
Dependable SIMD Architecture for Artificial Neural Networks

Jacek Mazurkiewicz
Wroclaw University of Technology, Poland

Jacek.Mazurkiewicz@pwr.wroc.pl

ABSTRACT
The paper proposed a new methodology for Hopfield and Kohonen neural networks based on
systolic array structure. The method proposed is based on pipelined systolic arrays – an
example of SIMD architecture. The discussion is realized based on operations which create
the following steps of learning and retrieving algorithms. The data which are transferred
among the calculation units are the second criterion of the problem. The results of discussion
show that it is possible to create the universal structure to implement all algorithms related to
Hopfield as well as for Kohonen neural network. The dependability features of the proposed
methodology are focused to FTC – necessary calculations can be done using reduced number
of elementary processors. The approach can be also easily adopted for other recurrent neural
nets – as Hamming neural net for example.

Key Words: SIMD architecture, neural networks, dependability

1. Introduction
The paper is focused on the method of
implementation of Hopfield and Kohonen
neural network algorithms using pipelined
systolic arrays – an example of SIMD
architecture. The main assumption is about
partial parallel realisation of learning
algorithms as well as retrieving phase
using the same processing structure. The
proposed methodology creates the
theoretical basis for hardware realisation of
Hopfield and Kohonen neural networks
and could easily adopted for other
recurrent nets. The methodology is
discussed based on the following
assumptions:
- the outcome of algorithms realized true

to proposed methodology is exactly the
same like the outcome of classical
neural network algorithms,

- the proposed methodology allows to
create a universal structure both for
learning algorithms and retrieving phase
of defined type of the neural network,

- the systolic structure is realized using
only digital elements, input and output
data are represented in binary code,

- the number of neurons which create the
net is unrestricted, but the maximum

number of elementary processors can be
limited – as a flexible reaction for
failures.

2. Hopfield neural network

algorithms
The binary Hopfield net has a single layer
of processing elements, which are fully
interconnected - each neuron is connected
to every other unit. Each interconnection
has an associated weight: wji is the weight
to unit j from unit i. In Hopfield network,
the weight wij and wji has the same value.
Mathematical analysis has shown that
when this equality is true, the network is
able to converge. The inputs are assumed
to take only two values: 1 and 0. The
network has N nodes containing hard
limiting nonlinearities. The output of node
i is fed back to node j via connection
weight wij.

2.1 Retrieving phase
During the retrieving algorithm each
neuron performs the following two steps
[8]:
- computes the coproduct:

p pj
j

N

j pk w v kϕ θ() ()+ ∑= −
=

1
1

 (1)

wpj - weight related to feedback signal,
vi(k) - feedback signal, Θp - bias
- updates the state:













<

=

>

=

+−
+
+

+
0)1(1
0)1()(
0)1(1

)1(
k
kkv
k

kv
p

pp

p

p

for

for

for

ϕ
ϕ
ϕ (2)

The process is repeated for the next
iteration until convergence, which occurs
when none of the elements changes state
during any iteration. The initial an the end
conditions for the iteration procedure
require the following equations:

p p p pv k v k y∀ + = =() ()1 p p pv x∀ =()0 (3)

2.2 Hebbian learning algorithm
The training patterns are presented one by
one in a fixed time interval. During this
interval, each input data is communicated
to its neighbour N times:









=

≠
=

∑
=

ji

jixx
w

for

for
N

M

m

m

j

m

i

ij

0
1

)()(1
 (4)

M - number of training vectors

2.3 Delta-rule learning algorithm
The weights are calculated in recurrent
way including all training patterns,
according to the following matrix
equation:

[][]Tiii xWxx
N

WW)()()(−+= η
 (5)

η ∈ [0,7, 0,9] - learning rate, N - number
of neurons, W - matrix of weights, x - input
vector
The learning process stops when the next
training step generates the changes of
weights which are less then the established
tolerance ε.

3. Systolic arrays for Hopfield

neural network
Systolic arrays are prepared based on
proper Data Dependence Graphs - directed
graphs that specify the data dependencies
of algorithms. In a Data Dependence
Graph nodes represent computations and
arcs specify the data dependencies between
computations.

3.1 Idea of systolic array for Hebbian
learning algorithm

Each node in Data Dependence Graph for
Hebbian training algorithm multiplies two
of corresponding input signals xi and
obtains this way the weight wij which is
stored in local memory unit. So it realizes
three operations. Each elementary
processor is responsible for these three
operations. The input signals xi are passed
to the nearest bottom neighbours and the
neighbours on the right hand (Fig.1).

3.2 Idea of systolic array for Delta-rule

learning algorithm
The Data Dependence Graph for Delta-rule
training algorithm we can divide into two
parts: Relation Graph Gr and Value Graph
Gw. Each node which belongs to Gr
multiplies a corresponding input signal xi
and weight value wij, then it subtracts the
multiplication result from the input signal
xi. Each node in the Gw part of the Data
Dependence Graph is responsible for three
operations. During the first operation the
node multiplies the corresponding result
obtained at the end of the calculations
related to the Gr part of the Data
Dependence Graph and the input signal xi.
During the second operation each node
multiplies the obtained values and the
fraction: learning rate/number of neurons.
At the end the values of weights are
upgraded. This way the weights are
obtained and next they are stored in local
memory unit. The input signals xi are
passed to the nearest bottom neighbours
[3]. Operations described by Relation
Graph Gr and Value Graph Gw ought to be
realized in sequence – so processor
executes five basic operations. (Fig. 2).

3.3 Idea of systolic array for retrieving

algorithm
Each node in Data Dependence Graph for
retrieving algorithm multiplies the input
signal xi or feedback signals vi and
corresponding weight wij which is stored in
local memory unit. The product of
multiplication is passed to the nearest
neighbour on the right hand (two basic
operations). The ϕi nodes collect the partial

Fig. 1. Idea of systolic array for Hebbian
learning algorithm

Fig. 2. Idea of systolic array for Delta-rule

learning algorithm

Fig. 3. Idea of systolic array for retrieving algorithm

products and calculate the global value of
coproduct. The last nodes on the right are
the comparators to check if the next
iteration is necessary. (Fig. 3).

4. Efficiency of systolic arrays for

Hopfield neural network

4.1 Computation time and Block period
This is time between starting the first
computation and finishing the last
computation of problem. Given a coprime
schedule vector

r
s , the computation time

equals [3], [11]:

(){ } 1max
,

+−=
∈

qpsT T

Lqp

rrr
rr

 (6)

L - is the index set of the nodes in the Data
Dependence Graph
Block Period is time interval between the
initiation of two successive blocks of
operations [3], [11]. In the presented
architectures for all algorithms the
schedule vector is defined as: []r

s = 1 1, . For
Hebbian training implementation - taking
number of basic operations into account -
we can calculate the computation time and
block period as:

M
K

N
NTsystol τ







 +−= 1
1

3

τ






 +−= 1
1

3
K

N
NTblock (7)

In fact the Data Dependence Graph for this
algorithm is combined by two independent
structures of operations. The computation
time for both parts of algorithm isn’t the
same because the number of basic
operations is different, number of nodes
and the topology of them is the same.
Additionally the estimated computation
time ought to be modified by number of
iterations related to single training pattern:

βτ M
K

N
NTsystol 







 +−= 1
1

5

βτ






 +−= 1
1

5
K

N
NTblock (8)

τ - processing time for elementary
processor, M - number of training patterns,

β - number of iterations for single training
pattern, K - number of elementary
processors.

The retrieving algorithm also requires
multiple presentation of each pattern but
single retrieving procedure doesn’t require
all patterns at the same time. The
computation time we can describe using
the following equations:

βτ






 ++= 1
1

2
K

N
NTsystol

τ






 ++= 1
1

2
K

N
NTblock

 (9)

In all equations we can find parameter
denoted as K – the number of elementary
processors. This way the FTC parameter of
the structure can be discussed. The
definition of SIMD architecture guarantees
the unique construction and function of
processors – so if we can observe the
changes of efficiency parameters related to
the number of used processors we can say
a lot of the results of the failures. But we
have to remember that using only single
processor it is possible to realize the whole
calculation process. Of course the
efficiency parameters will be very poor,
but the structure is still working.

4.2 Pipelining period
This is the time interval between two
successive computations in a processor. As
previously discussed, if both

r
d and

r
s are

irreducible, then the pipelining period
equals: α =

r r
s dT (10)

The pipelining period is the same for all
algorithms - equals: α = 1 - is as short as
possible [3].

4.3 Speed-up and Utilization rate
Lets define the speed-up factor as the ratio
between the sequential computation time
Tseq and the array computation time Tsystol
and the utilization rate as the ratio between
the speed-up factor and the number of
processors [3].

systol

seq

T

T
upspeed =− ,

K

upspeed
ratenutilizatio

−=

 (11)

Sequential computation time for Hopfield
neural network algorithms – taking number
of neurons, number of weights and number
of basic operations into account - equals:
- for Hebbian learning:

MNTseq τ23= (12)

- for Delta-rule learning:
βτ MNTseq

25= (13)

- for retrieving algorithm:
() βτ22 += NNTseq (14)

Based on values of array computation time
calculated in chapter 4.1. we can evaluate:
- for Hebbian learning:

KN

NK
upspeed

+−
=−

1

KN

N
ratenutilizatio

+−
=

1
 (15)

- for Delta-rule learning:

KN

NK
upspeed

+−
=−

1

KN

N
ratenutilizatio

+−
=

1
 (16)

- for retrieving algorithm:
()

KN

KN
upspeed

++
+=−
1

2

KN

N
ratenutilizatio

++
+=
1

2 (17)

This classical parameters calculated for
presented architecture are also related to
the number of active processors. We can
model the speed-up and utilization rate in
function of not-failed processors – we can
control the efficiency in case of FTC
features of proposed architecture.

5. Kohonen neural network

algorithms

5.1 Learning algorithm
The learning algorithm is based on the
Grossberg rule [5] [6]. All weights are
modified according to the following
equation: (18)

))()(,,,()()()1(kwxjijikkwkw lijl
ww

lijlij −Λ+=+ η

k - iteration index, η - learning rate
function, xl - component of input learning
vector, wlij - weight associated with
connection from component of input
learning vector xl and neuron indexed by

(i,j), Λ - neighborhood function, (iw ,jw) -
indexes related to winner neuron, (i, j) -
indexes related to single neuron from
Kohonen map.
The learning rate η we assume as a linear
decreasing function. Learning rate function
is responsible for the number of iterations -
it marks the end of learning process. The
presented solution is based on the
following description of the neighborhood
function [1]:

()
rvaluesother

a
r

r

for

for

for

ar

ar
jiji ww








∈

=









=Λ π2
,0

0

0

)sin(
1

,,,
 (19)

a - neighborhood parameter, r - distance
from winner neuron to each single neuron
from Kohonen map, calculated by indexes
of neurons as follow: (20)

The learning procedure is iterative:
weights are initialized by random values;
position of winner neuron for each learning
vector is calculated by ordinary Kohonen
retrieving algorithm using random values
of weights; weights are modified using
Grossberg rule (18); the learning rate is
modified, the neighborhood parameter a
(19) is modified and if the learning rate is
greater than zero weights are modified by
the next learning vector, else the learning
algorithm stops [7].

5.2 Retrieving algorithm
During the retrieving phase the Euclidean
distance: the weights vector and the output
vector is calculated. The winner neuron is
characterized by the shortest distance [6]
[7]. Each neuron from Kohonen map
calculates the output value according to the
classical weighted sum:

∑
−

=

=
1

0

),(
N

l
lijl wxjiOut (21)

Out(i, j) - output value calculated by single
neuron of Kohonen map indexed by (i, j)

6. Data Dependence Graphs for

Kohonen neural network

6.1 Kohonen learning algorithm
For 1-D Kohonen map neurons are placed
is single line, each neuron has two

22)()(jjiir ww −+−=

neighbors, excluding neurons at the ends
of line. For such topology there are (N × K)
weights if we assumed N-element input
vector and K neurons which create the
Kohonen map. 1-D Kohonen map ought to
be described by rectangular Data
Dependence Graph (Fig. 6.). Each node of
the graph is responsible for single weight
calculation. using Grossberg rule (18)
(Fig. 4.). The current value of the weight is
stored in the local memory of each node.
The node decreases the learning rate in
automatic way. The size of the graph
equals to the size of the weight matrix.
Each node of the graph is loaded by two
signals. The neighborhood function is
calculated using sinus function. We
propose to place the values of sinus in a
table and store them in a local memory of
each node. The neighborhood parameter a
(19) is also stored in the local memory and
is sequential reduced by negative counter.

6.2 Kohonen retrieving algorithm
1-D Kohonen map is described by
rectangular Data Dependence Graph
(Fig. 7.). Each node of the graph calculates
the component of the weighted sum (21)
(Fig. 5.). The necessary weight value is
stored in a local memory of the node. The
size of the graph equals to the size of the
weight matrix.

Fig. 4. Single node of Data Dependence

Graph for learning algorithm

Fig. 5. Single node of Data Dependence

Graph for retrieving algorithm

Fig. 6. Data Dependence Graph for
learning algorithm of Kohonen map

Fig. 7. Data Dependence Graph for

retrieving algorithm of Kohonen map

xl xl

Out(i,j)+xlwlij

Out(i,j)

wlij *
+

xl xl

Λ

*
+ wlij(k)

-

*

wlij(k)

η(k) a

Λ(iw,jw)

7. Mapping Data Dependence
Graphs onto systolic array

The Data Dependence Graphs for
retrieving and learning algorithms are local
and composed by the same number of
nodes. The single neuron operations are
described by the column of the graph [7].
Multi-dimensional Kohonen map is
described by the set of 1-D Data
Dependence Graphs (Fig. 6.) (Fig. 7.). It
means that the slabs work in parallel [1]
[7]. The graphs can be converted to an
universal structure able to implement
learning algorithm as well as retrieving
algorithm using processors with switched
functions (Fig. 8.) [3] [1]. The systolic
arrays are the result of the linear projection
of Data Dependence Graphs onto lattice of
points, known as processor space. The
elementary processor combines operations
described by nodes taken from single
vertical line of the graph [11].

Fig. 8. Systolic array for learning

algorithm of Kohonen neural network

8. Efficiency of approach proposed

for Kohonen neural network
An efficiency of proposed approach is
estimated using the algorithm proposed by
Kung [3] and modified for MANTRA
computer analysis [11]. The estimation is
based on the dimensions and organization
of the Data Dependence Graphs. A
computation time for retrieving algorithm
equals:

τ)KN(T 1−+= (22)

τ - processing time for elementary
processor.

The computation time for learning
algorithm:

ητM)KN(T 1−+= (23)

M - number of learning vectors.
Speed-up and processor utilization rate are
exactly the same for retrieving and
learning algorithms - assuming possible
sequential computation time: (24)

11 −+
=

−+
=−

KN

N
ratenutilizatio

KN

NK
upspeed

9. Conclusion
The comparison of the same criteria for
two methods of learning is the most
interesting part. Computation Time - if we
assume single presentation of each training
vector - is less then two times longer for
Delta-rule learning. Of course such
assumption is true for Hebbian learning but
isn’t in general true for Delta-rule. Each
next presentation of training set makes the
Computation Time longer and the
dependence is directly proportional.
It is very interesting we can observe
exactly the same Speed-Up and Processor
Utilization Rate both for Hebbian and
Delta-rule learning procedures. The
necessary time-period for calculation of
Delta-rule procedure is longer than time-
period related to Hebbian learning - but
elementary processors’ using is the same.
The results of discussion show that it is
possible to create the universal structure to
implement all algorithms related to
Hopfield neural network. This way there
are no barriers to tune the Hopfield net to
completely new tasks. The proposed
methodology can be used as a basis for
VLSI structures which implement Hopfield
net or as a basis for set of general purpose
processors – as transputers or DSP.
Proposed methodology for Kohonen neural
is based on classical and not modified
algorithms related to Kohonen maps. It is
possible to realize the obtained subtasks by
software processes, but also using
dedicated neuro-computers like MANTRA
[11].

Table 1. Efficiency parameters for ring systolic structure related to Hopfield neural
network algorithms – possible minimum and maximum values

 Learning Retrieving
 Hebbian rule Delta-rule phase

Computation time
Tsystol (min) / (max)

() MN τ123 − /

MN τ23

() βτ MN 125 − /

βτMN 25

() βτ122 +N /

()τβ22 +NN

Speed-up
(min) / (max) 1 /

N

N

2

2 1−
 1 /

N

N

2

2 1−
 1 /

()N N

N

+
+
2

2 1

Utilization rate
(min) / (max)

N

N2 1−
 / 1

N

N2 1−
 / 1

N

N

+
+
2

2 1
 / 1

τ - processing time for elementary processor, M - number of training patterns,
β - number of iterations for single training pattern, N - number of neurons

The minimum values of the efficiency
parameters are calculated for the proposed
structure with single available (not-failed)
processor. The maximum values are
related to the optimal number of used
processors. This way it is possible to
observe the changes of the values as a
function of ready to use elementary
processors. We can model the influence of
the decrease of the number of processors
for the global efficiency of the system.

References

[1] K.V. Asari and C. Eswaran, Systolic

Array Implementation of Artificial
Neural Networks, Indian Institute of
Technology, Madras, 1992.

[2] A. Ferrari and Y. H. Ng, “A Parallel

Architecture for Neural Networks”,
Parallel Computing’91, Elsevier
Science Publishers B. V., 1992,
pp. 283 - 290.

[3] S.Y. Kung, Digital Neural Networks,

PTR Prentice Hall, 1993

[4] J Mazurkiewicz, “Feedforward Neural

Network Simulation Based on Systolic
Array Approach”, NETSS 2004,
ACTA MOSIS No. 94, MARQ.,
Ostrava, 2004, pp. 17 - 22.

[5] J. Mazurkiewicz, “Kohonen Neural
Network Learning Algorithm
Simulation Based on Systolic Array
Approach”, MOSIS’05 Conference
Modelling and Simulation of Systems,
ACTA MOSIS No. 102, Ostrava,
2005, pp. 202 - 207.

[6] J. Mazurkiewicz, “Systolic Realization

of Kohonen Neural Network”,
Artificial Neural Networks: Formal
Models and Their Applications –
ICANN 2005, LNCS 3697, Springer-
Verlag Berlin Heidelberg, 2005,
pp. 1015 - 1020.

[7] J. Mazurkiewicz, “Systolic Realisation

of Self-Organising Neural Networks”,
ICSC 2003, 2003, pp. 116 - 123.

[8] J. Mazurkiewicz, “Systolic Simulation

of Hamming Neural Network”,
Advances in Soft Computing, Physica-
Verlag Heidelberg 2003, A Springer-
Verlag Company, 2003, pp. 867 - 872.

[9] N. Petkov, Systolic Parallel

Processing, North-Holland, 1993.

[10] S.G. Shiva, Pipelined and Parallel

Computer Architectures, Harper
Collins Publishers, 1996.

[11] D. Zhang, Parallel VLSI Neural

System Design, Springer-Verlag, 1999.

