
Towards An Efficient Web Caching Hybrid Architecture
Maha Saleh El Oneis, Hassan Barada, Mohamed Jamal Zemerly

Computer Engineering Department, Khalifa University of Science, Technology, and Research
P.O. Box 573, Sharjah, United Arab Emirates

maha@kustar.ac.ae, hbarada@kustar.ac.ae, jamal@kustar.ac.ae

ABSTRACT

As noticed by many internet service providers, the number of internet users is increasing
exponentially. Such increase in information demand results in a variety of problems such as
network congestion and server overloading which are perceived by the user as a delay in
information retrieval. This paper reviews some of the common web caching architectures
proposed by researchers to reduce the impact of these problems on the user. The paper also
proposes a new architecture that is believed to have better performance than the previously
proposed architectures as it combines the benefits of many schemes. Two possible scenarios
of flow of information in the proposed architecture are presented. The first is a client-client,
then client-proxy and proxy-proxy cooperation while the second is a client-proxy, then client-
client and proxy-proxy cooperation. The scenarios will be tested using a simultion tool to
assess the performance and fine tune the proposed architecture.

Key Words— Web caching architecture, broadband, load balancing, cache coherency, peer-to-peer

1. Introduction
The world today is moving on a fast
technological track with the surfacing of
various high-tech devices and techniques.
Even with all our knowledge of the latest
technologies and inventions, it is very
difficult to keep track of everything
happening in the world of technology. A
huge leap has taken place ever since the
launching of the World Wide Web
(WWW). Today, information can be
accessed anywhere, anytime and from a
variety of different devices. With such
renaissance in the technological sense, one
might think that less human interference
will be required. On the contrary, such
advancement has led to more
responsibilities for technical people in
finding the right solutions for problems
that arise, as well as creating a
homogeneous environment for the user
from a heterogeneous one [1,2,3].
As the WWW size continues to grow
exponentially, some major problems that
users face while trying to access large
amount of information, includes network
congestion and server overloading [4].
Network congestion can occur when a

network link is carrying too much data that
would affect its quality of service. Server
overloading happens when the server
receives more service requests than it can
handle. One of the most appealing
solutions to such problems was
acknowledged in a variety of web caching
techniques studied and developed by
researchers since the early 90’s. Web
caching is the process of saving copies of
content (obtained from the Web) closer to
the end user, in order to reduce bandwidth
usage, prevent server overload, as well as
reduce the user’s perceived latency. These
studies have resulted in the development of
the web caching notion which can be
divided into three levels. Level1 (L1)
cache is known as the client caching which
takes place at the browser level. Level2
(L2) takes place at the proxy level while
Level3 (L3) is the cooperation of the
proxies in sharing cached objects among
the cooperation set [5]. Researchers have
agreed that caches on the client browser
and proxy level can significantly improve
performance [6]. In addition, many studies
encouraged the broad use of web caching
within organizations that provide internet
service to users [7,8,9,10]. Such studies

helped in considering the possibility of
constructing large web caches from
cooperative proxies and client caches [11]
to introduce a new cooperation level. So
far this possibility is considered for Local
Area Networks (LAN) within
organizations with internet connectivity.
A range of studies agreed on the benefits
of web caching and its major contribution
to Internet services. Still the rapid growth
of internet traffic and users has made us
witness rapid improvements on the
broadband services. Nowadays Internet
Service Providers (ISPs) are offering better
broadband networking technologies, but
still many residential and small-business
users are using low-bandwidth
connections. Any near promise of the
availability of such broadband
technologies for users in rural areas is still
uncertain because of the associated high
cost. However, even with the availability
of high bandwidth, there are types of
information such as multimedia that
always demand more bandwidth. Our area
of interest in this research project is to
reduce the client latency period in
retrieving WWW information in rural areas
as well as improving the performance of
the broadband technology.
 In addition to the obvious benefits of Web
caching, some of the important properties
desired in a web caching scheme are fast
access, robustness, transparency,
scalability, efficiency, adaptivity, stability,
load balanced, ability to deal with
heterogeneity, and simplicity [4].
The rest of the paper is divided as follows.
Section 2 describes the main web caching
architectures found in the literature and
presents the features of each. Section 3
gives a description of a hybrid architecture
that is believed to improve some of the
drawbacks that are in the existing
architectures. Section 4 gives a summary
of the paper and the proposed contribution
to the web caching architecture area.

2. Brief on web caching schemes
Ever since web caching has been found as
a solution for the network congestion and

server overloading, different caching
architectures were proposed to ease the
process of delivering the requested data
through inter-cache cooperation.

2.1 Hierarchical Caching Architecture
The idea behind constructing a hierarchical
cache is to arrange a group of caches in a
tree-like structure and allow them to work
together in a parent-child relationship to
fulfil the requested objects by the client. If
a hierarchical structure is arranged
properly, the hit ratio can be increased
significantly [4], see Figure 1.

Figure 1. Hierarchical caching architecture

In a hierarchical caching architecture,
caches are placed at various levels of the
network. As shown in Figure 1, The
hierarchy is constructed from the client’s
cache, institutional cache, regional cache,
national cache, and the original server at
the top. When a client requests a page, it
first checks its browser cache. If the
request is not fulfilled, then it is forwarded
to the institutional cache. If the request is
not satisfied by the institutional cache, then
it is passed to the regional cache. If the
request is not found at the regional cache,
then it is redirected to the national cache.
The national cache forwards the request to
the original server if it cannot fulfill the
request. When the object is found in a
cache or the original server, it travels down
the hierarchy and leaves a copy of the
object in each caching level in its path to
the client.

2.2 Distributed Caching Architecture
Researchers have proposed an alternative
to the hierarchical caching architecture and
eliminated the intermediate tiers except for

the institutional tier. All caches in that tier
contain meta-data about the content of
every other cache. Another approach
proposed in this architecture is to employ
the hierarchical distribution mechanism for
more efficient and scalable distribution of
meta-data [4], see Figure 2. A rough
comparison between hierarchical and
distributed caching is shown in Table 1.

Figure 2. Distributed caching architecture

TABLE 1. COMPARISON BETWEEN HIERARCHICAL

AND DISTRIBUTED CACHING ARCHITECTURES

Features Hierarchical Distributed
Parent caches Congested Slight

congestion
latency High Low
Connection times Short Long
Bandwidth required Low High
No. of Hierarchies < 4 1
Transmission time High Low
Network traffic Unevenly

distributed
Evenly
distributed

Disk space usage Significant Low
Placement of caches
in strategic locations

Vital Not required

Freshness of cached
contents

Difficult Easy

Hit ratio High Very high
Response time Moderate Fast
Duplication of
objects

High Low

2.3 Hybrid Caching Architecture
A hybrid scheme is any scheme that
combines the benefits of both hierarchical
and distributed caching architectures.
Caches at the same level can cooperate
together as well as with higher-level

caches using the concept of distributed
caching [4].

3. Towards a better Architecture
The proposed architecture is a cooperative
client-client, client-proxy, proxy-proxy
caching system that aims to achieve a
broadband-like access to users with limited
bandwidth.
The proposed architecture is constructed
from the caches of the connected clients as
the base level, and a cooperative set of
proxies on a higher level, as shown in
Figure 3. The construction of the large
client web cache is based upon some of the
novel peer-to-peer (P2P) client web
caching systems, where end-hosts in the
network share their web cache contents.

Figure 3. Proposed hybrid architecture

3.1 Desired properties in the proposed
architecture

The proposed architecture is based upon
the idea of a hybrid scheme. It consists of
two tiers of cooperative caches, client
caches and proxy caches. The properties
that we wanted to achieve while designing
the architecture are as follows:

• Slight congestion in the parent caches.
• Low latency and data transmission

time.
• Evenly distributed network traffic for

faster transmission time and low
latency achievement.

• Long connection times.

• Low bandwidth usage which is the
priority in this architecture along with
the low latency property.

• A maximum of two hierarchical levels.
• Low disk space usage therefore low

duplication of objects.
• Maintain an easy plan to keep the

cached objects fresh.
• Test different object retrieval

approaches to achieve a high - very
high hit ratio and grant the user a fast
response time.

3.2 Considerations and design issues
There are many challenges in the proposed
approach since we are dealing with an
unknown number of clients in an unstable
environment. We have chosen to deal with
the following issues:

3.2.1 Cache Communication
The main challenge in cooperative cache
architecture is how to quickly locate the
location of the requested cached object.

Malpani et al. [12] proposed a scheme
where a group of caches function as one.
When the user requests a page, the request
is sent to some random cache. If the page
was found in that cache, then it is returned
to the user. Otherwise, the request is
forwarded to all the caches in the scheme
via IP multicast. If the page is cached
nowhere, the request is forwarded to the
home site of the page.

Harvest cache system [13] uses a scheme
where caches are arranged in a hierarchy
and uses the Internet Cache Protocol (ICP)
for cache routing [14]. When a user
requests a page, the request travels up the
hierarchy to locate the cached copy
without overloading the root caches by
allowing the caches to consult their
siblings in each level before allowing the
request to travel up the hierarchy.

Adaptive Web Caching [15] builds
different distribution trees for different
servers to avoid overloading any root. This
scheme is robust and self-configuring. It is
more efficient with popular objects. For
less popular objects, queries need to visit
more caches, and each check requires a
query to and responses from a group of

machines. It is suggested to limit the
number of caches the query visits, to
decrease the added delay.

Provey and Harrison [16] propose a
distributed caching approach to address the
problems faced in the previously proposed
hierarchical caching. They construct a
manually configured hierarchy that must
be traversed by all requests. Their scheme
is promising in the way that it reduces load
on top-level caches by only keeping
location pointers in the hierarchy [4]. A
simulation study was done as well, where
the results showed that this proposed
approach performs well for most network
topologies. Results have also shown that in
topologies where the number of servers in
the upper levels is low, the performance of
the hierarchical caching is better than the
proposed approach. The conclusion of this
paper is that the overall results show that
there is no significant performance
difference between the old and the
proposed approach.

Wang [17] describes an initial plan in
cache mesh system to construct cache
routing tables in caches. To guide each
page or server to a secondary routing path
if the local cache does not hold the
document. A default route for some
documents would help to keep table size
reasonable [4].

Legedza and Guttag [18] offer to reduce
the time needed to locate unpopular and
uncached pages or documents by
integrating the routing of queries with the
network layer’s datagram routing services
[4].

3.2.2 Cache Coherency

The most outstanding benefit of web
caching is that it offers the user lower
access latency. The side-effect of
providing the user with stale pages – pages
which are out of date with respect to their
home site. The importance of keeping the
cache's content coherent is to provide the
user with fresh and up-to-date pages.

Some of the proposed mechanisms to
keep cache coherency are strong cache
consistency and weak cache consistency
[4].

• Strong cache consistency
o Client validation. This approach is

also called polling-every-time. The
proxy initially considers the cached
pages are expired on each access
and sends an If-Modified-Since
header with each access of the
resources.

o Server invalidation. When a
resource is changed at the server, it
sends invalidation messages to all
clients that have recently accessed
and cached the resource. The server
has to keep a list of clients who
requested and cached the changed
resources which becomes
unmanagable for the server when
the number of the clients is large.

• Weak cache consistency

o Adaptive TTL. The resource
freshness problem is dealt with by
adjusting the time-to-live parameter
based on observations of its lifetime.
If a file has not been modified for a
long time, it tends to stay
unchanged. Thus, the time-to-live
attribute to a document is the current
time minus the last modified time of
the document.

o Piggyback Invalidation. Whenever a
cache has to communicate with the
server, it adds along with it a list of
resources that are potentially out-of-
date and asks for validation.

3.2.3. Cache Contents
Proxy caches has been recognized as an
effective and effecient solution to improve
the web performance. A proxy serves in
different roles: data cache, connection
cache, and computation cache. A recent
study has shown that caching Web pages at
proxy reduces the user access latency 3% -
5% comparing to the no-proxy scheme [4].
It is very important to set the architecture
and preapre it to deal with different types
of resources. Most of the web resources are
becoming synamic with the invasion of
web services. It is very helpful to use
computation caching to retrieve dynamic
data. It can be done by caching dynamic

data at proxies and migrating a small piece
of computation to proxies to generate or
maintain the cached data. Also the
architecture should be able to retrieve
information about the requested resource
before adding delay to the request by
looking for it in the caches when it is ana
uncachable resource.

3.2.4. Load balancing
The hot spot problem is one of the issues
that triggered the web caching research
area. It occurs any time a large number of
clients access data or get some services
from a single server. If the server is not set
to deal with such situations, clients will
perceive a lot of delay and errors and the
quality of service will be degraded. Several
approaches to overcoming the hot spots
have been proposed. Most use some kind
of replication strategy to store copies of hot
pages/services throughout the Internet; this
spreads the work of serving a hot
page/service across several servers [4].
Another approache that can be used is to
set the server to work in a cooperative set
with other servers or caches.

3.3 Flow of information in the

architecture
The flow of information in the architecture
can have different scenarios and paths. The
two scenarios chosen for this architecture
are as follows:

 Scenario1: each client keeps a search
history log of the clients that contacted it.
When a client initiates a request it first
looks into its local cache. If the requested
page is found, then it is fetched from the
local cache of the client. Otherwise, it
looks into its search history log and search
for the last client who requested this page.
If found, it fetches the requested page from
the client otherwise it consults the proxy to
fetch the requested page. If the proxy
found it in its cache, it forwards the
requested page to the client. Otherwise, it
consults the proxies in its cooperative set.
If none have it, then the request is
forwarded to the home server.

 Scenario2: each proxy in the
cooperative set is responsible of a group of
clients that are geographically grouped.
And each proxy acts as the leader of the
peer-to-peer connected clients and contains
cache and routing information of the client
caches. When a client initiates a request, it
will first check in its local cache. If it was
found, then it is fetched from the local
cache of the client. Otherwise, it will send
the proxy a page location request. If the
page was cached in one of the client's
caches, then it would forward the
information of the client that have the page
in its cache to the requesting client.
Otherwise, the proxy will consult the
proxies in its cooperative set and check if
any of the proxies have the requested page
in its cache. If none have the requested
page, then it is fetched from the home
server.

Both of the mentioned scenarios are to
be tested and analysed using a simulator.
The simulation could result in the
superiority of one of them or the need for a
hybrid of both.

The reason such scenarios are chosen is
to explore and benefit from the free space
offered by the client's caches when they
are connected to the internet. This
architecture aims to reduce the load on the
upper tier, the proxy, by initiating direct
communication between the clients in P2P-
like atmosphere which are geographically
close to each other. The communications
between the clients better stay as simple as
possible as not to produce more delay and
load on the client and organize the flow of
the network traffic.

4. Conclusion
This paper presented web caching
architectures that have been found as a
solution for network congestion and server
overloading problems. A rough
comparison of the most common
architectures was presented to show the
pros and cons of each. The paper also
proposed a new hybrid web caching
architecture that is believed to offer a
better performance which is due to

combining the benefits of many
architectures and schemes. The proposed
architecture will look into some design
issues such as the communication between
the caches, the path to keep the caches'
contents coherent, cache contents, and load
balancing at the client and proxy side.
Current work is on going to simulate the
architecture's flow of information
scenarios, using OMNET++ network
simulator, to analyse and fine tune the
architecture design issues.

Acknowledgment
This project is funded by Intel Innovation
Center, Dubai, UAE.

References:
[1] P. Eaton, E. Ong, and J. Kubiatowicz,

“Improving Bandwidth efficiency of
peer-to-peer storage” in Proceedings
Fourth International Conference on
Peer-to-Peer Computing, 2004, pp.
80-90.

[2] B. Zenel, and D. Duchamp,
“Intelligent communication filtering
for limited bandwidth environments”
in Proceedings Fifth Workshop on Hot
Topics in Operating Systems, 1995,
pp. 28-34.

[3] Li Fan, Pei Cao, Wei Lin, and Q.
Jacobson, “Web prefetching between
low-bandwidth clients and proxies:
potential and performance”,
Performance Evaluation Review, vol.
27, issue 1, p 178-187, June 1999.

[4] Jia Wang, “A Survey of Web Caching
Schemes for the Internet”, Computer
Communication Review, vol. 29, issue
5, pp. 36-46, Oct. 1999.

[5] S.G. Dykes and K.A. Robbins,
“Limitations and benefits of
cooperative proxy caching”, IEEE
Journal on Selected Areas in
Communications, vol. 20, issue 7, pp.
1290-1304, Sep. 2002.

[6] M. Abrahams, C.R. Standridge, G.
Abdulla, S. Williams, and E.A. Fox,

“Caching Proxies: Limitations and
potentials”, in Proceeding of the 4th
International World-Wide Web
Conference, 1995, pp. 119-133.

[7] M.R. Korupolu and M. Dahlin,
“Coordinated placement and
replacement for large-scale distributed
caches”, in Proceedings of the 1999
IEEE Workshop on Internet
Applications, 1999, pp. 62–71.

[8] S. Gadde, M. Rabinovich, and J. S.
Chase, “Reduce, reuse, recycle: An
approach to building large internet
caches” in Proceedings of the
Workshop on Hot Topics in Operating
Systems, 1997, pp. 93–98.

[9] A. Wolman, G. Voelker, N. Sharma,
N. Cardwell, A. Karlin, and H. Levy,
“On the scale and performance of
cooperative Web proxy caching” In
Proceedings of the 17th ACM
Symposium on Operating Systems
Principles (SOSP’99), 1999, pp. 16–
31.

[10] K. W. Lee, S. Sahu, K. Amiri, and C.
Venkatramani, “Understanding the
potential benefits of cooperation
among proxies: Taxonomy and
analysis”. Technical report, IBM
Research Report, Sept. 2001.

[11] Y. Zhu, and Y. Hu, “Exploiting client
caches: an approach to building large
Web caches” in Proceedings 2003
International Conference on Parallel
Processing, 2003, pp. 419-426.

[12] R. Malpani, J. Lorch, and D. Berger,
"Making World Wide Web caching
servers cooperate", in Proceedings of
the 4th International WWW
Conference, Boston, MA, 1995.

[13] A. Chankhunthod, P. B. Danzig, C.
Neerdaels, M. F. Schwartz, and K. J.
Worrel, "A hierarchical Internet object
cache", Usenix'96, 1996.

[14] D. Wessels and K. Claffy, Internet
cache protocol (IPC), version2,
RFC2186.

[15] S. Michel, K. Nguyen, A. Rosenstein,
L. Zhang, S. Floyd and V. Jacobson,
"Adaptive Web Caching: towards a
new caching architecture", Computer
Network and ISDN Systems, 1998.

[16] D. Povey and J. Harrison, "A
distributed Internet cache" in
Proceedings of the 20th Australian
Computer Science Conference, 1997.

[17] Z. Wang, "Cache mesh: a distributed
cache system for World Wide Web",
Web Cache Workshop, 1997.

[18] U. Legedza and J. Guttag, "Using
network-level support to improve
cache routing", Computer Networks
and ISDN Systems, 1998 , pp. 2193-
2201.

