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ABSTRACT 
 

This paper introduces the adaptive local graylevel transformation (ALGT) method as a 
new approach for contrast sharpening in grayscale images. This new approach is applicable for 
images with relatively high global contrast or those that have been processed by some global 
enhancement methods in order to increase the contrast sharpness. The new method is based on 
using local graylevel transformation functions that perform optimal graylevel stretching in terms 
of increasing the image contrast with reduced amplification of noise levels. The specification of 
the transformation functions is adaptive in the sense that it transforms the graylevel values in the 
image based on the content of their neighborhood. Our quantitative and qualitative experimental 
evaluations of the new method on a set of benchmark images, especially those with relatively 
smooth regions, prove this advantage.  
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1. Introduction 
The visual appearance of an image may 

be significantly improved by emphasizing its 
high frequency contents to enhance the fine 
details in the image. This is an essential task 
in many image processing and computer 
vision applications. One popular approach is 
the classical linear unsharp masking (UM) in 
which sharpening is achieved by adding the 
original image to a scaled highpass filtered 
version of itself. The highpass version of the 
original image is either computed in the 
spatial domain using derivative masks or in 
the frequency domain using highpass filters 
[1,2]. Although, the UM method is simple 
and works well in many applications, it 
suffers from two main drawbacks. i) It is 
extremely sensitive to noise, which in turn 
results in perceivable and undesirable 

distortions, particularly in uniform areas of 
even slightly noisy images. ii) It enhances 
high-contrast areas much more than areas 
that do not exhibit high image dynamics. 
Consequently, some unpleasant overshoot 
artifacts may appear in the output image. 
Although many approaches have been 
proposed to reduce the noise sensitivity of 
the linear unsharp masking technique [3,4], 
they still introduce some artifacts in smooth 
areas due to the amplification of the input 
disturbances. Furthermore, medium-contrast 
details are not enhanced as well as large-
contrast details in these methods.  

One interesting and relatively new 
approach for image sharpening is proposed 
by Matz and Figueriedo [5]. This method 
attempts to sharpen the contrast of an image 
that has sufficiently global contrast, i.e. it 



could be useful in increasing the contrast of 
images that have been processed by some 
global method, such as histogram 
equalization (HE) [1,2] or constrained 
variational histogram equalization (CVHE) 
[6]. Matz method approaches the problem of 
contrast sharpening by combining concepts 
from the direct and indirect contrast 
enhancement methods. This method is 
similar to the direct enhancement methods in 
the sense that it attempts to increase the 
value of local contrast defined by Beghdadi 
et al. [7]. However, the method does not 
operate on the contrast values directly. 
Instead, it uses the mean edge gray value, 
which is used in defining Beghdadi contrast, 
to partition one of the ten Munsell’s Scale 
[8] intensity intervals based on the original 
graylevel value. Similar to the indirect 
enhancement methods their approach 
proceeds by utilizing a transformation 
function to map the original graylevel value.  

Performance evaluation of this method 
shows its ability in contrast sharpening. 
However, it also results in noise 
amplification. This is because the 
transformation function depends only on the 
minimum and maximum intensity values of 
the pixel neighborhood and does not 
consider the local content around each pixel 
in the image, in addition to the fact that 
some of the intervals on the Munsell’s scale 
are relatively wide which result in excessive 
stretching and accumulation of the 
graylevels near the intervals endpoints.   

This paper presents the Adaptive Local 
Graylevel Transformation (ALGT) method 
for automatic image contrast sharpening. 
Similar to Matz method, the ALGT method 
borrows ideas from the direct and indirect 
approaches to achieve better sharpening 
results as a post-enhancement step. As in the 
indirect methods, the ALGT method uses a 
transformation function to modify the 
values. The similarity to direct methods in 
the ALGT method is based on the fact that it 
increases the local contrast based on the 
understanding of Gordon contrast [9]. The 
ALGT transformation function is derived by 

solving a variational optimization problem 
that provides the maximal graylevel 
stretching with minimal background noise 
amplification and image distortion. 
Additionally, the parameters of the ALGT 
transformation function are adaptive to the 
content of the pixel’s neighborhood to 
reduce noise amplification and distorted 
edges. The performance comparison 
between the ALGT and Matz methods after 
processing the results of the CVHE method 
shows the ability of the ALGT method to 
produce images with better sharpness and 
less noise.  

The rest of this paper is organized as 
follows. In Section 2, the mathematical 
formulation and the derivation of the ALGT 
method transformation function is discussed. 
Section 3 discusses the experimental 
evaluation and Section 4 concludes our 
work. 
 
 
2. ALGT Method 
 
2.1 The Step Function for Contrast 
Enhancement 

Let’s start the discussion about the 
Automatic Local Graylevel Transformation 
(ALGT) method by considering the local 
contrast measure defined by Gordon et al. 
[9] in which the local contrast at any pixel in 
the image is defined as    

| r - μ |GC = 
r + μ

                           (1) 

where r is the pixel’s graylevel value and μ 
is the mean or the median graylevel of a 
small neighborhood around the pixel. 
Essentially, the numerator of the expression 
given in (1) reflects the deviation of the 
pixel’s graylevel value from the mean value 
of the neighborhood μ. This deviation is 
normalized by the denominator (r + μ), thus 
contrast values are between 0 and 1, with 
higher values indicating higher contrast.  

Examining the Gordon definition for 
contrast implies that increasing the image 
contrast quantitatively requires pushing the 



pixel’s graylevel values away from the 
neighborhood mean μ. If a and b represent 
the minimum and maximum graylevel 
values in the neighborhood around pixel 
(x,y), respectively, then one way to increase 
the contrast could be by using the step 
function  

    S
 a  ,  a  r  μ

s = T (r)= 
 b  ,  μ  r  b 

≤ <⎧
⎨ ≤ ≤⎩

             (2)  

where s represents the new graylevel value.  
Effectively, this function maps the pixel 

value to the minimum value in the 
neighborhood if it is less than the mean 
graylevel value. Similarly, the pixel value is 
set to the maximum value if it is greater than 
or equal to the mean graylevel value. It can 
be easily seen that the distance between the 
enhanced graylevel s is always greater than 
the distance between the original graylevel r 
and graylevel mean μ. This implies higher 
numerical contrast values in the processed 
image. However, using the step function 
TS(r) to increase the image contrast is 
associated with a major problem. When the 
minimum and the maximum of the 
neighborhood are the only values used as the 
new graylevel values, this results in 
reduction in the number of graylevels that 
are available in the image. Consequently, 
this amplifies the noise and may distort the 
edges in the image [5].  
 
2.2 Derivation of the ALGT Method 

In order to take advantage of the 
simplicity of the step function in contrast 
enhancement and reduce the noise 
amplification and edge distortion, it is 
required to find a new smoother piecewise 
function that spans the entire interval (a,b). 
If TD(r) denotes such smooth function, then 
it should be simultaneously the closest to the 
step function TS(r) given in (2) and the 
identity transformation  

IT (r) r=                          (3) 
in order to provide graylevel stretching and 
at the same time reduces the change in the 
original image. Accordingly, the search is 
for a smooth function that has the optimal 

distance to both functions, TD(r) and TI(r), 
over the subintervals [a,μ] and [μ,b], 
separately. Mathematically, this can be 
formulated into a functional minimization 
problem with the objective function J(TD(r)) 
being defied as  

 l2 2 ' 2  D 1 D I 2 D
 l1

2
1 D S

J(T (r))  λ (T (r) - T (r)) + λ (T (r))  

                                  + (1-λ )(T (r) - T (r)) dr

= ∫ (4)  

where l1 and l2 correspond to a and μ, 
respectively, in the case when the graylevel 
r is less than the mean value μ, and when the 
graylevel r is greater than or equal to the 
mean graylevel, l1 and l2 are set to μ and b, 
respectively. The constant λ1 is a weighting 
factor that shows the preference of 
preserving original pixel value over pushing 
it to one of the neighborhood extremes. The 
value of λ1 falls in the range [0,1]. The 
term 2'

2 Dλ (T (r)) with D
'T (r)being the first 

derivative of the desired function and λ2 
being a constant that is added to the 
functional in (4) to allow for smoother 
transition between the step and the identity 
functions. The specification for the 
parameters λ1 and λ2 is discussed in the 
following subsection.  

In order to find the desired function, the 
objective function defined above has to be 
minimized such that the boundary conditions  

D i i i 1 2T (l ) l  ,  l {l , l }= ∀ ∈             (5) 
are satisfied for each subinterval. In calculus 
of variations, functional minimization can be 
carried out by utilizing the Euler-Lagrange 
equation  

'
D D

J d J  = 0
T dr T

⎛ ⎞∂ ∂
− ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

            (6) 

Substituting gives   

( )''
D D 1 x 1

2 2

1 1T (r) - T (r) = (1-λ ) l  - λ r
λ λ

     (7) 

with lx(r) is substituted by a or b depending 
on what subinterval the solution is carried 
out. This is a second order linear 
nonhomogenous differential equation. Using 
the undetermined coefficient method to  
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Figure 1: The effect of changing the parameters λ1 and λ2 on the ALGT transformation function. 

solve the equation in (7) gives the desired 
transformation function as 

D 1 2
2 2

1 x 1

r rT (r) = B  exp  + B  exp   
λ λ

                   +  (1-λ )l  + λ r

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠   (8) 

The constraints given in (5) can be used to 
find the values of the constants B1 and B2 as  

0.5
x 1 2 x

1 0.5
2 x

(l - μ)(1 - λ ) exp(2λ (μ - 2l ))B  = 
1 - exp(2λ (μ  - l ))

−

−     (9)  

and  
0.5

x 1 2
2 0.5

2 x

(μ - l )(1 - λ ) exp(λ μ )B  = 
1 - exp(2λ (μ  - l ))

−

−     (10) 

It can be easily verified that the function 
given in (8) with constants defined above 
satisfies the two essential requirements for 
graylevel transformation functions [1,2] in 
terms of being positive and monotonic. For 
example, in the subinterval [a,μ] the first 
derivative of transformation function is 
given by  

' 1
D

2 2

1
1

2 2

B rT (r) =  exp  - 
λ λ

B r                   exp   +  λ
λ λ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

     (11) 

Since 0 < a < μ, then from (9) and (10), the 
constant B1 is always positive while the 
constant B2 is always negative. Since λ1 is in 
a positive number in the range [0,1] by 
definition, this implies that the first 
derivative of the transformation function is 
always positive; thus the transformation 
function is monotonically increasing over 

[a,μ] for all values r. Additionally, we know 
from the derivation that that T(a) = a and 
T(μ) = μ, where both a and μ are positive, 
thus it implies that TD(r) is positive for all 
values of r in [a, μ] since it is monotonic.  
The same discussion applies for the 
transformation function defined over the 
subinterval [μ,b]. 
 
2.3 Parameters Specification 

An important issue in the ALGT 
transformation function is the specification 
of the parameters λ1 and λ2. One way to do 
so is to have the user input these two values 
based on prior knowledge of the image in 
hand. However, this specifies the same 
transformation function for each pixel in the 
image, regardless of its neighborhood, which 
in turn may amplify the noise and distort the 
edges in the image. Alternatively, the ALGT 
method defines these two parameters 
automatically such that the transformation 
function is adaptive to the content of the 
pixel’s neighborhood. This adaptive nature 
of the transformation function allows for the 
reduction of noise amplification in the 
output image.   

Let’s first study the effect of changing 
the parameters λ1 and λ2, respectively, on the 
shape of the ALGT transformation function. 
In the following discussion and for 
illustrative purposes only, the values for a 
and b are set to 0 and 20, respectively, and 
the mean value is assumed to be at the 
middle of the interval [a,b], thus the two 
parts of the transformation function are 



antisymmetric about the point (u,u). Figure 
1.a shows the behavior of the transformation 
function when λ2 is set to 1 and λ1 takes the 
values 0.1, 0.4, and 0.7. It can be noticed 
that the transformation function approaches 
the identity transformation TI(r) when λ1 is 
increased. Conversely, when λ1 is decreased, 
the transformation function is closer to the 
step function Ts(r). As seen in Figure 1.b, 
the same relation exists between the shape of 
the transformation and λ2 when λ1 is fixed to 
0.15 and λ2 takes the values 0.3, 3, and 10.  

Now, to make the transformation 
function adaptive to the neighborhood 
content, we utilize the local standard 
deviation of the pixel’s neighborhood in 
specifying λ1 and λ2. This is based on the 
fact that the standard deviation can be used 
as a measure of local contrast since it 
reflects the variations in the local graylevel 
values. Additionally, it is known that the 
details in the image correspond to low and 
medium values of standard deviation while 
high values may indicate noisy regions [10]. 
Thus in order to increase the image contrast 
with less noise amplification, the level of 
graylevel modification should be lower for 
regions with high standard deviation. Based 
on this and the understanding of the behavior 
of λ1 and λ2, the two parameters are defined 
as  

1
max

σλ  = 
σ

                        (12) 

and  
2λ  = σ                            (13) 

where σ is the standard deviation of pixel’s 
neighborhood and σmax is the maximum 
standard deviation of all neighborhoods in 
the original image. The two definitions of 
the parameters imply that they are directly 
proportional to local standard deviation. 
Consequently, the higher the local standard 
deviation, the closer is the transformation 
function to the identity transformation.  

Accordingly, the graylevel values for the 
pixels in noisy neighborhoods are less 
stretched from their original values. This in 
turn produces less noise amplification 

especially in smooth regions and around the 
edges. When σ is zero, this implies that the 
neighborhood contains only one level; thus 
there is no need to apply the transformation 
function for the pixel at the center of the 
neighborhood. Instead, the pixel value is 
kept unchanged. 
 

 
3. Performance Evaluation 

As discussed previously, the purpose of 
the ALGT and Matz methods is to sharpen 
the contrast of the image. Thus, it is assumed 
that either the image has a relatively good 
global contrast or it has been processed by 
some global enhancement method. For this 
reason, the performance evaluation of the 
ALGT and Matz methods assumes that the 
original images have been processed by the 
Constrained Variational Histogram 
Equalization (CVHE) method. The 
performance of the ALGT method is 
compared to the CVHE and Matz methods. 
The three methods are used to process 
512x512 images on a PC with Pentium® 
3GHz processor and 1 GB of RAM. The 
neighborhood size in the ALGT and Matz 
methods is set experimentally to 5x5. 
Choosing the size of the neighborhood is 
very important in the ALGT method since it 
determine the endpoint values for the 
interval [a,b]. Small neighborhoods may not 
capture the local variations, while large ones 
may introduce unnatural modification in the 
output image; though they may provide 
higher contrast values. For quantitative 
comparison, we use the Absolute Mean 
Brightness Error (AMBE)  

o pAMBE μ μ= −                (14) 
where µo and  µp are the mean brightness of 
the original and processed images, 
respectively, to measure the change in the 
image brightness. The AMBE measure is 
usually used to measure the distortion in the 
processed image when compare to the 
original [11]. To measure contrast 
enhancement, we used the discrete entropy 
(H) which is defined by  



Table I: Quantitative measures values for the test images after processing by the ALGT, CVHE, and Matz methods. 
 

 Lena Bottle Crowd 
Algorithm ΔH % AMBE ΔH % AMBE ΔH % AMBE 

ALGT 7.23 0.17 1.06 7.00 11.02 0.90 
CVHE 1.29 0.016 -5.29 6.95 -3.77 0.50 
Matz 5.40 0.94 0.22 8.46 5.20 2.13 

 
 

 
(a) Original 

 

 
(b) CVHE result 

 

 

 
(e) Close-up from CVHE result 

 
(f) Close-up from ALGT result 

 
(g) Close-up from Matz result  

(c) ALGT result 
 

(d) Matz result 
Figure 2: Results of the CVHE, ALGT, and Matz algorithms for image Lena. 
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k k k
k=0

H = h(r ) log h(r )    ,  h(r )  0∀ ≠∑    (15) 

where h(rk) is the normalized image 
histogram at the kth graylevel [12].  

We present here three examples using 
the images Lena, Bottle, and Crowd images. 
The originals and the processing results for 
these images are shown in figures 2 through 
4. Comparing the results of the ALGT and 
Matz methods reveals their capability of 
providing sharper images than the CVHE 
image. However, when Matz method is 
compared to the ALGT method, it is obvious 
that the sharpness of the ALGT images is 
better. Additionally, the ALGT method 
produces less noise amplification. This can 
be noticed by comparing the visual quality 
of images locally. The images in parts (e), 
(f), and (g) of each figure show a region that 
has been extracted from the CVHE, ALGT, 

and Matz images, respectively. It is apparent 
that the ALGT method has better contrast 
and edge quality than the CVHE and Matz 
methods and with less noise amplification in 
the smooth regions.  

Quantitatively, the AMBE and the 
change in the entropy values for the two 
images are listed in Table I. In terms of 
contrast, Matz and ALGT methods have 
increased the entropy (H) which verifies the 
increase in the visual appearance of image 
details in both cases. However, the increase 
in entropy values in the ALGT method was 
larger. This was not the case for the CVHE 
method. This is because the CVHE method 
is applied globally, thus it results in 
mergence between the histogram bins, which 
in turn reduces the entropy.  

 For the distortion measure, the AMBE 
values for the ALGT method always fall 
between the values of CVHE and 

   



 
(a) Original 

 
(b) CVHE result 

 

 
(e) Close-up from CVHE result 

 
(f) Close-up from ALGT result 

 
(g) Close-up from Matz result  

(c) ALGT result 
 

(d) Matz result 
Figure 3: Results of the CVHE, ALGT, and Matz methods for image Bottle. 

 
and Matz methods. This is acceptable since 
there is significant improvement in the 
perceived contrast. Matz method has the 
highest distortion values due to noise 
amplification and the absence of any 
mechanism to control the change in the 
image outlook. In the ALGT method, the 
parameter λ1 help reducing the change in the 
image.  

On overall, combining the increase in the 
perceived contrast and the quantitative 
measures values for the ALGT method 
proves its ability of sharpening the image 
contrast with less noise amplification. 

The average processing time for using 
the CVHE, Matz, and ALGT methods is 
0.94, 9.33, and 16.29 seconds, respectively. 
The CVHE method has the lowest value 
since it is applied globally. Conversely, the 
other two methods are associated with an 
increase in the computation time since they 
are applied locally. The additional 
computation time required in the ALGT 
method is related to the computation of the 
minimum, maximum, and standard deviation 

for the neighborhood around each pixel in 
the image. 
 
  
4. Conclusion 

This paper discussed the development, 
implementation, and evaluation of the 
Adaptive Local Graylevel Transformation 
(ALGT) method. The rationale behind 
ALGT method is to sharpen the contrast of 
images that have relatively high global 
contrast or those images that have been 
processed by some global enhancement 
method. The ALGT method achieves this by 
stretching the local graylevel values using a 
transformation function that automatically 
adapts to the contents around each pixel in 
the image. This approach proves the ability 
of the ALGT method of sharpening the 
image contrast with less noise amplification 
and edge distortion. Generally, the ALGT 
method can be applied as a post 
enhancement step for images processed by 
some global methods in order to obtain 
sharper contrast.    

 
   



 
(a) Original 

 
(b) CVHE Result 

 

 
(e) Close-up from CVHE result 

 
(f) Close-up from ALGT result 

 
(g) Close-up from Matz Result  

(c) ALGT Result 
 

(d) Matz Result 
Figure 4: Results of the CVHE, ALGT, and Matz methods for image Crowd. 
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