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ABSTRACT 
 Image denoising is an essential requirement of image processing. The images contain strongly 
oriented harmonics and edge discontinuities. Wavelets, which are localized and multiscaled, do 
better denoising in single dimension using multiple local thresholding technique. But because 
of their poor orientation selectivity they do not represent higher dimensional singularities 
effectively. Curvelet based denoising and reconstruction exhibit higher quality recovery of 
edges and curvilinear features than wavelet based constructions. In this work a modified 
thresholding scheme using multiple thresholds for digital curvelet transform coefficients is 
proposed. This thresholding scheme denoises images embedded in white Gaussian noise. The 
experiment shows denoising using modified cubic thresholding and curvelet transform 
outperforms wavelet-based methods not only in terms of PSNR(peak signal-to-noise ratio) and 
MSE (mean square error), but also in better visual appearance of the resulting images. 
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1. Introduction 
 In the real world signals do not exist without 
noise, which arises during image acquisition 
(digitization) and/or transmission [2]. When 
images are acquired using a camera, light 
levels and sensor temperature are major 
factors which affect the amount of noise. 
During transmission images are corrupted 
mainly due to interference in the 
transmission channel [6]. The noise removal 
takes place in the original time space domain 
or in a transform domain. In transform 
domain, Fourier transform are used in the 
time–frequency domain and multiresolution 
transforms like wavelet/ curvelet/ contourlet 
transform are used in the time-scale domain.  
Denoising a given noise corrupted signal is a 
traditional problem in both statistical and in 
signal processing applications. Linear 

denoising methods are not so effective when 
transient non-stationary wideband 
components are involved, since their 
spectrum is similar to the spectrum of noise 
[1]. Non-linear denoising methods [9] rely 
on the basic idea that the energy of a signal 
will often be concentrated in a few 
coefficients in the transform domain while 
the energy of noise is spread among all 
coefficients in transform domain. Therefore, 
the non-linear methods will tend to keep a 
few larger coefficients representing the 
signal while the noise coefficients will tend 
to reduce to zero. Denoising methods based 
on multiresolution transforms involves three 
steps: a linear forward transform, nonlinear 
thresholding step and a linear inverse 
transform. Wavelets are successful in 
representing point discontinuities in one 
dimension, but less successful in two 



dimensions. As, multiscale representation is  
suited for edges and other singularity curves, 
the curvelet transform has emerged as a 
powerful tool. The developing theory of 
curvelets predicts that, in recovering images 
which are smooth away from edges, 
curvelets obtain smaller asymptotic mean 
square error of reconstruction than wavelet 
methods [3]. 
The remainder of the paper is organized as 
follows: A review of curvelet theory is 
presented in Section 2. The proposed 
algorithm is presented in Section 3. 
Experimental results and discussions are 
given in section 4. Finally, Section 5 
summarizes the conclusions drawn from 
previous sections with suggestions for future 
work. 
 
 
2. Curvelet Transform 
A special member of the emerging family of 
multiscale geometric transforms is the 
curvelet transform which overcomes inherent 
limitations of traditional multiscale 
representations such as wavelets. 
Conceptually, the curvelet transform is a 
multiscale pyramid with many directions and 
positions at each length scale, and needle-
shaped elements at fine scales [4]. Curvelets 
have useful geometric features that set them 
apart from wavelets. Curvelets obey a 
parabolic scaling relation which says that at 
scale 2-j, each element has an envelope which 
is aligned along a “ridge” of length  2-j/2 and 
width  2-j . Curvelet transform uses the 
ridgelet transform as a component step and 
implements curvelet subbands using a filter 
bank of wavelet filters. This transform 
combines multiscale ridgelets with a spatial 
bandpass filtering operation to isolate 
different scales [4]. While ridgelets have 
global length and variable widths, curvelets 
in addition to a variable width have a 
variable length and so a variable anisotropy. 
Curvelets occur at all scales, locations, and 
orientations and hence they can be used to 
represent a curve as a superposition of 

functions of various lengths and widths 
obeying the scaling law: width ≈ length2. 
The flow graph in Figure (1) gives an 
overview for organization of the algorithm. 
The decomposition is the sequence of 
following steps. 
1.Subband decomposition: The image f is 
decomposed into subbands such that   

( )0 1 2, , ,...f P f f f→ Δ Δ . 
2.Smooth partitioning: Each subband is then 
smoothly windowed into squares.  
3.Renormalization: Each resulting square is 
renormalized to unit scale 
4.Ridgelet analysis: Each square is analyzed 
via the discrete ridgelet transform. 

    
 
 
3. Algorithm for Image Denoising 
 
3.1 Preliminary Algorithm for Image 
Denoising 
The mathematical model of noisy image is as 
follows 

nxy +=           (1) 
where y  is the observed image, x  the 
unknown original image and n  the 
contaminating noise.  
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Figure1. Curvelet transform flowgraph 



Complete curvelet denoising procedure is 
performed by taking curvelet transform of 
the image and then applying thresholding to 
eliminate noisy coefficients. Thus, inverse 
curvelet transform of thresholded 
coefficients give denoised image. 
The fast discrete curvelet transform of the 
image observations are evaluated as Y using 
C(.) in following Equation [5]. 
 Y = C(y)                                                  (2)     
The threshold denoted by λ, for wavelet is 
selected based on minimax threshold 
expressed as following 
 λ=D(Y)                                                   (3) 
The universal threshold [7] is given as   

( ) 2loggD Y Nλ σ= =                          (4) 
where σ is the standard deviation of noise, 
and N is the size of image. 
Wavelet transforms maps white noise in the 
signal domain to white noise in the transform 
domain. Thus in the transform domain the 
signal is concentrated into fewer coefficients 
but the noise does not concentrate. The 
principle behind separation of signal and 
noise is that, when scale 2-j decreases, 
wavelet transform maxima of images doesn’t 
increase, but at the same time wavelet 
transform modulus of white noise increases. 
Thus different behaviours of wavelet 
transform maxima of images and noise 
across different scales allow us to design the 
operator D(.) adaptively.      
   An image features a wide variety of 
characteristics. Hence, instead of using a 
single value as the global threshold, the 
operator D(.) can be designed to produce 
multiple local thresholds λj adaptively for 
different scales from fine to coarse. For 
wavelets one such threshold is [7] 

( ) ( )2log / log 1j jD Y N jλ σ= = +       (5) 
where j is the decomposition level of wavelet 
packet transform. This modified multiple 
local thresholding technique obtaines better 
results than the soft and the hard 
thresholding methods, which utilizes a single 
threshold value. Curvelet transform employs 
the 1-D wavelet transform as a component 

step, but, along the radial variable in Radon 
space. Thus Equation (5) does not prove to 
be effective for thresholding the curvelet 
transform coefficients and requires some 
modification. 
 
 
3.2 Modified Cubic Thresholding for 
Image Denoising 
In this work a similar multiple threshold 
technique for thresholding the curvelet 
coefficients is proposed. To design the 
operator D(.), it is proposed to retain all the 
coefficients at the first scale, since they are 
the dc values and they provide the average 
information of the image. For the remaining 
scales the coefficients, which provide the 
highest PSNR values seemed to be correlated 
and the curvelet coefficients appeared to 
decay in an exponential manner. Thus, a 
scale dependent exponential function 
multiplied by a scale dependent logarithmic 
function resulted in improvement in PSNR 
values. Therefore, the multiple local 
thresholds is proposed as follows 

( ) ( 1)2 log . .log( 1)j
j jD Y N e jλ σ − −′ = = +       

                                                                  (6) 
where j is the decomposition level of 
curvelet transform and varies from  j  = 
2,3,………J.   J is the integer corresponding to 
the last scale. 
The thresholding operator T(.,.) is defined as 
Z=T(Y ,λ)                                           (7) 
It is taken as the cubic threshold function [7], 
given as 
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           (8)  

Cubic thresholding function is very flexible 
and has the capability to adapt to different 
types of images and threshold operators. 
Some simple but powerful shrinkage 
functions are the soft [8], and the hard 
thresholds. They select a single global 



threshold for all the scales using Equation 
(4).This work proposes the use of multiple 
local thresholds, λj’of Equation (6) with the 
soft and hard thresholds. Thus multiple local 
soft thresholding may be given by 
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Similarly multiple local hard thresholding is 
given by     
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Finally C-1(.) takes the fast discrete inverse 
curvelet transform of the thresholded 
curvelet coefficients as follows 
x̂ =C-1(Z)                                            (11)                              
Where x̂  is reconstructed/denoised image 
                   
4. Experiments and Results 
The performance of the proposed 
thresholding method is evaluated and 
compared with soft, hard and cubic 
thresholding schemes using wavelets [7]. 
The Gaussian noise with standard deviation 
26.25 is added to the classical Lenna image 
of (512x512) to obtain noisey image. The 
Multiple local thresholds are obtained using 
Equation (6). The curvelet coefficients are 
processed by thresholding functions in 
Equations (8), (9), and (10). The 
performance of denoising is evaluated using 
PSNR and MSE. PSNR is defined as the 
ratio of signal power to noise power. It 
basically obtains the gray value difference 
between resulting image and original image. 
PSNR is given as 
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where  is the maximum pixel value of 
the image. MSE is given by the formula 
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where x is the original image, x̂  is the 
reconstructed image, m and n are the number 
of rows and columns respectively.Numerical 
values for PSNR and MSE are given in 
Table1.  

Table 1.Comparison of different thresholding methods 
 
The curvelet reconstruction using multiple 
local thresholds enjoys superior performance 
over the wavelet based reconstructions. The 
pictorial denoising performance using 
wavelet based soft, hard, and cubic 
thresholds is compared with curvelet based 
multiple local soft, hard, and cubic  
thresholds in Figure 2. Experiments show 
that multiple local thresholding based on 
curvelets outperforms the wavelet based 
methods on the basis of MSE and PSNR. 
 
 
5. Conclusion 
In this work a multiple local thresholding 
technique, using curvelets, is proposed to 
denoise images contaminated by white 
Gaussian noise. Curvelets carry 
multiresolution properties. At different scales 
the maxima of curvelet transform 
coefficients vary, therefore, the threshold 
operator D(.), is so designed, which produces 
multiple local thresholds, adaptively, for 
different scales from fine to course.  The 
proposed expression for varying thresholds 

 
 
 
Method 
 

 
Thresholding  
using 
 wavelets  

 
Multiple local 
thresholding 
using curvelets  

PSNR 
/ dB MSE PSNR / 

dB MSE 

Noisy Image 19.80 679.91 19.80 679.91 
Soft_thresho
lding 23.11 317.61 25.31 191.461

Hard_thresh
olding 24.52 

 
229.86 
 

26.13 158.51 

Multiple 
local 
Cubic_thres
holding 

25.07 202.19 26.56 143.57 



at different scales is then applied to threshold 
the curvelet coefficients with cubic, hard and 
soft thresholding functions. The 
effectiveness of the method is tested against 
the wavelet based methods. Our 
experimental results depict that, multiple 
local thresholding technique using curvelets 
outperform the wavelet based methods. In 
addition, this technique outputs images that 
are visually clearer with well defined edges.  
Further work can be carried on the issue to 
quantitatively analyze the denoising results 
according to different types and magnitudes 
of noises. Moreover in future, higher 
resolution images of size 2048x2048 or 
4096x4096 will become the standards for 
which this work needs to be tested. 
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Figure 2. Denoising of Lenna (a) Original image. (b) Noisy image. (c) Soft thresholding using wavelets. (d) 
Multiple  local  soft  thresholding  using  curvelets.  (e)  Hard    thresholding  using wavelets.  (f) Multiple  local 
hard  thresholding using  curvelets.  (g) Multiple  local  cubic  thresholding using wavelets.  (h) Multiple  local 
cubic thresholding using curvelets 


