by comparison with classical explicit finite-
difference and analytical solutions using example .The close results agreement
between the current results and the exact solutions confirms that the proposed finite-
difference .procedure is an effective technique for the solution of the Korteweg-de
Vries-Burger equation at the small times .The proposed method can be applied to
partia differential equation without any need for restrictive assumptions on the

boundary conditions.
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1. Introduction:

Many researchers have studied Korteweg-
de VriesBurger (KdV-B) equation
because of its importance in various
physicalk phenomena KdV-B equation
models the dispersion, dissipation, and
nonlinearity [3].

It is well known that many physical
phenomena can be described by the
Korteweg-de Vries-Burgers equation.
Typical examples are provided by the
behavior of long waves in shallow water
and waves in plasmas. It can serve as a
non-linear wave mode of a fluid in an
elastic tube, of a liquid with small bubbles
and turbulence. This equation is a one-
dimension generaization of the model
description of the density and velocity
fields that takes into account pressure
forces as well as the viscosity and the
dispersion. It may be a more flexible tool
for physicists than Burger's equation. [6]

In [10] we considered the problem
of global exponential stabilization by

boundary feedback for the Korteweg-de
Vries-Burgers eguation on the domain
[0,1]. In [1] we proposed a more
aggressive control low that achieves better
performance and proved the existence and
stability of solutions of the resulting
boundary controlled KdV-B equations. In
[4] be presented a relatively new
decomposition method to find the explicit
and numerical solutions of the KdV
equation, Burger's equation and KdV-B
equation for the initial conditions. In [6]
we devoted to the study the KdV-B
equation and applied the finite difference
with variable mesh and the semi-analytic
Adomain decomposition method. In [3] he
presented  numerical solutions  of
Korteweg-de Vries-Burgers equation using
modified Bernstein polynomials.

In this paper, we apply the exponentia
finite difference technique to solve the
KdV-B equation. We compared this
method with the classica finite difference
method as well as the analytical solution.
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2. M athematical formulation
We consider the following form of

KdV-B equation
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where ™M e constant coefficient

with initial condition

u(x,0) = u,(x)

(2)

where U=U(X1js gifficiently smooth

function , and U (X) is bounded. The
second term of equation (1) describes
nonlinearity, the third term corresponds to
dissipation, and the last term represents the
disperson. As limiting cases, KdV-B
equation reduces to KdV equation

when™ ® Oand Burgers equation when

M ® 013 6]. We seek a numerical solution
to EQ.(1) wusing exponentid finite-
difference method.

2.1. Exponential Finite-Difference:

The exponentia finite-difference
method that we applied to solve Eq.(1) was
originally developed by Bhattachary [7]
and used to solve one dimensional heat
conduction in a solid dab [8,9]. It is dso
used to solve the Korteweg-de Vries

equation [2].
We assume that F(u) denote to any
continuous differential function.

Multiplying Eq.(1) by the derivative of F
lead to the following equation:
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Using the usual forward difference

F . ..
replacement to " we obtain the finite-
It
difference representation of Eq. (3) as:
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Where k is the time step. Now, if we let
F (u)=Inuthen we obtained the

exponential finite-difference scheme as:
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The finite-difference for the derivatives
have been taken following form:[5]
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2.2. Classical Explicit Finite-Difference
M ethod:

The classical explicit finite-difference
method (CEFD) can be applied to Eqg. (1)

and we have the form:
. . . 2 . 3. .
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Now , we use the equations (5)-(13) in Eq.
(15) we obtained the classical explicit
finite-difference equations.

3. Analytical Solution
Let ustaketheinitial value u(x, 0) as
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The analytical solution of this problem
with the above initial datais. ( see[3])
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4. Numerical Resultsand
Discussion:

In this section, we present
numerical results and compare those with
analytical results. We apply the
exponential  finite-difference  and the
classical explicit finite-difference(CEFD)
schemes to nonlinear KdV-B equation to
compute solutions numerically and the
compare these solutions with exact
solutions at various times. All numerical
computations we performed with the
space step h=1,2 and the time step
k=0.0001, and we take the parameters
m=1Lm=-2and M=1" 0 reqts
obtained for problem is displayed in
Tables 1-2 for times t=0.002 and t=0.0001
respectively. According to the results
presented here, the exponentia finite-
difference scheme behaves better than the
other numerical scheme at small times. We

see an excellent agreement of the
numerical results with the analytical
results.

Table (1): Comparison Numerical and Exact
solution of the KdV-B equation at t=0.002

Table (2): Comparison Numerical and
Exact solution of the KdV-B equation at

t=0.0001
EXPONENTIAL CEFD EXACT
-50 1.920000000000000 1.920000000000000 1.920000000000000
-48 1.920000000000000 1.920000000000000 1.920000000000000
-46 1.920000000000000 1.920000000000000 1.920000000000000
-44 1.919999999999999 1.919999999999999 1.919999999999999
-42 1.919999999999995 1.919999999999995 1.919999999999995
-40 1.919999999999976 1.919999999999976 1.919999999999976
-38 1.919999999999881 1.919999999999881 1.919999999999880
-36 1.919999999999408 1.919999999999408 1.919999999999404
-34 1.919999999997066 1.919999999997066 1.919999999997046
-32 1.919999999985468 1.919999999985468 1.919999999985367
-30 1.919999999928025 1.919999999928025 1.919999999927524
-28 1.919999999643509 1.919999999643509 1.919999999641029
-26 1.919999998234346 1.919999998234346 1.919999998222064
-24 1.919999991255290 1.919999991255290 1.919999991194480
-22 1.919999956694102 1.919999956694102 1.919999956393214
-20 1.919999785580899 1.919999785580898 1.919999784093933
-18 1.919998938816973 1.919998938816973 1.919998931488683
-16 1.919994753189718 1.919994753189717 1.919994717292689
-14 1.919974114126656 1.919974114126648 1.919973940636680
-12 1.919872899009072 1.919872899008896 1.919872084813836
-10 1.919382507871398 1.919382507867956 1.919378919645133
-8 1.917068927584297 1.917068927532305 1.917055025946910
-6 1.906761136156680 1.906761135669220 1.906718956094980
-4 1.865909786484020 1.865909784408552 1.865825241803903
-2 1.735555298273523 1.735555295524832 1.735467399791167
0 1.440034892014480 1.440034891591760 1.440018431823051
2 1.005932997922627 1.005932997668404 1.005977376943306
4 0.590866411570610 0.590866411551361 0.590888328292627
6 0.306131865004398 0.306131863466041 0.306111484638387
44 0.000000087286934 0.000000087286925 0.000000087249913
46 0.000000039154376 0.000000039154347 0.000000039203914
48 0.000000017593195 0.000000017593182 0.000000017615454
50 0.000000007905132 0.000000007905126 0.000000007915134

X EXPONENTIAL CEFD EXACT

-10 | 1.919379002634842 | 1.919379191388729 | 1.919379808994134
-9 1.918643308672068 | 1.918644633876643 | 1.918643821094912
-8 1.917060591127396 | 1.917065926974663 | 1.917059152117866
-7 1.913722954398500 | 1.913722949715588 | 1.913699891657232
-6 1.906781239643815 | 1.906781242136646 | 1.906736712647412
-5 1.892835885409647 | 1.892835885224194 | 1.892754960258415
-4 1.866026301491624 | 1.866026300933741 | 1.865890978899002
-3 1.817448766909415 | 1.817448765469159 | 1.817246288809509
-2 1.735914795095435 | 1.735914792087203 | 1.735653118901616
-1 1.611343538917609 | 1.611343534006028 | 1.611065205290690
0 1.440592304868509 | 1.440592298776634 | 1.440368569203008
1 1.232347317115225 | 1.232347311477042 | 1.232244495952924
2 1.006349957875933 | 1.006349954010265 | 1.006390892416720
3 0.786237589842130 | 0.786237587888046 | 0.786392981751948
4 0.591000668951221 | 0.591000668241789 | 0.591214187873221
5 0.430510400722553 | 0.430510400558712 | 0.430730090382934
6 0.306113481426435 | 0.306113481413995 | 0.306307415711977
7 0.213810056492372 | 0.213810056488724 | 0.213965875257439
8 0.147446152916699 | 0.147446152912332 | 0.147557854272728
9 0.100767547648177 | 0.100767547637227 | 0.100848594270708
10 0.068439291585236 | 0.068439291569168 | 0.068497090192202




Fig.(1): Thenumerical results for the KdV-B equation at h=1 by using: (@) Exponentia finite-difference
method; (b) Classical explicit finite-difference method; (c) The analytical solution

(c)

Fig. (2):The numerical results for the KdV-B equation at h=2 by using:(a) Exponential finite-
difference method;(b)Classical explicit finite-difference method;( c)The analytical solution



Fig.(3): Comparison of exponential finite-
difference and exact solutions at t=0.003

Fig.1 and 2 show that the numerical
solutions of the two methods (exponential
and classical finite-difference) and the
analytical solution also satisfy the physical
behavior of the KdV-B equation.
Comparison of the results obtained by the
exponential  finite-difference and exact
solution is illustrated in Fig 3 for time
t=0.003

4. Conclusion

The exponential finite-difference
method is applied to solve the Kdv-B
equation. The technique exhibits higher
accuracy than the classical explicit finite-
difference method with which it is
compared with the exact solution.
Therefore, it is concluded that the
exponential finite-difference method can
be used to produce reasonably accurate
numerical solutions of the KdV-B equation
at small times. And the main advantage of
the method is that it can be applied directly
to all types of partia differential equations
without any need for restrictive
assumptions on the boundary conditions.
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