
A Function/Artifact and Time/Incident Model of Complex
Information Systems and its Application to Weakness Discovery

Michal Wosko
Brandenburg University of Technology Cottbus, Germany

wosko@tu-cottbus.de

ABSTRACT
The Author assumes as a starting point well-known assumptions on needs and weaknesses of complex
business information systems. Treated as services – like in modern SOA design patterns – they are
increasingly being equipped with various dependability-assuring mechanisms, but still – in the Author's
view – many concrete architectures and implementations of these solutions have historically been much
more an afterthought than a design-phase choice, with all disadvantageous consequences of this fact.
Notably very common modular architectures did not wholly take advantage of undergoing research on
dependability. An alternative to this patchwork solution should be a consistent methodology-based design
procedure, whose objectives are first given in this work, to be then shown in a formal function-artifact and
time-incident (FA/TI) model. The usefulness of this approach is then tested against a well-known problem
(dependability and partial survivability of a realistically complex system - a modular, web-accessed, 4-tier
business information system) and optimization strategies for such a system are proposed.

Key words: dependability in business information systems, 4-tier modular architecture, dependability
through methodological design, function-artifact and time-incident model, generic model/metamodel

1. Introduction
Modern business information systems tend to be
increasingly complex, and this complexity on
one hand is a response to ever growing demand
for completeness in information processing and
resulting integration of so-far detached services,
on the other – brings about problems in design
and maintenance, that were unknown in the
previous era of simple, isolated software. For a
relatively long time now, design of complex
systems has been brought away from the naive
or romantic phase of a 100% suited to the needs
of the current project, started from scratch
modeling and development approach, also in
response to the mentioned fact, that integration
of functions available in preexisting systems was
the main cause of such development (and, of
course, most of the time this could be easier and
cheaper achieved just bridging these preexisting
systems, instead of building new ones). Thus,
whatever historically the motivation was, either
integration of existing heterogeneous
infrastructure, or building new complex systems,
modularity has been around for a while, as a
very successful way of confronting complexity
in design.
While this has obviously been a very successful

approach to design problems, it failed to address
the second issue – that of maintenance of a
living system, in other words – assuring its
dependability in real-life conditions. Modularity
makes it easier to manage complexity, but alone
it does not assure more dependability, it rather
creates new potential points of failure, like in the
obvious case, when a whole loosely coupled
software system cannot reliably perform its
function because of a failure in communications
between its parts (as opposed to unitary or
tightly coupled systems that do not have to rely
on such “risky” communication channels). But
there are many more cases, in which this holds
true.
Of all the knowledge on dependable systems,
notably in the most commonly used architectures
of business information systems, like the 4-tier
web-accessed pattern, historically very little has
been apparently used at design time, in other
words it was generally not a design-time
concern, but rather an afterthought, provoked by
failures and performance bottlenecks in already
working systems, to build in some mechanisms
increasing dependability, and this patchwork was
done for the some of most obvious elements with
little consistency and without any solid

mailto:michal.wosko@dris

methodological basis.
This paper tries to address these shortcomings.

2. Case study object
We will consider a well-known design of a web-
accessed business information system, i.e. a
standard 4-tier architecture with a web tier
(layer) accepting user requests and presenting
results (presentation layer), a business logic
layer processing those requests with the use of
data stored in an underlying database (database
layer), these data being retrieved through a
standardized persistence API (persistence layer),
but also possibly cached in the business logic
layer (when sensible, for instance from a
performance-oriented point of view). See Fig.
2.1 for a general model.

Fig. 2.1. General model of a 4-tier modular
information system: such a system is an

aggregation of (in this case) 4 layers, and the
well-known, named layers above extend

(triangle-like operator) an (abstract, thus italic)
layer, which itself is a model

3. The focus in the bigger picture
Avizienis et al. [1] substantially defined
dependability of a system as a threefold set (see
Fig. 3.1):

1. attributes, for assessing dependability of
the system

2. means of achieving or increasing
dependability

3. threats that are posed to the system, that
can disrupt its service.

Fig. 3.1. Dependability tree as seen by Avizienis
et al. [1]

In this paper only design-time and not runtime
concerns are dealt with, without the ambition of
ultimate completeness in respect to the given
dependability taxonomy, but with the precise
goal of achieving a firm base for a strictly
methodological design, applied to a class of
systems that the previous section described in
further detail.
Given that, the objective of the proposed
methodology is to achieve or increase - at design
phase - integrity and through it - availability,
reliability and safety (absence of catastrophic
failures from the user's point of view) of this
class of systems; confidentiality and
maintainability are essentially left for future
research (although all of them, including some
aspects of maintainability, are also design and
not necessarily runtime concerns).
Similarly, this approach situates itself, in the
author's opinion, in the area of such means as
fault prevention and tolerance; active removal
and forecasting are equally left for future
research. Once again, rigorous methodological
design of a class of systems is given precedence
over completeness.

4. The tools
Throughout this paper the generic modeling
approach will be used [2], as it provides an
abstraction over UML-like modeling and thus
allows for unprecedented flexibility. This was
the choice, because entire information systems,
subsystems and functional units can hardly be
represented as “classes”, and generic modeling
permits to design relationships between entire
models (not just classes and objects like a UML
class diagram; UML itself is a specific modeling
pattern applied to a domain, which can be

recreated with this metamodeling tool). First a
metamodel can be created, from which different
domain models can be derived. For this approach
a generic modeling environment (GME, [3])
with a feature-rich GUI is provided.
Note that in metamodeling some well-known
concepts, like aggregation or inheritance
hierarchy, are also supported not only for
(object) classes like in UML, but also for every
entity type, including entire (sub-)models (and
that was the reason to adopt metamodeling in the
first place), but these abstractions are sometimes
rendered graphically in GME in a slightly
different way (see Figure 4.1). Compositions are
“simplified” to aggregations with 1..1
cardinality; stereotypes are not user-definable,
and for entity relationships that are not
aggregations nor inheritance a construct is
provided with connectors, having source,
destination and an association “class”
(metamodeling stereotype “connection”, see
Figure 4.1 on how an, in this case abstract,
communication channel connects different layers
in a system using layered modular architecture;
this is also relevant for the further steps in the
model).

Fig. 4.1. Connections as association “classes” -
layers associated by communication channels

5. Towards a formally rigorous
model of a modular layered system
A modular layered information system as
outlined in section 3 can be modeled as an
aggregation of simpler systems (layers), that:

− do not have autonomous roles/functions
− are mutually dependent (one layer

normally requires input and sends output
to both neighboring layers)

− are connected with communication
channels

− rely on these channels in their
processing roles.

Figure 5.1. summarizes this.

5.1. A superposition of complex system, its
layers and communication channels

Thus, as first conclusion, this class of systems is
only then dependable (see attributes in section 2
and [1]), if all of its layers (functional modules)
and at least one communication channel
between each pair of neighboring layers are
constantly dependable (strong dependability). A
weaker property such as availability would
analogously be defined as follows: a system of
this class is only available in the time, when all
of its layers and at least one communication
channel between each pair of neighboring layers
are available, and have been available and will
continue to be available for the time necessary
for all the processing and communication acts
that are needed for a once started transaction to
complete (intermittent availability that does not
allow to complete a sensible transaction, for
which such systems are designed, can hardly be
considered “availability”).
To see it in the whole picture, the introduction of
new meta-entities is needed: the function-artifact
and time-incident model will be constructed
now.

5.1. The functional meta-entities
At the end of main section 5 it was mentioned,
that even an intermittently available system has
to allow to complete sensible transactions. A
transaction is a model, that encompasses
multiple elementary functions; these are
associated by a special metamodeling construct
(a metamodeling equivalent of a user-defined
stereotype, here – HasFunction) to functional (or
processing) artifacts. This can be formally put as
in Figure 5.2.

Fig. 5.2. Transactions as complex models,
containing multiple functions

Formally, processing artifacts extend an abstract
artifact entity, that is also the base type of the
artifact carrying the communication
(CommunicationChannels). See Figure 5.3.

Fig. 5.3. The artifact hierarchy: the abstract
entity type Artifact is an FCO – a so called First
Class Object, a metamodeling construct meant to

be extended by entity types of different kinds
(here: Atom and Connection)

Whereas communication channel artifacts
connect layers, the processing artifacts – that can
be mapped directly to functional units of a
generic business information system of the here
discussed class (see Figure 5.4.) - are obviously
also distributed in the different layers. This way
a formally rigorous model of the system's
functional units and their distribution is achieved
as a first important step (see Figures 5.5. and
5.6.).
This model will be complete and fully functional
once dependability-related meta-entities are
added.

5.2. Dependability concepts and related
entities in the metamodel
Following [1], the threat part of dependability
tree (see Figure 3.1 for a reminder) can be
modeled as well in a GME-like pattern
(separately from the rest of the model for now, a

way to incorporate it in the system-layer-artifact-
function model has yet to be devised). Figure
5.7. shows this.

Fig. 5.4. The processing artifact, implemented by
typical functional units of a generic business

information system; some elements are omitted
for simplicity; note that at this level every

functional unit, that in reality is a subsystem, is
considered elementary (atomic), because it is

atomic from the viewpoint of a user transaction

Fig. 5.5. Associations system-layers-artifacts

The next step is to link this set of associated
“classes” representing threats to a fully generic
system to the metamodel of our canonical
layered system, constructed throughout this
paper.
One very direct way of doing this (and arguably
the best) is to associate failures, that are explicit,
active and perceivable in nature, to artifacts (of
any kind, thus to the abstract artifact “class”).
Thus a failure will affect an artifact, but since
there are circumstances related to this, most
notably the time and duration when a failure is
perceivable, a mediating entity in form of a
timed incident is introduced (see Figure 5.8.).

Fig. 5.6. Distribution of functional units
(processing artifacts) in layers of a canonic 4-tier

system (above)

Fig. 5.7. The threat part of the dependability tree
from Figure 3.1., remodeled in GME, following
the relationships between concepts of fault, error
and failure as assumed per definitions made in
[1]; note that only a few attributes of faults are

listed for simplicity's sake

Figure 5.8. The link subsystem/artifact to failure;
a failure can affect an artifact of any kind

through a timed incident mediator; this entity
describes time of occurrence and duration (and
possibly other circumstances) through simple

attributes and contains a reference to the affected
artifact

The missing link is found, and the layered
system artifact-function model can now be used
to design new dependable systems or put
existing ones to proof, as soon as mappings of
functional units are performed.

5.3. Practical uses of the model
Let us say that a concrete system of the
examined class has a clustered business logic
container, redundant web servers and a
replicated database. Thus such a system appears

not to have a single point of failure and to be
strongly dependable. But this is only true, if the
persistence provider middleware is integrated in
the clustered container and thus clustered itself
(an incident can take out any atomic processing
artifact). Furthermore, if the layers are connected
by single or commonly managed communication
channels, each of these channels can be a single
point of failure of the system (channels are
artifacts and are affected by incidents). Now we
see these also otherwise known facts reflected in
a formal model. But some dependability aspects
are only clear in the model, let us take a look at
some examples.
For a layered system to be safe as per definition
of safety in [1], survivability has to be
“generally” assured [4]. But layers “closer” to
the end user do not need to be strongly
dependable, i.e. processing artifacts need not be
replicated and the channels highly available, as
safety is a concept applicable to persistent data
(client input validation, result presentation
through HTML and even business logic can fail
at times). Yet such a system must at least
implement transactional availability, meaning
basically that the user has to be able to retrieve
and manipulate data in a sensible way. Looking
at the function-artifact and time-incident model,
we can now formally require (and verify) that
such a system has either sufficiently available
functional units connected by alike
communication channels, or implements
replicated patterns for those artifacts, processing
and communication related ones, that are likely
to fail. The whole path of a data flow through the
layers has to survive for the time necessary for
all the processing artifacts to generate output
information basing on input and for all the
needed communication acts in between, or the
artifacts likely to crash or produce errors have to
be redundant. Communication can be repeated or
take place on different channels in parallel,
processing can be done in parallel or reassigned
to one of the redundant artifacts. No matter the
layer, parallel processing or communication can
always be done but will always come at cost not
only of physical resources but also of time (a
mechanism is needed to agree upon results and
the protocol used will be a time-based one),
reassignment will always cause a delay greater
in magnitude.
Once some – really few, realistically descriptive
– attributes are known in a complex layered

system, an application of the discussed model
can be done, to simulate timed incidents and thus
investigate the dependability of the system.
Let us say, we have to deal with an enterprise
portal, SSO-enabled, AJAX-like web-interface,
with manipulative business logic implemented
through Enterprise Java Beans of various kinds,
relying on container services and Java
Persistence API to access a Relational Database
System. Let us say furthermore that the business
logic container is a clustered JBoss Application
Server accessing a replicated Oracle Database.
In every JBoss instance, modified database
records can be cached, until there is a
programmatic or automatic workflow requiring a
commit or refresh from the database, thus even
intermittent failures of the Database atom will
not affect the survivability of the system. This
includes primarily failures in communication
with the database: if this artifact becomes
unavailable despite of replication or inconsistent,
the system as a whole cannot be considered
dependable.
Let us consider more interesting cases. The new
versions of the JBoss Application Server come
with clustering support out-of-the box: multiple
instances started on the same LAN will
automatically form a cluster, that provides (like
every instance inside it) services associated with
three layers: server-side presentation layer,
business logic and persistence provider tiers [7].
This system appears to be strongly dependable.
But this dependability will still be a function of
the dependability of the single artifacts, and
which ones or which combination of them are
particularly sensible is a question that the
proposed FA/TI model can help to answer in a
formal, rigorous and complete way. Moreover,
we can study the real system's weak points, even
without engaging a real enterprise portal using
the aforementioned technologies. Only
architectural details and parameters will suffice.
That is because the model allows us to design
and then instantiate a mock system, that exactly
reflects the behavior of the original system
(provided that the exact parameters are
available). Let us see how.
All local JBoss instances extend the
ProcessingArtifact atomic entity type,
implementing all the flavors of: Webserver,
BusinessLogicContainer and Persistence-
Provider specialized entities at the same time.
Thus, there are no explicit/external

communication channels between these layers
inside the instances, so any incident affecting an
atomic instance will make it fail completely (not
just one layer). In case a central web serving
proxy (like for instance, to increase throughput
with static HTML-code) is used, this is not true
anymore, and an incident can make this part of
the presentation layer fail separately, or another
can affect the communication of the proxy with
the “deeper” layers. All of this, including
MTBFs, recovery times and other attributes can
be modeled with FA/TI and simulated with a
mock instance.
Between the application server's instances there
are four channels [7]: web session replication
service, EJB3 stateful session beans replication
service, EJB3 entity caching service and a core
service named HAPartition (high availability
partition). All of them rely on multiple TCP and
UDP network protocols simultaneously. A timed
incident taking out one or more instances, as
long as one is left and reachable, will not make
the cluster and thus the whole system fail. Not
even client session data will be lost, thus for
example once supplied credentials through
single-sign-on will remain valid, nor will
transactions be rolled back. But FA/TI with
properly estimated parameters can still show, if
and how the responsiveness of the system will be
decreased, and what will happen, if a
combination of incidents affecting processing
artifacts (here: JBoss instances) and their
communication channels occurs.

6. Conclusions and future work
At the heart of the presented work lies a formal
model, linking classical modular layered
business information systems architecture and
the dependability concept of threats (the link is
implemented through timed incidents affecting
atomic functional artifacts). Through this
formalism, design of new systems and screening
of existing ones can proceed by means of
integrating identified threats as formal design-
time entities (not as something “alien” to the
system itself). Also, based on this model, not
only dependable systems with different attributes
(different requirements for different layers) can
be designed, but also a software system can be
implemented to test – in a JUnit-like [8] way –
response to simulated timed incidents. In section
5.2. only the threat part of the dependability tree
([1], Figure 3.1.) was remodeled using a

metamodeling pattern; attributes and means were
omitted. Notably, attributes like maintainability
and confidentiality were left out altogether. A
full model should incorporate both: possibly all
attributes as a formal requirement entity type,
associated with means formally represented by a
strategy entity type. For instance, the model
lacks the integration of watchdog (failure
detection) and failure correction (task
reassignment) entities.

References:

[1] A. Avizienis, J.-C. Laprie and B. Randell:
“Fundamental Concepts of Dependability",
Research Report No 1145, LAAS-CNRS, April
2001, http://www.cert.org/research/isw/isw2000/
papers/56.pdf

[2] A. Ledeczi, M. Maroti, and P. Volgyesi, “The
Generic Modeling Environment – Technical
Report”, Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN,
37221, USA

[3] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai,
J. Garrett, Ch. Thomason, G. Nordstrom, J.
Sprinkle and P. Volgyesi: “The Generic
Modeling Environment”, Proceedings of
WISP'2001, Budapest, Hungary, May, 2001

[4] Knight J.C., Strunk E.A., Sullivan K.J.:
“Towards a Rigorous Definition of Information
System Survivability”,
http://www.cs.virginia.edu/papers/discex.2003.p
df

[5] Randell B., "Software Dependability: A
Personal View", in the Proc. of the 25th
International Symposium on Fault-Tolerant
Computing (FTCS-25), California, USA, pp 35-
41, June 1995

[6] A. Avizienis, J.-C. Laprie and B. Randell,
Landwehr C.: "Basic Concepts and Taxonomy of
Dependable and Secure Computing," IEEE
Transactions on Dependable and Secure
Computing, vol.1, pp. 11-33, 2004

[7] B. Stansberry, G. Zamarreno: “JBoss
Application Server Clustering Guide”,
http://www.jboss.org/file-
access/default/members/jbossas/freezone/docs/C

lustering_Guide/4/html/index.html

[8] JUnit framework: www.junit.org

