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ABSTRACT 
Along with the evolution from the Semantic Web to the Pervasive Semantic Web, the 
importance of taking into account ill-defined domains and imprecise information plays more 
important role. In this paper, we propose a solution to integrate ill-defined knowledge with 
classical Description Logic that will be extended to the management of uncertain information. 
The proposed solution is based on integration between the Probabilistic Asynchronous 
Process Algebra and OWL DL. It is ground on meta-metamodelling approach in representing 
both Probabilistic Asynchronous Process Algebra and OWL DL.  
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1. Introduction 
The emergence of the Semantic Web 
technology enables both human and 
machine semantics to be used for 
formalizing and representing knowledge, 
as well as combining and inferring new 
one. Recently, a vision of the Pervasive 
Semantic Web has been appeared [1], in 
which semantically connected information 
that represents the knowledge (Semantic 
Web) meets pervasively and unobtrusively 
connected computing devices, which are 
embedded in the environment (pervasive 
computing).  
Pervasive Semantic Web environment 
additionally connects semantics to self-
adaptive and self-organizing services in 
order to semantically drive the interaction 
of local self-systems, theirs processes and 
system components to the level of the 
global distributive system behaviour.  
Along with the evolution from the 
Semantic Web to the Pervasive Semantic 
Web, the importance of taking into account 
ill-defined domains and imprecise 
information (e.g. more facts are not 
true/false) plays more important role. 
Specifically, building Pervasive Semantic 
Web applications faces the problem of 
dealing with uncertain information that 
explains environment, users, process 
lifecycles, system’ behaviour. For the sake 
of considering uncertain information, 

classical Description Logics (DL) that 
represents the logical foundation for 
ontologies become unsuited to a large 
range of the real world problems. 
In this paper, we represent the Probabilistic 
Asynchronous Process Algebra (the πpa for 
short) of O.M. Herescu [2] that we have 
found to be the most convenient formalism 
to express the real nature of processes 
taking place in a pervasive environment. 
The πpa is fully based on Pi-Calculus, 
which is extended in the sense to enable 
the asynchronous nature of the processes 
(events that are occurring independently of 
the program flow), as well as dealing with 
uncertain knowledge collected using 
certain pragmatic mechanism, e.g. sensors 
networks, Semantic Web agents, Semantic 
Web services.  
This paper is organized as follows: In 
Section II we briefly describe the problem 
that is addressed; In Section III we 
describe our research hypothesis; In 
Section 4 we further explain the proposed 
mechanism for integrating probabilistic 
processes and existing knowledge 
expressed in OWL (Web Ontology 
Language) DL. The proposed probabilistic 
integration mechanism, named πpa2OWL, 
follows the Model-driven Approach 
(MDA). In Section 5 we review related 
work in the field of probabilistic 
extensions to OWL. The paper concluded 
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in Section 6 with some conclusion remarks 
and directions for future research. 

 
 

2. Problem Definition and Scope 
The Semantic Web vision brings us a set of 
new technologies to capture the semantic 
relationships between information on the 
Web and to make them machine-
consumable (readable, understandable, and 
(in)directly processable by machines). 
Semantic technologies include various 
languages, e.g. RDF (Resource Definition 
Language), OWL that is used for 
ontologizing of knowledge, querying 
ontologies and reasoning about knowledge. 
Moreover, the real world copes with 
changing information that express partial, 
inconsistent, and unreliable knowledge 
(uncertainty), which is often associated 
with: 
- defective information and defective 
models of our knowledge, 
- vague, fuzzy, incomplete, imprecise 
information, 
- unpredictable user/agent behaviour, 
- unpredictable environment events.  
These limitations render DL unsuited to a 
large range of the real world problems (e.g. 
one of the serious limitations of DLs is that 
they can express little about the overlap 
between two concepts (classes of 
individuals) [3]).  
Today, various approaches for dealing with 
uncertainty are defined. Their mainly differ 
in the underlying notion of uncertainty 
[17]. We briefly explain some of them 
below.  

 
2.1 Bayesian Networks 
Bayesian networks [3] allow a compact 
and natural representation of complex 
probability distributions by using 
independence assumptions, which is 
crucial to getting non trivial conclusions 
from a probabilistic knowledge base.  
A Bayesian network is a Direct Acyclic 
Graph (DAG) in which the nodes are 
random variables. Each variable takes on a 
value in some predefined range. Each node 

in the network is associated with a 
Conditional Probability Table (CPT), 
which defines the probability of each 
possible value of the node, given each 
combination of values for the node’s 
parents in the DAG.  
From the perspective of using ontologies to 
express probability, a methodology has 
been proposed in [5] to translate the source 
and target ontologies into Bayesian 
networks and then map the concepts from 
the two ontologies based on evidential 
reasoning between the two translated 
Bayesian networks. 
 
2.2 Fuzzy Theory 
Fuzzy theory, introduced by Zadeh in [6], 
has been used in the context of searching 
and dealing with vague and imprecise 
knowledge, but not much work has been 
done in this field yet. Fuzzy theory allows 
to model vague memberships of 
individuals, while fuzzy IF-THEN rules 
allow evaluating good approximations of 
desired attribute values in a very efficient 
way [7].  
The work explained in [8] has shown how 
fuzzy membership functions and fuzzy IF-
THEN rules can be modelled with DL that 
support the concrete domain R and simple 
aggregate functions like min, max, sum, 
etc. A fuzzy logic extension of DL has 
been proposed in [9].   
 
2.3 Paraconsistent Reasoning 
Paraconsistent reasoning for the Semantic 
Web, as described in [10], involves several 
different approaches like: 
(a) Relevant logics, which is based on 
“different worlds” developed by Routley 
and Meyer,  
(b) Many-Valued systems, which 
represents the logic with more than two 
truth values,  
(c) Non-Adjunctive systems,  
(d) Non-Truth-Functional logics.  
The implementation of algorithms for 
paraconsistent reasoning with OWL, 
named ParOWL, can be found in [11].  
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This paper represents an ongoing research 
on developing a solution that integrates 
probabilistic knowledge and OWL DL 
constructs. Here, we propose and 
investigate an integration mechanism 
based on metamodel transformation from 
the Probabilistic Asynchronous Algebra 
into OWL DL. We call this integration 
mechanism π pa2OWL. 
 
 
3. Research Hypothesis: Model-

Driven Integration of the 
Probabilistic Asynchronous 
Processes and OWL DL 

To support probabilistic ontology 
representation and reasoning in the 
Semantic Web environment, we use MDA 
approach in integrating:  
- the πpa, which is an extension of the 
Asynchronous Process Algebra with a 
notion of random choice, and  
- OWL DL, which is a standard ontology 
language.  
The proposed probabilistic integration 
mechanism is based on using MDA that 
enables defining models at various levels 
of abstraction and developing 
transformations between those models. 
More precisely, the proposed solution is 
ground on Meta-Object Facility (MOF) 
that is used for specifying metamodels.  
First, we have defined πpa metamodel as a 
source metamodel and reused OWL 
metamodel [12] as a target model.  
Second, we have identified a collection of 
the transformation rules between the 
source model (based on πpa metamodel) 
and the target model (based on OWL 
metamodel).  
Figure 1 illustrates the proposed 
integration solution driven by MDA 
principles. In general, the MOF framework 
includes three layers shown on Figure 1: 
- the model layer (M1) that contains the 
definition of the required structures;  
- the metamodel layer (M2) that defines 
the terms in which the model is expressed,  

- the meta-metamodel layer (M3) that 
defines the terms used to specify 
metamodels.   
Each model from the M1 level conforms to 
an appropriate metamodel (M2 level). The 
M2 and M3 levels belong to the MOF 
technical space, whereas the M1 level 
involves the Semantic Web technical 
space, MOF technical space and XML 
technical space. A technical space is a 
working context with a set of additional 
concepts, body of knowledge, tools, 
required skills, and possibilities [18]. In 
order to exchange models between 
different technical spaces, it is necessary to 
provide transformations from one space to 
another. These transformations are also 
models.   
For example, in the Pervasive Semantic 
Web technical space,  the probabilistic 
asynchronous processes are collected in 
the form of πpa records and described as an 
.xml file. In order to enable communication 
between the Pervasive Semantic Web 
technical space and MOF technical space, 
we transform .xml file into an equivalent 
.ecore (ECore XML XMI) format, which is 
a metamodel that follows the specification 
of Essential MOF (EMOF). Then, we use 
the Atlas Transformation Language (ATL) 
engine [13] to describe and implement the 
relevant transformation rules between πpa 
and OWL constructs.  
Finally, we transform the resulting OWL 
file, which has an .ecore extension, 
espressed by using OWL RDF/XMI 
exchange syntax (XML Metadata 
Interchange (XMI) represents an 
interchange format used for serialization of 
models of other languages (metamodels)) 
into an executable OWL file defined in 
OWL RDF/XML presentation syntax (.owl 
file). The transformation model, named 
πpa2OWL, describes transformation rules 
that hold between appropriate the source 
and the target metamodels.
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Figure 1. Transformation Scenario 

 
 

4. πpa2OWL: Probabilistic 
Integration for the Semantic 
Web  

This Section gives a brief overview of the 
πpa proposed in [2]. Then, based on the 
syntax and operational semantics of πpa, we 
have defined πpa metamodel and described 
πpa metamodel in the form of Kernel Meta 
Metamodel (KM3) language. KM3 is a 
Domain Specific Language (DSL) for 
metamodel specification. Finally, we 
identify transformation rules between the 
source and the target metamodels. 
 
4.1 Probabilistic Asynchronous Algebra 
Probabilistic Asynchronous Pi-Calculus is 
based on both Robin Milner’s Pi-Calculus 
of mobile processes and the probabilistic 
automata of Segala and Lynch [2]. It 
represents an improvement of the Pi-
Calculus, considering asynchronous 
algebra on one hand and probabilistic 
algebra on the other hand. Asynchronous 
algebra is a subset of the Pi-Calculus in 
which communication is asynchronous and 
output processes are not allowed to go on 

continuously [2]. Additionally, the 
formalisms based on asynchronous 
communication are more suitable for a 
distributed implementation, compared with 
synchronous communication.  
At the same time, the distributive problems 
require considering implementation of a 
certain probabilistic algorithms to enable a 
random choice, as well as asynchronous 
nature of processes that occur randomly in 
distributed architectures.  
The operational semantics of the πpa 
distinguishes between probabilistic and 
nondeterministic behaviour. Probabilistic 
behaviour is associated with a random 
choice of processes, whereas 
nondeterministic behaviour is related to 
the arbitrary decision of an external 
scheduler (agent) [2].    
The πpa is defined by the following 
grammar [2]: 

τα )(:: yx=                                           (1) 

PrecXPPxPPpyxP Xjii iii να∑=::    (2) 

As noted in (1), the πpa includes input 
prefix, )( yx , and silent prefix, τ , whereas 
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output prefix is replaced by the output-
action processes described as yx in (2). In 
addition, the πpa processes are described 
with the probabilistic choice 
operator,∑i iii Pp α , where ip  represents 

probabilities, and iα  is input or silent 
prefix.  

We have defined the πpa metamodel, based 
on the syntax and operational semantics of 
πpa that is described in [2].  
 
4.2  πpa Metamodel 
The πpa metamodel is shown in Figure 2.
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Figure 2. πpa Metamodel 

 
4.3  Probabilistic Integration between πpa 
and OWL DL  
The probabilistic integration of πpa and 
OWL is based on building transformation 
models with the role to specify the way of 
producing the target models from the 
source models. At the same time, the 
transformation models have to confirm to a 

transformation metamodels that define the 
transformation semantics, as well as to 
confirm to the considered meta-metamodel 
[13]. We use the ATL that enables 
generating OWL model that conforms to 
the OWL metamodel (target), starting from 
the πpa model that conforms to the πpa 
metamodel (source) (shown in Figure 2).  
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A collection of transformation rules have 
been identified and applied to enable the 
probabilistic integration of the πpa2OWL. 

Some of these transformation rules are 
represented in Table 1. 

 
Table 1. Overview of the πpa2OWL Transformation Rules 

 
 
 
5. Related Work  
Recently, there have been some attempts to 
probabilistic extensions in DLs, such as the 
following examples: 

a) P-Classic [3] is a probabilistic version of 
the DL CLASSIC that uses Bayesian 
networks to express uncertainty about the 
basic properties of an individual, the 
number of fillers for the different roles, 
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and the properties of these fillers. Also, it 
allows the specification of a probability 
distribution over the properties of 
individuals.  
The probabilistic component of a P-
CLASSIC knowledge base includes:  
- a number of different p-classes 
(probabilistic classes), each of which is a 
Bayesian network over basic properties,  
- the number of fillers (for the different 
roles), and 
- the p-classes from which the role fillers 
are chosen. 
b) P-SHOQ(D) [14] is the probabilistic 
extension of DL SHOQ(D), which is the 
semantics behind DAML+OIL (without 
inverse roles), based on the notion of 
probabilistic lexicographic entailment from 
probabilistic default reasoning. It is able to 
represent assertional probabilistic 
knowledge about concepts and role 
instances.   
c) PTDL [15] extends Tiny Description 
Logic (TDL) with “Conjunction” and 
“Role Quantification” operators.   
d) BayesOWL [16] is to translate a given 
ontology to a Bayesian network in a 
systematic and practical way, and then 
treats ontological reasoning as probabilistic 
inferences in the translated Bayesian 
networks (it’s not to extend OWL with 
probability theory). It is non-intrusive 
approach in the sense that neither OWL 
nor ontologies defined in OWL need to be 
modified. 

 
 

6. Conclusion and Future Work 
Nowadays, a novel search engine 
technology becomes designed to support 
ontology-based search refinements in a 
way that ontology formalisms can capture 
uncertainty and express relevant 
uncertainties about the entities (classes of 
individuals) and relationships between 
classes.  
To date there exist two ways of expressing 
probabilistic knowledge in the Semantic 
Web. The first approach is focused on 
achieving a probabilistic extension of a 

DL-based language, whereas the second 
approach deals with integrating 
probabilistic and deterministic knowledge 
taking place in the Semantic Web 
environment. However, none of these 
existing attempts has considered the 
possibility to treat the probabilistic 
processes in a way that enables model-
driven transformation mechanism to 
integrate the probabilistic knowledge into 
OWL DL. 
In this paper, as direction to connect 
research from the domain of asynchronous 
communication and probabilistic 
behaviour, as well as pervasive and 
unpredictable behaviour of processes on 
one hand with the Semantic Web 
technologies on the other hand, we propose 
the πpa2OWL integration mechanism 
between πpa and OWL DL. 
To our knowledge, this work represents the 
first attempt to study how the MDA and 
MOF can be handled to provide a 
mechanism for integrating probabilistic 
knowledge into OWL DL. 
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