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ABSTRACT 
The paper proposed a new methodology for Hopfield and Kohonen neural networks based on 
systolic array structure. The method proposed is based on pipelined systolic arrays – an 
example of SIMD architecture. The discussion is realized based on operations which create 
the following steps of learning and retrieving algorithms. The data which are transferred 
among the calculation units are the second criterion of the problem. The results of discussion 
show that it is possible to create the universal structure to implement all algorithms related to 
Hopfield as well as for Kohonen neural network. The dependability features of the proposed 
methodology are focused to FTC – necessary calculations can be done using reduced number 
of elementary processors. The approach can be also easily adopted for other recurrent neural 
nets – as Hamming neural net for example. 
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1. Introduction 
The paper is focused on the method of 
implementation of Hopfield and Kohonen  
neural network algorithms using pipelined 
systolic arrays – an example of SIMD 
architecture. The main assumption is about 
partial parallel realisation of learning 
algorithms as well as retrieving phase 
using the same processing structure. The 
proposed methodology creates the 
theoretical basis for hardware realisation of 
Hopfield and Kohonen neural networks 
and could easily adopted for other 
recurrent nets. The methodology is 
discussed based on the following 
assumptions: 
- the outcome of algorithms realized true 

to proposed methodology is exactly the 
same like the outcome of classical 
neural network algorithms, 

- the proposed methodology allows to 
create a universal structure both for 
learning algorithms and retrieving phase 
of defined type of the neural network, 

- the systolic structure is realized using 
only digital elements, input and output 
data are represented in binary code, 

- the number of neurons which create the 
net is unrestricted, but the maximum 

number of elementary processors can be 
limited – as a flexible reaction for 
failures. 

 
2. Hopfield neural network 

algorithms 
The binary Hopfield net has a single layer 
of processing elements, which are fully 
interconnected - each neuron is connected 
to every other unit. Each interconnection 
has an associated weight: wji is the weight 
to unit j from unit i. In Hopfield network, 
the weight wij  and wji  has the same value. 
Mathematical analysis has shown that 
when this equality is true, the network is 
able to converge. The inputs are assumed 
to take only two values: 1 and 0. The 
network has N nodes containing hard 
limiting nonlinearities. The output of node 
i is fed back to node j via connection 
weight wij. 
 
2.1 Retrieving phase 
During the retrieving algorithm each 
neuron performs the following two steps 
[8]: 
- computes the coproduct: 
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wpj - weight related to feedback signal, 
vi(k) - feedback signal, Θp - bias 
- updates the state: 
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The process is repeated for the next 
iteration until convergence, which occurs 
when none of the elements changes state 
during any iteration. The initial an the end 
conditions for the iteration procedure 
require the following equations: 
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2.2 Hebbian learning algorithm 
The training patterns are presented one by 
one in a fixed time interval. During this 
interval, each input data is communicated 
to its neighbour N times: 
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M - number of training vectors 
 
2.3 Delta-rule learning algorithm 
The weights are calculated in recurrent 
way including all training patterns, 
according to the following matrix 
equation: 
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η ∈ [0,7, 0,9] - learning rate, N - number 
of neurons, W - matrix of weights, x - input 
vector 
The learning process stops when the next 
training step generates the changes of 
weights which are less then the established 
tolerance ε. 
 
3. Systolic arrays for Hopfield 

neural network 
Systolic arrays are prepared based on 
proper Data Dependence Graphs - directed 
graphs that specify the data dependencies 
of algorithms. In a Data Dependence 
Graph nodes represent computations and 
arcs specify the data dependencies between 
computations. 

3.1 Idea of systolic array for Hebbian 
learning algorithm 

Each node in Data Dependence Graph for 
Hebbian training algorithm multiplies two 
of corresponding input signals xi and 
obtains this way the weight wij which is 
stored in local memory unit. So it realizes 
three operations. Each elementary 
processor is responsible for these three 
operations. The input signals xi are passed 
to the nearest bottom neighbours and the 
neighbours on the right hand (Fig.1). 
 
3.2 Idea of systolic array for Delta-rule 

learning algorithm 
The Data Dependence Graph for Delta-rule 
training algorithm we can divide into two 
parts: Relation Graph Gr and Value Graph 
Gw. Each node which belongs to Gr 
multiplies a corresponding input signal xi  
and weight value wij, then it subtracts the 
multiplication result from the input signal 
xi. Each node in the Gw part of the Data 
Dependence Graph is responsible for three 
operations. During the first operation the 
node multiplies the corresponding result 
obtained at the end of the calculations 
related to the Gr part of the Data 
Dependence Graph and the input signal xi. 
During the second operation each node 
multiplies the obtained values and the 
fraction: learning rate/number of neurons. 
At the end the values of weights are 
upgraded. This way the weights are 
obtained and next they are stored in local 
memory unit. The input signals xi are 
passed to the nearest bottom neighbours 
[3]. Operations described by Relation 
Graph Gr and Value Graph Gw ought to be 
realized in sequence – so processor 
executes five basic operations. (Fig. 2). 
 
3.3 Idea of systolic array for retrieving 

algorithm 
Each node in Data Dependence Graph for 
retrieving algorithm multiplies the input 
signal xi or feedback signals vi and 
corresponding weight wij which is stored in 
local memory unit. The product of 
multiplication is passed to the nearest 
neighbour on the right hand (two basic 
operations). The ϕi nodes collect the partial 



Fig. 1. Idea of systolic array for Hebbian 
learning algorithm 

 

 
 
Fig. 2. Idea of systolic array for Delta-rule 

learning algorithm 

 
Fig. 3. Idea of systolic array for retrieving algorithm 



 
products and calculate the global value of 
coproduct. The last nodes on the right are 
the comparators to check if the next 
iteration is necessary. (Fig. 3). 
 
4. Efficiency of systolic arrays for 

Hopfield neural network 
 
4.1 Computation time and Block period 
This is time between starting the first 
computation and finishing the last 
computation of problem. Given a coprime 
schedule vector 

r
s , the computation time 

equals [3], [11]: 
 

( ){ } 1max
,

+−=
∈

qpsT T

Lqp

rrr
rr

 (6) 

L - is the index set of the nodes in the Data 
Dependence Graph 
Block Period is time interval between the 
initiation of two successive blocks of 
operations [3], [11]. In the presented 
architectures for all algorithms the 
schedule vector is defined as: [ ]r

s = 1 1, . For 
Hebbian training implementation - taking 
number of basic operations into account - 
we can calculate the computation time and 
block period as: 
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In fact the Data Dependence Graph for this 
algorithm is combined by two independent 
structures of operations. The computation 
time for both parts of algorithm isn’t the 
same because the number of basic 
operations is different, number of nodes 
and the topology of them is the same. 
Additionally the estimated computation 
time ought to be modified by number of 
iterations related to single training pattern: 
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τ - processing time for elementary 
processor, M - number of training patterns, 

β - number of iterations for single training 
pattern, K - number of elementary 
processors. 

The retrieving algorithm also requires 
multiple presentation of each pattern but 
single retrieving procedure doesn’t require 
all patterns at the same time. The 
computation time we can describe using 
the following equations: 
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In all equations we can find parameter 
denoted as K – the number of elementary 
processors. This way the FTC parameter of 
the structure can be discussed. The 
definition of SIMD architecture guarantees 
the unique construction and function of 
processors – so if we can observe the 
changes of efficiency parameters related to 
the number of used processors we can say 
a lot of the results of the failures. But we 
have to remember that using only single 
processor it is possible to realize the whole 
calculation process. Of course the 
efficiency parameters will be very poor, 
but the structure is still working. 
 
4.2 Pipelining period 
This is the time interval between two 
successive computations in a processor. As 
previously discussed, if both 

r
d  and 

r
s  are 

irreducible, then the pipelining period 
equals: α =

r r
s dT  (10) 

The pipelining period is the same for all 
algorithms - equals: α = 1 - is as short as 
possible [3]. 
 
4.3 Speed-up and Utilization rate 
Lets define the speed-up factor as the ratio 
between the sequential computation time 
Tseq and the array computation time Tsystol 
and the utilization rate as the ratio between 
the speed-up factor and the number of 
processors [3]. 
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Sequential computation time for Hopfield 
neural network algorithms – taking number 
of neurons, number of weights and number 
of basic operations into account - equals: 
- for Hebbian learning: 

MNTseq τ23=  (12) 

- for Delta-rule learning: 
βτ MNTseq

25=  (13) 

- for retrieving algorithm: 
( ) βτ22 += NNTseq  (14) 

Based on values of array computation time 
calculated in chapter 4.1. we can evaluate: 
- for Hebbian learning: 
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- for Delta-rule learning: 
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- for retrieving algorithm: 
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This classical parameters calculated for 
presented architecture are also related to 
the number of active processors. We can 
model the speed-up and utilization rate in 
function of not-failed processors – we can 
control the efficiency in case of FTC 
features of proposed architecture. 
 
5. Kohonen neural network 

algorithms 
 
5.1 Learning algorithm 
The learning algorithm is based on the 
Grossberg rule [5] [6]. All weights are 
modified according to the following 
equation: (18) 
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k - iteration index, η - learning rate 
function, xl - component of input learning 
vector, wlij - weight associated with 
connection from component of input 
learning vector xl and neuron indexed by 

(i,j), Λ - neighborhood function, (iw ,jw) - 
indexes related to winner neuron, (i, j) - 
indexes related to single neuron from 
Kohonen map. 
The learning rate η we assume as a linear 
decreasing function. Learning rate function 
is responsible for the number of iterations - 
it marks the end of learning process. The 
presented solution is based on the 
following description of the neighborhood 
function [1]: 
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a - neighborhood parameter, r - distance 
from winner neuron to each single neuron 
from Kohonen map, calculated by indexes 
of neurons as follow: (20) 

The learning procedure is iterative: 
weights are initialized by random values; 
position of winner neuron for each learning 
vector is calculated by ordinary Kohonen 
retrieving algorithm using random values 
of weights; weights are modified using 
Grossberg rule (18); the learning rate is 
modified, the neighborhood parameter a 
(19) is modified and if the learning rate is 
greater than zero weights are modified by 
the next learning vector, else the learning 
algorithm stops [7]. 
 
5.2 Retrieving algorithm 
During the retrieving phase the Euclidean 
distance: the weights vector and the output 
vector is calculated. The winner neuron is 
characterized by the shortest distance [6] 
[7]. Each neuron from Kohonen map 
calculates the output value according to the 
classical weighted sum: 
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Out(i, j) - output value calculated by single 
neuron of Kohonen map indexed by (i, j) 
 
6. Data Dependence Graphs for 

Kohonen neural network 
 
6.1 Kohonen learning algorithm 
For 1-D Kohonen map neurons are placed 
is single line, each neuron has two 

22 )()( jjiir ww −+−=



neighbors, excluding neurons at the ends 
of line. For such topology there are (N × K) 
weights if we assumed N-element input 
vector and K neurons which create the 
Kohonen map. 1-D Kohonen map ought to 
be described by rectangular Data 
Dependence Graph (Fig. 6.). Each node of 
the graph is responsible for single weight 
calculation. using Grossberg rule (18) 
(Fig. 4.). The current value of the weight is 
stored in the local memory of each node. 
The node decreases the learning rate in 
automatic way. The size of the graph 
equals to the size of the weight matrix. 
Each node of the graph is loaded by two 
signals. The neighborhood function is 
calculated using sinus function. We 
propose to place the values of sinus in a 
table and store them in a local memory of 
each node. The neighborhood parameter a 
(19) is also stored in the local memory and 
is sequential reduced by negative counter. 
 
6.2 Kohonen retrieving algorithm 
1-D Kohonen map is described by 
rectangular Data Dependence Graph 
(Fig. 7.). Each node of the graph calculates 
the component of the weighted sum (21) 
(Fig. 5.). The necessary weight value is 
stored in a local memory of the node. The 
size of the graph equals to the size of the 
weight matrix. 
 

 
Fig. 4. Single node of Data Dependence 

Graph for learning algorithm 
 
 
 
 

 
Fig. 5. Single node of Data Dependence 

Graph for retrieving algorithm 
 

 
Fig. 6. Data Dependence Graph for 
learning algorithm of Kohonen map 

 
Fig. 7. Data Dependence Graph for 

retrieving algorithm of Kohonen map 
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7. Mapping Data Dependence 
Graphs onto systolic array 

The Data Dependence Graphs for 
retrieving and learning algorithms are local 
and composed by the same number of 
nodes. The single neuron operations are 
described by the column of the graph [7]. 
Multi-dimensional Kohonen map is 
described by the set of 1-D Data 
Dependence Graphs (Fig. 6.) (Fig. 7.). It 
means that the slabs work in parallel [1] 
[7]. The graphs can be converted to an 
universal structure able to implement 
learning algorithm as well as retrieving 
algorithm using processors with switched 
functions (Fig. 8.) [3] [1]. The systolic 
arrays are the result of the linear projection 
of Data Dependence Graphs onto lattice of 
points, known as processor space. The 
elementary processor combines operations 
described by nodes taken from single 
vertical line of the graph [11]. 
 

 
Fig. 8. Systolic array for learning 

algorithm of Kohonen neural network 
 
8. Efficiency of approach proposed 

for Kohonen neural network 
An efficiency of proposed approach is 
estimated using the algorithm proposed by 
Kung [3] and modified for MANTRA 
computer analysis [11]. The estimation is 
based on the dimensions and organization 
of the Data Dependence Graphs. A 
computation time for retrieving algorithm 
equals: 

τ)KN(T 1−+=  (22) 

τ - processing time for elementary 
processor. 

The computation time for learning 
algorithm: 

ητM)KN(T 1−+=  (23) 
 
M - number of learning vectors. 
Speed-up and processor utilization rate are 
exactly the same for retrieving and 
learning algorithms - assuming possible 
sequential computation time: (24) 
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9. Conclusion 
The comparison of the same criteria for 
two methods of learning is the most 
interesting part. Computation Time - if we 
assume single presentation of each training 
vector - is less then two times longer for 
Delta-rule learning. Of course such 
assumption is true for Hebbian learning but 
isn’t in general true for Delta-rule. Each 
next presentation of training set makes the 
Computation Time longer and the 
dependence is directly proportional. 
It is very interesting we can observe 
exactly the same Speed-Up and Processor 
Utilization Rate both for Hebbian and 
Delta-rule learning procedures. The 
necessary time-period for calculation of 
Delta-rule procedure is longer than time-
period related to Hebbian learning - but 
elementary processors’ using is the same. 
The results of discussion show that it is 
possible to create the universal structure to 
implement all algorithms related to 
Hopfield neural network. This way there 
are no barriers to tune the Hopfield net to 
completely new tasks. The proposed 
methodology can be used as a basis for 
VLSI structures which implement Hopfield 
net or as a basis for set of general purpose 
processors – as transputers or DSP. 
Proposed methodology for Kohonen neural 
is based on classical and not modified 
algorithms related to Kohonen maps. It is 
possible to realize the obtained subtasks by 
software processes, but also using 
dedicated neuro-computers like MANTRA 
[11]. 
 

 
 



Table 1. Efficiency parameters for ring systolic structure related to Hopfield neural 
network algorithms – possible minimum and maximum values 
 

 Learning Retrieving 
 Hebbian rule Delta-rule phase 

Computation time 
Tsystol  (min) / (max) 

( ) MN τ123 − /

MN τ23  

( ) βτ MN 125 − /

βτMN 25  

( ) βτ122 +N /
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Utilization rate 
(min) / (max) 

N

N2 1−
 / 1 

N

N2 1−
 / 1 

N

N

+
+
2

2 1
 / 1 

 
τ - processing time for elementary processor,  M - number of training patterns, 
β - number of iterations for single training pattern,  N - number of neurons 

 
The minimum values of the efficiency 
parameters are calculated for the proposed 
structure with single available (not-failed) 
processor. The maximum values are 
related to the optimal number of used 
processors. This way it is possible to 
observe the changes of the values as a 
function of ready to use elementary 
processors. We can model the influence of 
the decrease of the number of processors 
for the global efficiency of the system. 
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