
Automatic reconfiguration in the response to network
incidents by neural networks

Andrzej Olchawa, Tomasz Walkowiak
Wroclaw University of Technology, Poland

 {andrzej.olchawa, tomasz.walkowiak}@pwr.wroc.pl

ABSTRACT
This paper presents the idea of network monitoring based on multi-agent techniques and
automatic network reconfiguration based on Artificial Neural Networks. Authors propose to
combine these two techniques, to create a intelligence entity, which will be able to make
reconfiguration decision, based on discovered network incidents.

Key Words: sensors, multi-agent event monitoring, systems security, neural networks, molecules.

1. Introduction

The enormous progress in the field of
computer science provides more and more
business technologies, which requires a
high level of reliability and stability.
Moreover, security and system defence is
directly related to technical, social and
economic background [1, 2, 3].

Major concerns in the development and
exploitation of networks is confidentiality,
integrity and availability of information
[4]. For these purposes, the event
monitoring layer is required. Currently,
events monitoring plays the conspicuous
part of the system defence [5]. There are
many different approaches related to event
monitoring, unfortunately most of them are
relatively ineffective [6]. In the aim of the
efficiency enlargement except event
monitoring approaches, Artificial
Intelligence is introduced [7, 8].

In the paper we propose to use the
Artificial Intelligence as the tool which
enables reaction to incidents – automatic
network reconfiguration.

The paper is structured as follows. In the
second section the description of the
network monitoring system structure is
given. The concept of three-layer network
structure is presented. Then, the idea of

intelligence entity, which is able to make
decisions of network reconfiguration is
introduced. Finally, the proposal of
realization the idea is given. The final
section gives the short conclusions, and
current state of work.

2. The architecture of the network
monitoring system

The architecture proposed in this paper is a
three-layer structure (see Fig. 1):

• low-layer (the lowest monitoring
part),

• middle-layer (decision and
reconfiguration monitoring part),

• high-level (the console application,
layer of data presentation).

We will focus on two lower layers (low-
and middle-layer). The middle-layer is a
structure, which consists of the logically
divided network components. Each of
these logical components – which are
called Molecules – contains a several
monitored and one monitoring hosts [9].
This approach will allow us collect events
from each host not as a whole monitored
system, but as a small molecule. Collected
data will be filtered more accurately in this
way, what should reduce the quantity of

required decision (reconfiguration) rules,
relating to a particular molecule.

The molecule (middle-layer) could be seen
as a collection of technical services (like
WebServer, DNS, FTP, etc...) and the host
with an application, which supervises a
particular molecule – we named it the
DecisionAgent. Of course, molecules don't
have to be just a logical entity, but they can
be also defined by a physical division of
the network (like sub-networks, for
example).

For the monitoring purposes, we propose
to locate agents on each of the Molecule's
hosts. We define an Agent as a small entity
(in low-layer monitoring system), which is
responsible for gaining information about
the host condition, on which the agent
resides. These Agents can be implemented
in many different forms, from a computer
applications to a small programs embedded
on router/switch software. However, in this
work – for a simplification, we assume it is
a computer application, which is working
on Linux or Windows operating system. In
the simplest form, the Agent should
receive some events from working on hosts
services, gain information about host

performance (like memory and CPU
consumption) and provides these data to
the higher layer, inside a molecule which
contain this agent. We can reach this aim
by connection an agent to the applications
and libraries delivering information on a
certain service. In our work, we are using
applications and mechanisms such as
SNORT, Statgrab, SNMP and WMI, but
this is only an example. The agent should
be exceptionally autonomic, and moreover,
be able to gain system events from many
different sources (in the application logs

form, for example). To reach this aim, we
design the agent which consists of
independent modules, monitors host and
provides information about its state. Such
modules can be created independently and
added into the agent (as external libraries),
as the source of information on the subject
of monitored host.

In the higher layer, information about
network events (sent from low-layer by
Agents) should be received by a
monitoring host (DecisonAgent
application), which de facto is a
representative entity of the molecule. The
responsibility of the DecisionAgent is – in

Fig. 1. The multi-layer network architecture

the simplest form – to collect network
events from monitored hosts (in a
particular molecule), making an
aggregation on these information and
persist in a database.

However, to introduce an element of
reconfiguration to the monitoring system,
we have let DecisionAgent to
automatically, and remotely, change
configuration of monitored hosts. To do
this, we propose to design the Agent thus,
it will be able to receive a feedback from
DecsionAgent in the form of commands to
be executed (Fig. 2.). This approach will
allow us to build a special bridge
responsible for the transportation of the
command to the realization.

3. The decision Agent

The main aspect of this paper, is the
consideration of an intelligent entity,
which could automatically generate
decisions based on network events
provided by agents. We'll describe
mentioned entity, but before that, worth

mention is also the aggregation of Agent's
events.

As was written before, the Agent's events
are simple messages delivered from low-
layer to the middle-layer of the monitored
system. This means, that we receive a large
quantity of various messages, which
received alone, don't bring useful
information. The solution of this problem
is the aggregation of these information. For
example, we don't need information about
CPU consumption in the single second of
the time. But the same information taken in
each 10 second is also useless. What we
really need, is the average of the CPU
consumption in the last N seconds, and
this information, could be gained by

introducing the data aggregation. To be
more clear, we should prepare a set of
aggregation rules, which will process the
events and generate events on more higher
level allowing a process of making
decisions on system reconfiguration.

Fig. 2. The architecture of the network monitoring system

As a solution of this problem, we propose
to use an element of Artificial Intelligence
(AI) - the Artificial Neural Networks.
Using characteristic capabilities of neural
networks (like approximation and

generalization [10]), we should be able to
create an independent entity, which the
main aim could be the automatic network
reconfiguration.

We are trying to design mechanism based
on ANN, which will be able to recognize a
problem, classify it and take a proper
action (reconfigure the system). The most
difficult task relating to this aim, is an
arrangement of the input data format for
the neural network. Especially, when we
have to deal with many different network
events. As usually, the process of the input

data organization is time-consuming and
requires many tests before we will obtain
satisfying results. First of all, we should
digitize a message received from an agent,
and then, deliver the content of this

message as a set of numbers into the neural
network. Because the DecisionAgent will
have to deal with events, which are
carrying many various information, the
most important thing is to design a generic
format of rules (input data) for the neural
network. Such rule could be representative
form of the state of monitored host and
related with the concrete decision. In this
way, each of event becomes an input
vector pattern, and at the same time,
creates a learning vector for the ANN.

Fig. 3. DecisionAgent architecture

Now, we try to introduce an example of
problem, which probably could be solved
by DecisionAgent, without interference of
network administrator. Let's imagine, that
we have a molecule which consist of two
identical application servers (Tomcats, for
example). And assume following situation:
somehow CPU consumption increase to
80-90%, the performance of services falls
considerably and is incapable of serving
clients. This is the most simple situation,
and obvious solution is to redirect the
movement to the second application server.
To do this automatically, we have to
launch the Agent on monitored application
server, which will provide information
about CPU performance to DecisionAgent.
On the other side, DecisionAgent should
received information of this event,
interpret properly (make digitalisation),
aggregated in time, and put it on the his
neural network input. The result should be
a decision chosen from some set of
decisions. For example, a message
presenting this situation (sent by Agent)
could looks thus:

<agentName> <IP> <time> <attribute> <value>

Table 1 contains description of these
message fields.

We can digitize this message because, we
know exactly what and where we are
monitoring. When we do this, we'll obtain
the X - input vector for neural network.
The result of ANN work will fit the D -
rule for the rules set.

The last thing which we have to take under
the consideration, is the teaching of
DecisionAgent. Of course, we need an
expert (network administrator) for this
purpose, which will arrange the set of data
mentioned above. Moreover, the expert
should take the part in the initial bevel of
the system work, and be able to add new
elements or make contingent modifications
of rules sets. However, after these actions
we should obtain the system able to make
own decisions for network reconfiguration
(at least such simple ones).

4. The architecture of the decision
Agent

According to description presented before,
the DesicionAgent is an intelligence entity,
which is able to make his own
reconfiguration decision, based on network
events provided by Agents. This means,
that the architecture of DecisionAgent
should consists of elements composition,
such as (Fig. 3.):

• messages listener,
• aggregation functions and

digitizing message modules,
• input data module (for ANN),
• structure of neural network and

data processing,
• output data module (from ANN),
• rule adjustment module,
• command execution module.

Messages listener module – the module,
which is responsible for receiving message
from low-layer monitoring and the
message organization in the objects form.

Aggregation functions module – this
module will received prepared events
objects. In the next step, this should
execute the set of functions, which are
responsible for the data pre-filtering and
proper aggregation of the pre-filter work
results. The system should spacious
reconfiguration of rules, based on which
the aggregation will be made.

Table 1. Description of message filed
Name of

parameter
Meaning of parameter

agentName The Agent's name

IP The address of monitored
host

time The time of checking of
the state

attribute Name of attribute (CPU in
our case)

value Value of attribute (CPU
consumption in our case)

Digitizing of message module – this part is
responsible for digitizing of message,
which means, that each part of message
will be represented by a number. As in the
aggregation case, this module also should
allows on the maximum of reconfiguration,
to give the possibility change of digitizing
rules for user/administrator.

ANN module – this module provide a
mechanism of identifying events. As we
mentioned previously, it will be a neural
network. In this case, we propose to divide
ANN module on 3 dependent parts:

• input data – responsible for
conversion of aggregated objects to
a input vector for the neural
network; the result of this part work
should be a set of numbers,

• data processing – this is the whole
structure of the neural network,
which will used during
DecisionAgent teaching as also
identification process,

• output data – this part is
responsible for providing results of
neural network work.

In other words, the ANN module, contains
all elements relevant with the delivery
input data into neural network, returning
output data as results, and at last, all

processes relevant with teaching and
identifying of neural network. Of course,
to acquire this aim, ANN module should
allows to design and configure each of
mentioned above parts. Especially, the
configuration of neural network structure
should be extremely elastic.

Rule adjustment module – is a simple
module responsible for match results
deliver by ANN module to the one or more
from the rules set.

Rule execution module – this is the last
step of DecisionAgent work. This module
is responsible for arrangement of message
defining a execution command.

Fig. 4. Screen-shot: console application. Left side presents information received from
Sensors, right side shows current performance of monitored machines.

5. Conclusion and further work

This paper presents the architecture of the
monitoring and reconfiguration system. At
present, we are in the implementation
stage. We have already implemented the
lowest monitoring part (agents). Currently,
we are working on DecisionAgent, what
should allow us to make some tests and
distinguish, which structure of the neural
network is the best for this type of a usage.
This part is almost ready, except the
decision module. Moreover, we designed
and implemented the administrative
console to be able to make some tests. The
console is working as the administrator's
tool, which communicates with the
DecisionAgent in order to provide
information about conditions of monitored
hosts in a given molecule. The example of
console work, represents the picture (Fig.
4.). This screen-shot, presents main
application window. The left side of the
window displays information about
collected monitoring events. On the right
side, we see graphs, which show the
current state of monitored machines. We
are able to see CPU and Memory
consumption – in this specific example.
The result of our work, will be the fully
configurable monitoring system, which
hopefully will allow to adapt itself to many
different network structures, and will be
able to automatically make reconfiguration
decisions, based on information provided
by network components.

Acknowledgement

Work reported in this paper was sponsored
by a EU grant DESEREC IST-2004-
026600, (years: 2006-2008)
"Dependability and Security by Enhanced
Reconfigurability" and grant SPUB
208/6.PR UE/2006/7 from the Polish
Ministry of Science and Higher Education.

References

[1] McCarthy, L.: Symantec Internet
Security Threat Report. Tech. rep.,
Symantec, Inc., September 2003.

[2] McHugh, J.: Intrusion and Intrusion
Detection. In: International Journal of
Information Security, pp. 14–35, vol.
1, num. 1, 2001.

[3] Woda, M. Walkowiak, T.: Multi
agent event monitoring system. In
Proc. of the 3rd International
Conference on Information
Technology ICIT 2007. Al-Zaytoonah
University of Jordan, Amman, Jordan,
May 9-11, 2007.

[4] Woda, M., Walkowiak T.: Agent
based approach to events monitoring
in Complex Information Systems,
Securware, pp.397-402, 2008 Second
International Conference on Emerging
Security Information, Systems and
Technologies, 2008.

[5] Bace, R.G: Intrusion Detection.
Macmillan Technical Publishing, New
York, NY 2000.

[6] Idris, N.B., Shanmugam, B.: Artificial
Intelligence Techniques Applied to
Intrusion Detection. IEEE Indicon
2005 Conference, India, Chennai,
2005.

[7] Garcia, R.C. Copeland, J.A.: Soft
Computing Tools to Detect and
Characterize Anomalous Network
Behaviour, IEEE World Congress, pp.
475-478, 2000.

[8] Dickerson, J. E., Juslin, J., Dickerson
J.A. and Koukousoula, O.: Fuzzy
Intrusion Detection. In the
Proceedings of North American Fuzzy
Information Processing Society 2001
(NAFIPS 2001), Vancouver, Canada,
July 25th, 2001.

[9] Israel, M., Borgel, J. ,Cotton, A.:
Heuristics to Perform Molecular
Decomposition of Large Mission-
Critical Information Systems,
Securware, pp.338-343, 2008 Second
International Conference on Emerging
Security Information, Systems and
Technologies, 2008.

[10]Bischop, Ch.: Neural Networks for
Pattern Recognition. Clarendon Press
Oxford, 1996.

